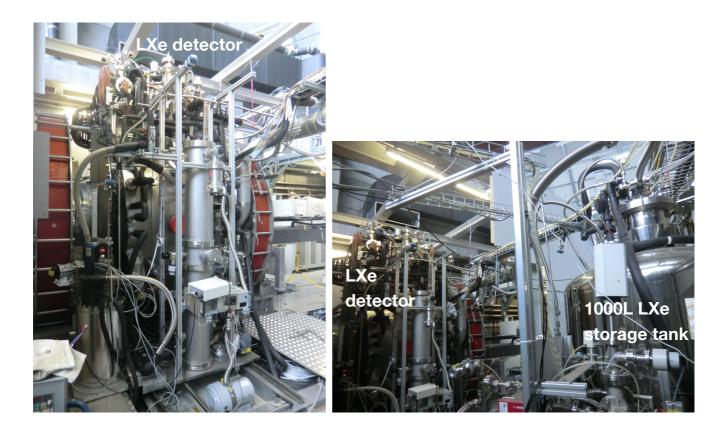
Slow Control of the Liquid Xenon Calorimeter

Prepared for: Cabling at pE5 Prepared by: Toshiyuki Iwamoto E-mail : toshiyuki.iwamoto@psi.ch TEL : 056 310 2669 26/05/2014 14/04/2017 updated 13/10/2017 revised 11/01/2018 revised 02/10/2018 revised


INTRODUCTION

Objective

We here describe the whole system about the liquid xenon (LXe) gamma-ray calorimeter for the MEG II experiment, mainly about the slow control system at pE5 area. We upgrade the MEG detector, and the MEG II LXe detector has been operational since 2017.

LXe gamma-ray calorimeter

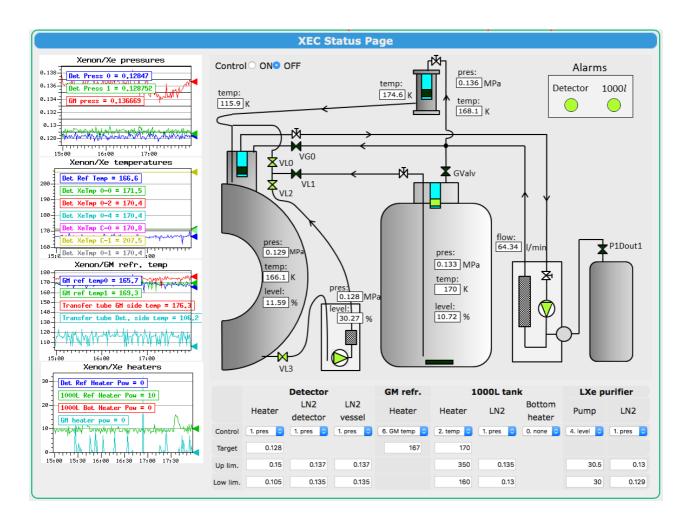
In order to detect gamma-rays, we use 900L LXe and 4092 MPPCs and 668 photomultipliers. The LXe temperature must be kept to be around 165K (-108 degree Celsius) at xenon gas pressure of 1 atmospheric pressure, and thus we need cryogenics and many sensors inside the detector. The left picture in this page shows the LXe calorimeter. During the winter shutdown period, the LXe in the calorimeter is transferred to 1000L LXe storage tank which has a refrigerator and a better thermal insulation, and can keep the LXe safer. Both of the LXe calorimeter and the 1000L LXe storage tank are shown in the right picture as well as thermal insulated pipes.

PAUL SCHERRER INSTITUTE

The left picture is a view of the 1000L storage tank. All amount of xenon can be kept during a long break in 8 high pressure gas tanks as shown in the right picture which do not require any control. There is a gaseous purification system located between the 1000L tank and eight high pressure gas tanks also in the picture.

Slow control

system


We use Midas Slow Control System (MSCB) to keep the LXe detector stable and safe. A crate is dedicated to the calorimeter slow control system as shown in the right picture. From the bottom, there are a power circuit breaker and a network switch. A 24V DC power supply is for SCS2001(we do not need it anymore), a current source for pt-100 thermometers, and a level meter readout module. There are air actuated valves to control the gas transfer or liquid transfer, and two air control relays are mounted. Four SCS2001 modules are used to control the system. Liquid nitrogen is used to keep the LXe cold, and solenoid valves are used to control LN2. Many relays are prepared to allow us to control LN2 on/off remotely depending on the LXe pressure etc. Three vacuum level gauges and a turbo pump controller are prepared to monitor and control the vacuum. The top of the crate is terminals of cables from detectors into SCS2001. There are two SCS2001 modules dedicated to the gas purification control and potentiometer readout installed in the LXe vacuum vessel which are embedded in the gas purification system.

GM refrigerator refrigerator transfer tube Three refrigerators are used to control the LXe VG1 -1741--M temperature and the helium refrigerato VG0 VD0 LN₂ ŹVL0 lines, cooling water lines are 🗙 GValv heater \$vL2 refrigerato LN connected between the refrigerators and the water P1Dout1 cooling system and compressors on a platform upstairs. LN The schematic view of the LXe calorimeter system is regulator nole bottom eater shown in the right figure. gas panel detector LXe purifier 1000*l* tank high pres. tank × 10

h Th

We monitored the detector status by a midas custom page as shown in the figure.

Cabling of each component

In total, we have four SCS2001 modules (XECDetector, XECDetectorSub, XEC1000L, and XECStorage) in the LXe slow control rack , and two SCS2001 modules (XECPurifier, and XECPotentiometer) in the gaseous purification system.

Each module has cards inside, and all cables are connected to the backplane of the module. Here I will put the information about cards and the cable connections.

SCS2000 XECDetector

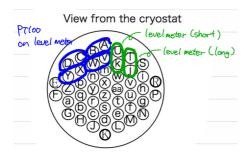
This module has eight cards inside as shown in the bottom table, and two terminals are used to connect cables to a SCS2000 backplane. The right table shows cable assignment on the two terminals, the first arrow is the number of the terminal, the second is the channel of SCS2000 backplane, and the third is the explanation of the cable. Vessel temperature 0,1,3,6,8,9,12,14 are directly connected to the SCS2000 module

5-0,5-1,5-2,5-3,5-4,5-5,5-6,5-7, respectively.

	Equipped cards	driver
0	Uin + 2.5V	0x60
1	Uin +-10V	0x61
2	Uin +-10V	0x61
3	Uout +-10V	0x81
4	Dout 24V	0x40
5	Uin + 2.5V	0x60
6	Dout 24V	0x40
7	Dout 24V	0x40

1	0-0	refrigerator temperature
2	0-1	refrigerator temperature
3		
4		
5		
6		
7	1-0	pressure 0 (51 Ohm resistor)
8	1-1	pressure 1 (51 Ohm resistor)
9	AGND	
10	1-2	level meter 0
11	1-3	level meter 1
12	AGND	
13	1-4	purifier pump pressure (51
14	1-5	Ohm resistor) level meter 3 (no use)
15	AGND	
16	1-6	strain meter 0 (no use)
17	1-7	strain meter 1 (no use)
18	AGND	
19	2-0	GM pressure
20	2-1	GM pressure (51 Ohm
	AGND	resistor)
21 22	AGND 2-2	
		outer vessel vacuum (no use) liquid phase pump pressure
23	2-3	(51 Ohm resistor)
24	AGND	
25	2-4	liquid phase pump level
26	2-7	liquid phase pump speed (READ)
27	DGND	
28	4–0	LN2 valve 0 (to relay)
29	4-1	LN2 valve 1 (to relay)
30	4-2	LN2 valve 2 (to relay)
31	4-3	LN2 valve 3 (to relay)
32	4-4	LN2 valve 4 (to relay)
33	4–5	LN2 valve 5 (to relay)
34	4-6	LN2 valve 6 (to relay)
35	4–7	LN2 valve 7 (to relay)
36	6-0	vessel heater (no use)
37	6-1	refrigerator heater (to relay)
38	DGND	
39	6-2	compressor (to platform)
40	6–3	V0 open (to air terminal)
41	6-4	V0 close (to air terminal)
42	7–0	VG0 (to air terminal)
43	7-1	VG1 (to air terminal)
43	DGND	
45	7-2	VL0 (to air terminal)
46	7-3	VL1 (to air terminal)
47	7-4	VL2 (to air terminal)
48	7–5	VL3 (to air terminal)
49	3–0	liquid pump speed control (WRITE)
50	AGND	

1	0-2	GM refrigerator CH temperature
2	0-3	GM refrigerator CH temperature
3	0-4	GM refrigerator CH temperature, transfer tube temperature
4	0-5	transfer tube temperature
5	0-6	transfer tube temperature
6		
7		
8		
9		
10		
11 12		
12		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25 26		
20		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37 38		
30		
40		
41		
42		
43		
43		
45		
46	DG	
47	DG ND	
48	6-5	GM refrigerator heater (to relay)
49	6-6	GM refrigerator compressor (to platform)
50	7-7	GXe circulation pump
		,h


SCS2001 XECDetectorSub

This module has eight cards inside as show in the left table. Cables for this module is directly connected from

the detector to the SCS2001 backplane as shown in the right table. The first arrow shows an internal channel number, the second is the name of the parameter, the third is the description, and the fourth is the backplane channels.

Port	Card	driver
0	Uin + 2.5V	0x60
1	Uin + 2.5V	0x60
2	Uin + 2.5V	0x60
3	Uin + 2.5V	0x60
4	Uin + 2.5V	0x60
5	Uin + 2.5V	0x60
6	IOUT 0-2.5mA	0x82
7	IOUT 0-2.5mA	0x82

Inner vessel temperature 0-1 cables are connected to a feedthrough connector on the top of the XEC detector shown below.

Inner vessel temperature 2-21 cables are connected to a feedthrough connector on the top of the XEC detector shown below.

View from the cryostat

Pink : Current in/out Others : Readout

chann el	name	description	local I/O
0	Alarm	Alarm	
1	Mode	Preset mode	
2	SaveMd	mode number to save	
3	Flash	flash EEPROM	
4	TmpCr0	IOUT current 0	IOUT 7-0
5	TmpCr1	IOUT current 1	IOUT 7-1
6	TmpCr2	IOUT current 2	IOUT 7-2
7	TmpCr3	IOUT current 3	IOUT 7-3
8	TmpCr4	IOUT current 4	IOUT 7-4
9	TmpCr5	IOUT current 5	IOUT 7-5
10	TmpCr6	IOUT current 6	IOUT 7-6
11	TmpCr7	IOUT current 7	IOUT 7-7
12	TmpCr8	IOUT current 8	IOUT 6-0
13	XeTm00	Inner vessel temperature 0	ADC 0-0,1
14	XeTm01	Inner vessel temperature 1	ADC 0-2,3
15	XeTm02	Inner vessel temperature 2	ADC 1-0,1
16	XeTm03	Inner vessel temperature 3	ADC 1-2
17	XeTm04	Inner vessel temperature 4	ADC 1-3,4
18	XeTm05	Inner vessel temperature 5	ADC 1-5
19	XeTm06	Inner vessel temperature 6	ADC 1-6,7
20	XeTm07	Inner vessel temperature 7	ADC 2-0,1
21	XeTm08	Inner vessel temperature 8	ADC 2-2
22	XeTm09	Inner vessel temperature 9	ADC 2-3,4
23	XeTm10	Inner vessel temperature 10	ADC 2-5
24	XeTm11	Inner vessel temperature 11	ADC 2-6,7
25	XeTm12	Inner vessel temperature 12	ADC 3-0,1
26	XeTm13	Inner vessel temperature 13	ADC 3-2
27	XeTm14	Inner vessel temperature 14	ADC 3-3,4
28	XeTm15	Inner vessel temperature 15	ADC 3-5
29	XeTm16	Inner vessel temperature 16	ADC 3-6,7
30	XeTm17	Inner vessel temperature 17	ADC 4-0,1
31	XeTm18	Inner vessel temperature 18	ADC 4-2
32	XeTm19	Inner vessel temperature 19	ADC 4-3,4
33	XeTm20	Inner vessel temperature 20	ADC 4-5
34	XeTm21	Inner vessel temperature 21	ADC 4-6,7
35	PrTmp0	LXe purifier temperature 0	ADC 5-0,1
36	PrTmp1	LXe purifier temperature 1	ADC 5-1,2
37	PrTmp2	LXe purifier temperature 2	ADC 5-2,3
38	PrTmp3	LXe purifier temperature 3	ADC 5-3

SCS2001 XEC1000L

This module has four cards inside as shown in the left table.

Cables for this module is directly connected from the detector to the SCS2001 backplane as shown in the right table. The first arrow shows an internal address of the module, the second is an internal channel number, the third is the name of the parameter, the forth is the description, and the fifth is the backplane channels. The IOUT card ch0 (3-0) is connected to the temperature sensors in series.

	Equipped cards	driver
0	Dout 5V/24V	0x40
1	Uin +-10V	0x61
2	PT100	0x72
3	IOUT	0x83

	ala ci si s	I		
address	channel	name Alarm	description Alarm bit field	local I/O
2	0	Mode	Preset mode	
2	2	LN2VIv	LN2 valve on/off	Dout0(0-0)
2	3	Comprs	Compressor on/off (to platform)	Dout0(0-0) Dout1(0-1)
2	4	VD0	Gas xenon valve 0 (to air terminal)	Dout2(0-2)
2	5	VD1	Gas xenon valve 1 (to air terminal)	Dout3(0-3)
2	6	CHOut	Cold head heater out (to realy)	Dout4(0-4)
2	7	BHOut	Bottom heater out (to relay)	Dout5(0-5)
2	8	CHPow	Cold head heater power [%]	
2	9	BHPow	Bottom heater power[%]	
2	10	CHTmp0	Cold head temperature	Temp0(2-0)
2	11	CHTmp1	Cold head temperature	Temp1(2-1)
2	12	XeTmp0	Lxe temperature 0	Temp 2(2-2)
2	13	XeTmp1	Lxe temperature 1	Temp 3(2-3)
2	14 15	XeTmp2 XeTmp3	Lxe temperature 2 Lxe temperature 3	Temp 4(2-4) Temp 5(2-5)
2	16	XeTmp0	Lxe temperature 4	Temp 6(2-6)
2	10	RFOTmp	Refrigerator outside temperature	Temp 7(2-7)
2	18	Press	Inner pressure of 1000L (100 Ohm	ADC 0(1-0)
2	19	Pupper	resistor) Pressure upper (for level meter) (no	ADC 1 (1-1)
2	20	PLower	use) Pressure Lower (for level meter) (no	ADC 2 (1-2) ADC 3 (1-3)
2	20	Level	use) Capacitance level meter(100 Ohm	ADC 4 (1-4) ADC 5 (1-5)
2	22	RCTLMD	resistor) Refrigerator control mode. 0: none,	
2	22	BCTLMD	1:Pressure, 2:Temperature Bottom heater control mode. 0: none, 1:	
2	23	CTPTG	Pressure	
2	24 25	CTPUL	Pressure control target Pressure control upper limit	
2	26	CTPLL	Pressure control lower limit	
2	27	RCTTID	temperature sensor ID for controling	
2	28	RCTPP	heater. 0 or 1 Refrigerator control pressure P value	
2	20	RCTPI	Refrigerator control pressure I value	
2	30	RCTTTG	Refrigerator control temperature target	
2	31	RCTTP	Refrigerator control temperature P value	
2	32	RCTTI	Refrigerator control temperature I value	
2	33	RCTTUL	Refrigerator control temperature upper limit. Controller does not heat over this value	
2	34	RCTTLL	Refrigerator control temperature lower limit. Controller does not heat over this value	
2	35	BCTPP	Bottom heater control pressure P value	
2	36	BCTPI	Bottom heater control pressure I value	
2	37	N2CTMD	LN2 control mode. 0: none, 1: Pressure	
2	38 39	N2CTUL N2CTLL	LN2 control upper level LN2 control lower level	
2	40	AIPrUL	Upper threshold of pressure for alarm	
2	41	AlPrLL	Lower threshold of pressure for alarm	
2	42	AITmUL	Upper threshold of cold head temperature for alarm	
2	43	AlTmLL	Lower threshold of cold head temperature for alarm	
2	44	SaveMd	Mode number to save current state	
2	45	Flash	Flash EEPROM	
2	46	PupperH	Measured voltage for pressure sensor upper 1	
2	47	PupperL	Measured voltage for pressure sensor upper 2	
2	48	PlowerH	Measured voltage for pressure sensor lower 1	
2	49	PlowerL	Measured voltage for pressure sensor lower 2	
2	50	CoCur	Constant current for pt100. [mA]	
2	51	CBRVac	Cobra vacuum	
2	52	CmCtMd	Compressor control mode. 0:none, 1:pressure	
2 2	53 54	CmCtDf PrsSlp	Compressor default. 0:off, 1:on Pressure slope [MPa/min]	
2	54	AlPrSU	Upper limit of pressure slope for alarm	
2	56	AIPrSU	[MPa/min] Lower limit of pressure slope for alarm	
<u></u>	50 /12 57	ItLcOf	[MPa/min] Disable all interlocks when this is 8384.	
-11		. = .		

SCS2001 XECStorage

This module has three cards inside as shown in the table below.

Four cables are connected from LN2 liquid level sensors to a capacitor card in the module (0-0, 0-1,0-2,0-3). Card 4 cables are connected to a relay on the LXe slow control rack.

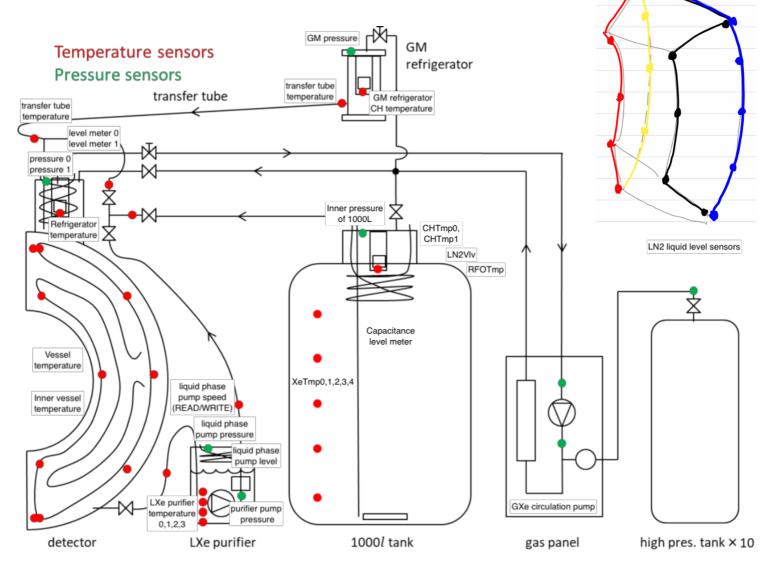
	Equipped cards	driver
0	Cin 0-10nF	0x70
4	Dout	0x40
5	Dout	0x40

SCS2001 XECPotentiometer

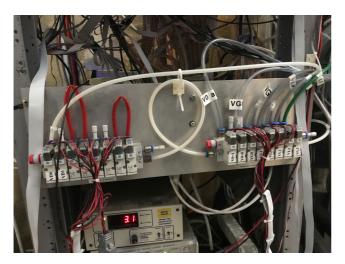
This module is located behind the gaseous purification system. If there is space in the new rack, we may move this to the new rack.

This module has two Uin cards. Cables for this module are directly connected from the potentiometers which are installed in the vacuum vessel. Connections are written in the following table.

address	channel	name	description	local I/O
5	0	P0Uin0	US top r	ADC 0-0
5	1	P0Uin1	US top theta	ADC 0-1
5	2	P0Uin2	US top phi	ADC 0-2
5	3	P0Uin3	US bot r	ADC 0-3
5	4	P0Uin4	US bot theta	ADC 0-4
5	5	P0Uin5	US bot phi	ADC 0-5
5	6	P0Uin6	unused	
5	7	P0Uin7	unused	
5	8	P1Uin0	DS top r	ADC 1-0
5	9	P1Uin1	DS top theta	ADC 1-1
5	10	P1Uin2	DS top phi	ADC 1-2
5	11	P1Uin3	DS bot r	ADC 1-3
5	12	P1Uin4	DS bot theta	ADC 1-4
5	13	P1Uin5	DS bot phi	ADC 1-5
5	14	P1Uin6	unused	
5	15	P1Uin7	unused	


XECPurifier

We use one SCS2001 module to control purifier. This module is also located behind the gaseous purification system. We may not need any modification for this time. The definition of address, channel, name, and description are shown below. Local I/O means the XECPurifier module local connections, and the last arrow "connection" means the logical connection in the software to other modules.

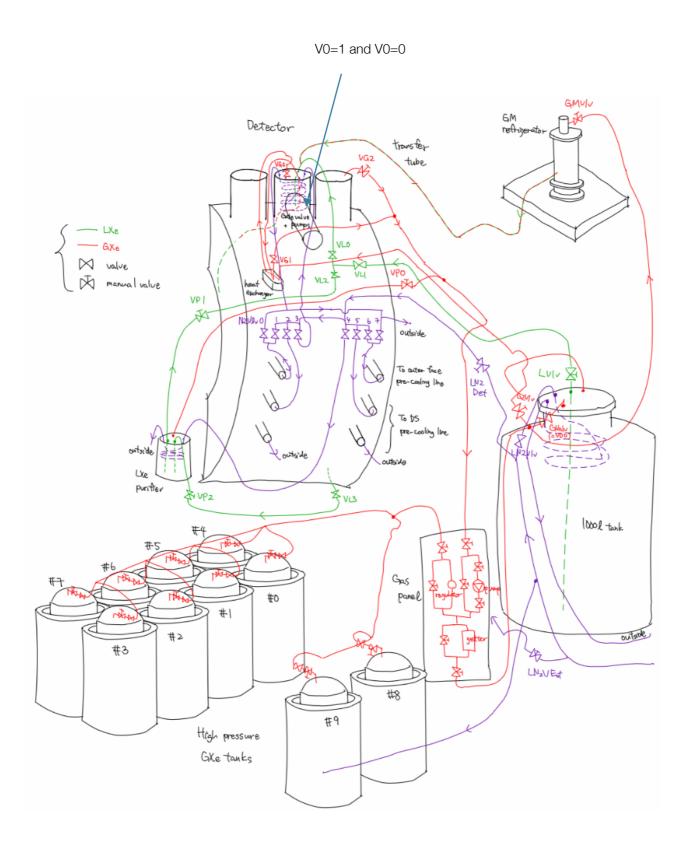

addre ss	chan nel	name	description	local I/O	connection
0	0	P0Uout0			
0	1	P0Uout1			
0	2	P0Uout2			
0	3	P0Uout3			
0	4	P0Uout4			
0	5	P0Uout5			
0	6	P0Uout6			
0	7	P0Uout7			
0	8	P1Dout0	high pressure valve 0	1-0	
0	9	P1Dout1	high pressure valve 1	1-1	
0	10	P1Dout2	tank pressure power supply	1-2	
0	11	P1Dout3			
0	12	P1Dout4			
0	13	P1Dout5			
0	14	P1Dout6			
0	15	P1Dout7			
0	16	P2Dout0	high pressure valve 2		
0	17	P2Dout1	high pressure valve 3		
0	18	P2Dout2	high pressure valve 4		
0	19	P2Dout3	high pressure valve 5		
0	20	P2Dout4	high pressure valve 6		
0	21	P2Dout5	high pressure valve 7		
0	22	P2Dout6	high pressure valve 8		
0	23	P2Dout7	high pressure valve 9		
0	24	P3T0	····· ··· ····························		
0	25	P3T1			
0	26	P3T2			
0	27	P3T3			
0	28	P3T4			
0	29	P3T5			
0	30	P3T6			
0	31	P3T7			
0	33	P4Uin0	purifier flow meter 0	4-0	
0	34	P4Uin1	purifier flow meter 1	4-1	
0	35	P4Uin2	tank pressure 0	4-2	
0	36	P4Uin3	tank pressure 1	4-3	
0	37	P4Uin4	tank pressure 2	4-4	
0	38	P4Uin5	tank pressure 3	4-5	
0	39	P4Uin6	tank pressure 4	4-6	
0	40	P4Uin7	tank pressure 5	4-7	
0	41	P6Uin0	······································		
0	42	P6Uin1			
0	43	P6Uin2			

0	44	P6Uin3		
0	45	P6Uin4		
0	46	P6Uin5		
0	47	P6Uin6	 	
0	48	P6Uin7		

This figure contains the sensor positions mentioned in this text.

Air actuated valves

XEC1000L (page 7).


One air actuated valve control unit is located in the LXe slow control rack as shown in the left picture.

In total, 10 ports (V0=1, V0=1, VG0, VG1, VL0, VL1, VL2, VL3, VD0, VD1) are currently used in the MEG experiment. The remaining ports can be used for spare. The locations of VG0, VG1, VL0, VL1, VL2, VL3, and VD0 are shown in the figure of page 4. VD1 is not used now. V0 is a gate valve, and both V0=1 and V0=0 are connected to the gate valve, written in the figure of page 12. Cables of V0=1, V0=0, VG0, VG1, VL0, VL1, VL2, VL3 are connected to SCS2000 XECDetector(page 5), and the cable of VD0 is connected to SCS2001

The other valve control unit is located in the Gaseous purification system as shown in the left picture.

In total, 10 ports will be used for the valve control of high pressure gas tanks. Previously only two valves are defined in the slow control system (page 9), and I added the information about the other 8 valves. The remaining 6 ports can be used for spare. The locations of the high pressure tanks are shown in the figure of page 12.

