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ABSTRACT OF THE DISSERTATION

Search for µ+ → e+γ in the MEG II Experiment’s First Physics Dataset and Analysis of
the MEG II Drift Chamber Data
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Professor William Molzon, Chair

The MEG II experiment[7] is an active search for µ+ → e+γ. The experiment plans to reach

a sensitivity of 6 · 10−14, improving on the limit of the MEG I experiment[5], by an order

of magnitude. The MEG II detector analysis was written by the MEG II collaboration;

this thesis details the detector analysis focusing on portions of the analysis I contributed to

including the positron analysis and target analysis. These chapters also serve as a thorough

description of the analysis for current and future collaborators. The thesis ends with a

description of two physics analyses performed on the MEG II experiment’s first year of

physics data and demonstrates the experiment’s expected performance over its lifetime.

Chapter 1 is an introduction to the Standard Model of particle physics. Charged lepton

flavor violation (CLFV) processes, including µ+ → e+γ are realized in the Standard Model,

but occur at an extremely small, undetectable, rate (B ∼ 10−54). A variety of theoretical

models beyond the Standard Model allow for CLFV (and thus µ+ → e+γ) at a potentially

observable rate (B ∼ 10−14). CLFV has not been observed despite extensive searches for over

50 years. It’s observation would have dramatic implications on the field of particle physics.

Chapter 2 discusses past and future experimental searches in the field of CLFV. Chapter 3

describes the MEG II experimental technique, including the signal/background, detectors,
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electronics, trigger, etc.

The remaining chapters discuss MEG II analysis. One of the most critical points of the

experiment is the background rejection, which is required to achieve the optimal experimen-

tal sensitivity. This background rejection is achieved via precise kinematic measurements

of the positron and the photon at the stopping target. The precision of these kinematic

measurements is common theme that will be discussed throughout this thesis. In Chapter 4,

a novel technique used to monitor the MEG II stopping target using a camera is described

along with its results. Chapter 5 presents the reconstruction of positrons (e+) in the MEG

II drift chamber. The relative alignment of the MEG sub-detectors and their calibrations

are discussed in Chapters 6 and 7 respectively. Chapter 8 describes the details of the physics

analysis of the 2021 dataset. Conclusions are described in Chapter 9.
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Chapter 1

Theoretical Background

1.1 Overview

This chapter summarizes the current state of particle physics with a focus on muon physics.

We start with an explanation of the ”Standard Model” of particle physics. It encompasses

all electroweak and strong force interactions. In this model, there are only left handed, zero

mass neutrinos. We then discuss the addition of massive neutrinos to the Standard Model

through the addition of right-handed neutrinos. This allows for mixing of the lepton flavor

eigenstates and therefore charged lepton flavor violation (i.e. µ+ → e+γ) at an extremely

small, unobservable rate (∼ 10−54).

The chapter ends with a discuss the limitations and shortcomings of the Standard Model

with massive neutrinos. These limitations strongly motivate physics beyond the Standard

Model. Many additions to the Standard Model allow for charged lepton flavor violation

at a dramatically higher, potentially detectable branching fraction (∼ 10−14) and therefore

motivate our search for µ+ → e+γ. Detecting this process would provide unambiguous

evidence of physics beyond the Standard Model.
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1.2 Standard Model

The Standard Model consists of the following gauge group:

GSM = SU(3)C · SU(2)L · U(1)Y (1.1)

with there families of fermions, each with its own representation in this gauge group:

Generation I II III Representation

Lepton Doublet (li)

νe
e


L

νµ
µ


L

ντ
τ


L

(1, 2)−1/2

Right-handed Leptons (ri) eR µR τR (1, 1)−1

Quark Doublet

u

d′


L

 c

s′


L

 t

b′


L

(3, 2)1/6

Right-handed Quarks I uR cR tR (3, 1)2/3

Right-handed Quarks II dR sR bR (3, 1)−1/3

Higgs Scalar ϕ - - (1, 2)1/2

The left-handed lepton and quarks form doublets under the SU(2)L gauge. All quarks form

triplets under the SU(3)C gauge. The representation subscript denotes the hypercharge, QY ,

of the U(1)Y gauge. The hypercharge is based on the known electric charge and constraints

from the other gauges. This massless neutrino Standard Model includes three gauge coupling

terms, 9 fermion masses, 4 Cabibbo Kobayashi Maskawa (CKM) matrix parameters i.e. QCD

mixing parameters that describe the mixing of quark mass eigenstates and mass eigenstates,

three other parameters (θQCD, and two Higgs parameters).

The SU(2)LxU(1)Y symmetry breaks at lower energies into the U(1)em symmetry. At low

energies, the Standard Model then contains the SU(3)C · U(1)em symmetry.
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1.2.1 Lagrangian

Using this gauge group and the mentioned representations, we write down the Lagrangian

for the Standard Model. This Lagrangian describes all Standard Model interactions. Below,

we write the terms relevant for the MEG II experiment, that is, excluding the quarks and

SU(3)C gauge.

LSM =− 0.5tr(WµνW
µν)− 1/4BµνB

µν U(1)Y , SU(2)L Gauge Terms

+
i<3∑
i=0

liiγ
µDµli + riiγ

µDµri Lepton Kinetic Terms

+
i<3∑
i=0

j<3∑
i=0

Y L
i,jliϕej + h.c. Yukawa Couplings to Higgs

+ (Dµϕ)
†(Dµϕ)− 0.5λ(ϕϕ† − v2EW )2 Higgs Kinetic, Mass, Quatric Terms

The lepton kinetic terms in the second row contain the interactions between the leptons and

the gauge (SU(2)L · U(1)Y ) bosons: Aµ,W
+/−
µ , Zµ. In this equation, Aµ, and Zµ are linear

combinations of the originalW 3
µ , Bµ bosons through the Weinberg angle. Similarly, W+

µ ,W
−
µ

are linear combinations of the original W 1
µ ,W

2
µ bosons through a −45◦ mixing. Below, the

lepton doublet kinetic term is shown in more detail (expanding the Dµ):

LSM =
i<3∑
i=0

liiγ
µ[idµ +

Qν
emAµ +Qν

NZµ Ql
CW

+
µ

Ql
CW

−
µ Qe

em,LAµ +Qe
NZµ

]li

The right-handed electron kinetic term is shown here:
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LSM =
i<3∑
i=0

riγ
µ[idµ −Qe

em,RAµ −Qe
NZµ]ri

The constants, Q, each represent different couplings between the leptons and the gauge

bosons. It’s important to note that these Lagrangian coupling terms for the Z boson and

the left handed electron, right-handed electron, and left-handed neutrino are all different.

In addition, the right-handed electron does not couple to the W bosons. Of course, this

Lagrangian also indicates that the neutrinos do not interaction with the photon (Aµ).

Figure 1.1: Electron, electron neutrino interaction Feynman diagrams.

The mentioned Lagrangian terms can be used to draw Feynman diagrams of lepton inter-

actions. The interactions of electrons and electron neutrinos with the electroweak bosons

are drawn in Figure 1.1. The same can be drawn for muons and taus (and their neutrinos).

The first represents the coupling of electrons to the photon (Aµ), the second represents the

coupling of electrons to the Z boson (separate coupling constant for right and left handed

electrons), the third represents the coupling of left-handed electrons and left-handed neutri-

nos to the W boson, and the final diagram represent the coupling of left-handed neutrinos

to the Z boson.

We also note that the Yukawa coupling terms in the Lagrangian give rise to the lepton masses

after the spontaneous symmetry breaking of the SU(2)L ·U(1)Y symmetry. The Higgs kinetic

term gives rise to the W/Z boson masses.
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1.2.2 Conservation of Lepton Number

Both the lepton doublets and the right-handed leptons carry an inherent additional U(1)

symmetry. As an example, for the muon doublet and the right handed muon singlet:

νµ
µ


L

→ eiαµ

νµ
µ


L

, µR → eiαµµR (1.2)

The Lagrangian is invariant under this U(1) transformation, which implies a conserved

”charge”. In this case, this charge is ”muon charge” or muon number, which must be

conserved in all particle interactions. The muon, and its neutrino both carry muon number

equal to one. Their anti-particles carry muon number equal to negative one, and all other

particles carry muon number of zero. This conservation law also follows for the electron and

tau generations.

1.2.3 Standard Model Muon Decays

We use the Feynman diagram rules and conservation laws described above to build interac-

tions between the generations of leptons. As an example, we show the simplest and most

common muon decay, the Michel decay (µ+ → e+νeν̄µ) in Figure 1.2. This is the result of

two Standard Model vertices and accounts for ∼ 99% of all muon decays. Next, we show

an example of a radiative muon decay (RMD)(µ+ → e+νeν̄µγ) in Figure 1.3. This diagram

simply adds an additional vertex point and thus occurs at a lower rate, suppressed by a

factor of α; the branching fraction of a muon RMD decay with a photon energy of least

10 MeV is 1.4%[16][17]. These are the two most relevant processes for our experiment as

nearly all positrons we observe result from one of these two muon processes. More exotic
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muon decays include additional Standard Model vertices and propagators and hence have

an even lower branching fraction e.g. µ+ → e+νeν̄µe
+e−. These are not very relevant for our

experiment.

Figure 1.2: Muon Michel decay Feynman diagram, this is the most typical muon decay.

Figure 1.3: Muon radiative muon decay (RMD) Feynman diagram, the second most common
muon decay.

1.3 Massive Neutrinos

The Standard Model as discussed above is an approximation assuming zero-mass neutrinos.

Originally, it was thought that the neutrino was massless, however it is now known from
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several experiments that neutrinos are massive (but very light)[18]. Therefore the Standard

Model is clearly incomplete without some modification to include massive neutrinos.

LD = −Y ν
i,jliϵϕ ∗ νR,j + h.c. (1.3)

Just like the Yukawa coupling term for the charged leptons, this term also gives mass to the

neutrino. Again, when the Higgs ϕ is replaced by its vEV , we are left with a neutrino mass :

LD = −
√
(2)Y ν

i,jvEV νiνR,j + h.c. (1.4)

In addition, with the right-handed neutrino singlet, νR, we may introduce yet another La-

grangian term:

LM = −1/2Mi,jνi
C
RνR,j + h.c. (1.5)

Using the two right-handed neutrino singlet terms, we form two mass terms with different

relative masses.

Lsee−saw = −
√

(2)Y ν
i,jvEV νiνR,j − 1/2Mi,jνi

C
RνR,j + h.c. (1.6)
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This can be re-written as a 2x2 mass matrix:

Lsee−saw ∝
[
ν̄ ν̄R

C

]
·

 0 Y ν
i,jvEV /sqrt2

Y ν
i,jvEV /sqrt2 −1/2Mi,j


 ν

νR

 (1.7)

We can calculate the mass eigenstates of this mass matrix:

m1/2 =M/2(1∓

√
1 +

4Y ν
i,jv

2
EV

2M2
) (1.8)

If M is taken to be very large, the result is very large mass right-handed neutrinos and very

light left-handed neutrinos. The masses m1,m2 roughly represents the left and right handed

neutrino respectively. This yields small mass neutrinos when M is large (1014 GeV to result

in neutrino masses of the order 0.1 eV). This is often called the See-Saw model.

1.4 Neutrino Oscillations

By including the Yukawa coupling term with right-handed neutrinos, the lepton Lagrangian

situation is now analogous to that of the Yukawa couplings in the quark sector. That is,

there are two independent matrices: Y L
i,j, Y

R
i,j. Previously with only Y L

i,j, we select a basis of

the flavor states such that this matrix is diagonal and therefore the flavor states are identical

to the mass states. However, now we can only diagonalize one of the two matrices, i.e. in the

previously defined basis, Y R
i,j will not be diagonal. Therefore, the interactions between the

neutrinos, electrons, and the W boson will not be in the mass states, but the flavor states.

Therefore, we violate the conservation laws of lepton number!
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We are left with three flavor states (νl : l = e, µτ) and three mass states (νi : i = 1, 2, 3) for

the neutrinos. The mixing between the mass and flavor eigenstates is shown below:

UT
MNSm

Majorana
ν UMNS =


m1 0 0

0 m2 0

0 0 m3

 (1.9)

And,

νl =
∑
i

U †
MNSvi (1.10)

Many experiments have measured this UMNS matrix, the latest values are described here[19].

Rough values are shown below:

UMNS =


0.82 0.55 0.15

0.42 0.62 0.66

0.38 0.56 0.73

 (1.11)

1.4.1 Standard Model µ→ eγ

The mixing of flavor and mass eigenstates violates lepton flavor number and also allows for

the possibility of an alternate muon decay that violates lepton number e.g. µ → eγ. This

is shown in Figure 1.4. This includes two elements of the flavor-mass mixing UMNS matrix.
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However, this occurs at an extremely small rate as the branching fraction is proportional to

the sum of the squared mass splittings between the neutrinos divided by the mass of the W

boson, quantity squared. Here, we are summing over the three possible flavor eigenstates

(clearly with identical mass neutrinos this term falls to zero). The branching fraction is

shown below[20]:

BR(µ→ eγ)SM =
3α

32π

∑
i

U∗µ,i
MNSU

i,e
MNS(

∆2
ν,i

m2
W

)2 ∼ 10−4 · ( 10−3

(1022)
)2 ∼ 10−54 (1.12)

Figure 1.4: The Feynman diagram of µ→ eγ in the Standard Model through the mixing of
neutrino flavor and mass eigenstates.

This rate is so small that it could never be detected by any conceivable experiment (nearly

40 orders of magnitude away from state of the art muon experiments).

1.5 General Physics Beyond the Standard Model

Although the Standard Model including massive neutrinos does yield a great approximate

solution to a large fraction of particle physics, there are still some unsolved problems and

thus it is known to be incomplete. For this reason, additional theoretical physics models

beyond the Standard Model (BTSM) are highly motivated.
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In the next couple sections, we discuss two BTSM theories, SUSY SeeSaw[1] and SUSY

GUT[21]. In both cases, well-known issues with the Standard Model can be resolved. In

these cases as well as many others, charged lepton flavor violation is expected to occur at a

dramatically higher rate than that due to neutrino mixing in the Standard Model. This is a

key motivation behind charged lepton flavor violating experiments like MEG II. Observing

charged lepton flavor violation would be unambiguous evidence of physics BTSM.

1.6 Hierarchy Problem and Super Symmetry See Saw

The first theoretical problem is known as the hierarchy problem. In this case, we focus

on the first order correction to the Higgs propagator. This is shown in Figure 1.5. The

diagram contains with two fermions of momentum p and k + p with Yukawa coupling yk,

and effectively mass scale Λ2. This results in the following amplitude squared:

−M2 ∝ λ2f

∫
d4k

·p− k · (k)
[(p− k)−m2

f ][(k)−m2
f ]

∝ y2kΛ
2 (1.13)

This correction term quadratically diverges with the mass scale and thus results in a term

significantly larger than the original propagator.

Figure 1.5: One loop correction to the Higgs propagator.

There are many ways to solve this theoretical problem. For example, this can be solved by

the theory of super symmetry. In this model, we assert an equal number of bosonic and

11



Figure 1.6: Super symmetric correction to the Higgs propagator.

fermionic degrees of freedom. That is, for each known boson, we have a ”supersymmetric”

fermion counterpart and for each known fermion we have a ”supersymmetric” boson. This

model can be tuned such that the Higgs interaction with the fermion (e.g. electron) and

boson (e.g. selectron) cancel one another via relationships between their Yukawa couplings.

The Higgs propagator correction due to the Higgs interaction with a super-symmetric boson

is shown in Figure 1.6 and the amplitude is shown below:

−M2 ∝ λ̃2f

∫
d4k

1

[(k)−m2
f̃
]
∝ y2kΛ

2 (1.14)

Combining this super symmetric theory with massive neutrinos is often called SUSY SeeSaw

(SUper SYmmetry See Saw). A consequence of SUSY See Saw is charged lepton flavor

violation at a dramatically higher rate. In contrast with the SM charged lepton flavor

violation, the Feynman diagram loop ”selectron” and ”smuon” have comparable masses to

the ”photino” (also in the loop) and therefore charged lepton flavor violation can occur at a

significantly higher rate than the SM µ→ eγ decay.

In short, the see-saw neutrino model above results in Majorana neutrinos (mainly left-

handed) with very small masses and the Dirac neutrinos (mainly right-handed) have very

large masses. This combined with super symmetry results in lepton-slepton mixing that is

dependent on the mass of the Dirac neutrinos. The lepton-slepton interactions can violate

lepton number (e.g. lepton → slepton → lepton’) and results in a branching ratio of µ→ eγ
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given below:

Bµ→eγ ∝ (mD
ν )

4/m8 (1.15)

We assume a fixed photino mass of O(0.1m) where m is the scale of Super Symmetry break-

ing. The Feynman diagram is shown in Figure 1.7.

Figure 1.7: The Feynman diagram of µ→ eγ in the Super Symmetric See Saw model (Figure
1 ©1986 American Physics Society [1]).

In addition, we show the plot the branching ratio of µ→ eγ as a function of m,mD
ν in Figure

1.8.

Since none of the super symmetric counter parts have been discovered, these would need to

have masses at significantly higher energy than any of the Standard Model particles.

1.7 Super Symmetry and Grand Unification

Another issue with the the Standard Model is less quantitative. The SM contains a large

number of parameters, and the representations don’t really follow any underlying pattern

or structure. That is, why do they quarks form a 3-plet under SU(3), the leptons form a
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Figure 1.8: The branching ratio of µ → eγ as a function of m,mD
ν parameters (Figure 2

©1986 American Physics Society [1]).

2-plet under SU(2)? In addition, this list of parameters in the Standard Model gets more

cumbersome with the addition of massive neutrinos. One solution to this is a theorized

Grand Unified model, that is all the symmetries converge into a single large symmetry at

higher energies. To motivate this, first we show in Figure 1.9 the scale of the SM couplings

as a function of energy.

Figure 1.9: Scale of the Standard Model couplings with energy (Figure made by Michael
Ratz)

At higher energies, these coupling constants are close, but not exactly identical. However,
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as mentioned above, it is known that the Standard Model does not exactly describe our

universe at higher energies. Therefore, it is reasonable to add new physics that may result

in the couplings converging to a single coupling energy scale at high energy. In the minimal

supersymmetric model (MSSM) it is possible to achieve the same scale for all three couplings

at high energies! This is shown below in Figure 1.10. Here, the super symmetric partners

have a common mass of the order TeV.

Figure 1.10: Scale of the Standard Model coupling with the addition of the Minimal super-
symmetric model (MSSM) (Figure made by Michael Ratz).

This highly motivates a larger symmetry at higher energies (∼ 1016GeV ). The standard

model symmetries can all be derived from a single SU(5) symmetry, which is then broken

at lower energies. In SUper SYmmetry Grand Unification Theory models (SUSY GUT),

there are interactions between the bosons (X+,−,0) and the leptons/sleptons (ν̃ is a neutral

slepton and L−/+ is a charged slepton). This allows for additional channels of charged lepton

flavor violation. The Feynman diagram vertices are shown below in Figures 1.11 and 1.12.

The µ+ → e+γ decay is built by combining these vertices. This is expected to occur at a

dramatically higher, potentially detectable rate.

The Standard Model can alternatively be composed of a SO(10) symmetry (SU(5) x U(1)),

which yields the possibility for a right-handed neutrino representation; this avoids much of
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Figure 1.11: Feynman rules for electrons, neutrinos, and the MSSM particles relevant for
µ→ eγ.

Figure 1.12: Feynman rules for photons and the MSSM particles relevant for µ→ eγ.

the cumbersome additional treatment required to add the massive neutrinos to the Standard

Model.

1.8 Closing Theoretical Points

We started this chapter with a brief summary of the Standard Model and lepton physics.

We then discussed the introduction of massive neutrinos that results in charged lepton flavor

violation at a extremely small undetectable rate.

We then described two issues with the Standard Model; these are examples that motivate

physics BTSM. We described two SUSY examples of physics beyond the Standard Model,

but there are many more. In a large fraction of these BTSM theories, charged lepton flavor

is expected to occur at a significantly higher, detectable rate! This motivates searching for

charged lepton flavor violation in particle physics experiments as a probe to physics BTSM.
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In the next chapter we start with a theoretical comparison of different charged lepton fla-

vor violating searches and then a provide a history of experimental searches for charged

lepton flavor violation. We then discuss recent and planned charged lepton flavor violating

experiments.
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Chapter 2

Charged Lepton Flavor Violation

Experiments

In this chapter, we discuss experimental searches for charged lepton flavor violation (CLFV).

First, we motivate searching for different CLFV processes and describe the relative search

power of different CLFV channels to different BTSM theories. We then discuss past searches

for CLFV and upcoming searches for other muon decays or conversions e.g. µ+ → e+e−e+,

µ−N → e−N .

2.1 Theoretical Comparison of CLFV Channels

In general, if any CLFV experiment detects a signal, it would imply that most CLFV pro-

cesses occur at a significantly higher rate than the SM. Measuring only one CLFV channel

would confirm physics beyond the standard model but not be able to pin-point an exact

BTSM theory. Instead by measuring the branching fraction of several different CLFV modes

one could start to narrow down which BTSM best reflects the experimental results.
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The comparison of different BTSM theories on different CLFV channels can be done by

inspecting the Feynman diagrams of different theoretical models. For example, Figure 2.1

(originally made by Bill Marciano) contains six Feynman diagrams of µN → eN in a variety

of BTSM theories. These graphics all contain µN → eN , but anywhere µN → eN occurs,

µ → eγ will also occur. One can tell via inspection that µ → eγ will be an ideal search

for SUSY as µN → eN requires a photon propagator. On the other hand, Leptoquark or

Compositeness models are more ideal for a µN → eN search.

Figure 2.1: Set of six Feynman diagrams that all produce µN → eN . All of these processes
also make µ→ eγ. (Figure originally made by Bill Marciano).

We can also arrange these classes of theoretical models into groups. This can be done through

the use of a model-independent effective Lagrangian[2]. We discuss an example comparison,

consider a Lagrangian with two terms: the first is a ”magnetic-momentum type operator”

ideal for µ → eγ searches and the second is a 4-fermion Lagrangian, ideal for µN → eN

searches. Both Lagrangian terms contain a κ parameter to dictate the relative strength of

the two terms. This discussion only mentions two charged lepton flavor violating processes,

but this technique could be used to compare any set of processes.
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LCLFV =
mµ

(κ+ 1)∆2
µ̄RσµνeLF

µν +
κ

(κ+ 1)∆2
µ̄RγµeL(ūLγ

µuL + d̄Lγ
µdL) + h.c. (2.1)

Figure 2.2: Comparison of the physics scale ∆ reached by µ → eγ and µN → eN searches
at varying sensitivity as a function of κ, a term determining the relative scaling of two terms
in the effective Lagrangian shown in equation 2.1. (Figure 2 ©2013 Elsevier [2])

In Figure 2.2, we show the physics scale ∆ reached for µ→ eγ and µN → eN searches as a

function of κ and thus the weighting of the two Lagrangian terms. The bottom of the plot

represents phase space that has already been excluded by previous experiments.

Of course, the most interesting points on this plot are the end points of the x-axis. The

middle κ region represents a region which coincidentally allows for two methods to achieve

CLFV. The specific curves roughly represent the latest and upcoming CLFV experiments for
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these muon channels. The solid/dotted blue curves represent MEG I/MEG II experiment

sensitivities (MEG II expected) and the black solid/dotted curves roughly represent the

expected sensitivities for Mu2e[3]/Mu2e-II[22] experiments at Fermilab.

At the small κ limit, the µ→ eγ branching fraction required to reach the same physics scale

is lower by about two orders of magnitude than that of µN → eN . This plot indicates that

if MEG II detects the µ → eγ signal, this would likely imply a signal should be observed

in Mu2e! However, of course the opposite is not the case i.e. if our universe is in a large

κ region, MEG II would not observe a signal, but a signal could still be detected by Mu2e.

This is an explicit example of the synergy between the two CLFV searches.

In the next section we briefly discuss the history of CLFV searches.

2.2 Past Experimental Searches

The sensitivity of CLFV experiments with muons over time is shown in Figure 2.3; it has

improved incrementally since the 1940s.

Although the searches have all resulted in a null signal, they still had very significant impacts

on the field of particle physics. For example, in the first searches for µ→ eγ, the null result

indicated that the muon was a unique particle with respect to the electron. Today, even

the absence of charged lepton flavor violation at smaller branching fractions would have

a significant impact on the field since many BTSM theories include charged lepton flavor

violation at a potentially detectable rate. Therefore, a null signal would significantly restrict

model parameter spaces or may reject theories entirely.

Figure 2.3 includes the three most common CLFV channels: µ → eγ, µ → eee, and µN →

eN . They are known as the ”golden” CLFV channels as they are the most sensitive searches
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Figure 2.3: The 90% upper limit of CLFV muon experiments over time (Figure 1 ©2018
Springer).

to a broad range of BTSM theories. The experimental searches for these three processes

have progressed for over 50 years. The sensitivity of the competing experiments is always

improving from higher beam rates, improved technology, or design improvements.

Although these are some of the most common CLFV channels, others have also been explored.

As an example, the MEG I dataset was also used to search for µ+ → e+X;X → γγ[23].

There are also ongoing discussions about using the MEG II experiment to search for a CLFV

axion signal[24]. CLFV experiments have also searched for tau flavor violating processes e.g.

τ → µγ, τ → eγ, τ → µµµ, etc. the most recent of which were done by the Belle[25] and

BaBar[26] experiments. Even more are listed here[27].

In the next sections, we discuss two examples of upcoming muon CLFV experiments, Mu3e

(search for µ+ → e+e−e+) and Mu2e (search for µ−N → e−N). We briefly outline these

experiments to give a sense of the CLFV field in the years to come. Over the full lifetime of

the experiments, they plan to achieve sensitivities beyond MEG II. However as mentioned,

MEG II is still competitive for BTSM theories like SUSY, which require a photon propagator
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for both Mu2e and Mu3e processes.

2.3 Mu2e Overview

The Mu2e experiment[3] searches an electron resulting from a µ−N → e−N conversion with

a momentum of Ee ∼ mµ (105.0 MeV if the N is Al). The objective is to detect this signal

while rejecting all backgrounds. The experiment is expected to start its first physics data in

2025. Over the lifetime of the experiment, Mu2e will either detect a signal or expects to set

an upper limit at the 90% confidence level on the branching fraction of µN → eN of 6 ·10−17

surpassing its predecessor (SINDRUM II[28]) by 4 orders of magnitude in sensitivity.

In Mu2e, unlike MEG II, there is no accidental background due to time coincidences between

decay products. Instead, there are backgrounds from several different processes. First, there

is background from the beam. This is avoided by using a pulsed beam with a width of 200 ns

when the µN → eN conversion is expected to take on the order ∼ 200− 2000 ns; therefore,

all of the ”prompt” beam background (100-700 ns) is eliminated by using a delayed search

window (800-1700 ns) at the expense of some signal efficiency. This requires very precise

knowledge that the beam is completely eliminated; this is verified using a separate detector

that monitors the beam ’extinction’. Second, there is background from cosmic rays that can

produce an electron at the signal energy; this background is removed by the cosmic ray veto

module (CRV). The CRV is an array of cosmic ray detection modules that surrounds the

detector area (tracker, calorimeter); if a cosmic ray is detected, the events nearby in time

are eliminated from the data sample. Finally, there are muon decays in orbit (DIO), which

can result in a high momentum electron (reaching Ee ∼ 104 MeV in the recoil tail). This is

rejected by σEe ∼ 100 keV in the tracker.

Figure 2.4 shows an overview of the experimental design. The electrons (muon decay prod-

23



uct) are measured in a straw tube tracker. The straw tube tracker consists of ∼ 20k straw

tubes in an array of panels each with 96 straw tubes that are oriented perpendicular to the

beam axis. The straw tubes are 5 mm in diameter, filled with a 80/20 Ar/CO2 mixture,

and are expected to achieve a ∼ 100µm resolution. The electrons eventually intersect the

calorimeter which is used for the trigger and T0 measurements for the electron tracks. The

calorimeter consists of an array of scintillators and SiPMs to detect the scintillation light.

Figure 2.4: The experimental design of the Mu2e experiment[3].

Note that there is an additional experiment searching for µN → eN conversion, COMET[29],

which plans for data taking on a similar time schedule with a different experimental design. In

addition, Mu2e upgrades (Mu2e-II)[22] are planned in the future to achieve further sensitivity

improvements of another order of magnitude.

2.4 Mu3e Overview

The Mu3e experiment[4] is a search for the decay of a muon to three electrons (µ+ →

e+e−e+). The experiment aims to detect a signal or set an upper-limit on the branching

fraction of µ+ → e+e−e+ of 10−16 at the 90% confidence level.

Similar to MEG II, the experiment expects background due to accidental time coincidences
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and µ+ → e+e−e+νeν̄µ decays (analogous to the RMD decay for MEG II : µ+ → e+νeν̄µγ).

The signal is discriminated from the background using precise measurements of the elec-

trons/positrons at the stopping target (position, time) and using the momentum of all three

electron/positrons (must sum up to mµ and be consisted with a muon decay at rest).

Figure 2.5: The experimental design of the Mu3e experiment[4].

Figure 2.5 depicts the experimental design. The experiment proceeds with a muon stopping

beam up to ∼ 2 · 109 Hz. A majority of the muons are stopped and decay in a stopping

target. The positrons and electrons which are the result of muon decays are then detected

by an array of scintillating fibers/tiles for timing, and an array of active pixel sensors to

measure the particle’s position at the sensor and therefore the momentum.
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Chapter 3

MEG II Experiment

In this chapter, we outline the MEG II experiment and its search for µ+ → e+γ. We start

with the signal signature, the physics background, and how we distinguish between the two.

We then discuss the MEG II predecessor, MEG I, which currently has the most stringent

limit on µ+ → e+γ. Finally, we discuss the design of the MEG II experiment including

the beam, target, detectors, electronics and the trigger. The experiment aims to reach a

sensitivity of 6 · 10−14 at the 90% confidence level, improving upon the upper-limit of MEG

I by an order of magnitude (upper-limit of 4.2 · 10−13 at the 90% confidence level).

The experiment is based at the Paul Scherrer Institut (PSI) in Villigen Switzerland. The

experiment is run by an international collaboration with about 50 collaborators from Italy,

Japan, Russia, Switzerland, and the US.

3.1 Signal vs. Background

The signal consists of a e+/γ pair that is time-coincident at the stopping target back-to-back

each with an energy equal to half the muon rest mass. Due to the high decay rate and the
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kinematics, the primary background is due to a high-energy photon from a radiative muon

decay (RMD, µ→ eγνν̄) or annihilation in flight (AIF, e+e− → γγ) that is time-coincident

with a high-energy Michel e+ (µ → eνµνe) from two separate decays. The other source of

background is the result of true RMD decays in which the two neutrinos carry off a small

amount of energy.

As the signal and background result in the same particles (positron and photon), the ex-

periment requires precise kinematic measurements to distinguish between the signal and

background. The upgraded design with respect to MEG I is motivated in part by this

precision requirement.

The positron kinematics are measured in a drift chamber. The positron position, momen-

tum, and direction (ye, ze, pe, θe, ϕe) at the target are estimated by propagating the positron

trajectory from the chamber to the target using a Kalman Deterministic Annealing Filter

(DAF) method[30][31]. The time of the positron (te) is measured using a set of pixelated

timing counters (SPX); the time at the target is measured by propagating the track from the

SPX to the target. A liquid xenon detector (LXe) measures the photon kinematics at the

calorimeter (X⃗γ, Eγ, tγ). We then assume that the photon originates at the positron target

vertex (ye, ze). The analysis uses teγ, ϕeγ, θeγ, Eγ, pe to discriminate signal from background.

In general, the analysis is designed to maximize the number of signal events while minimizing

the number of backgrounds. The number of signal events is proportional to the following

where Rµ is the beam rate, T is the experiment lifetime, Ω is the geometric acceptance, ϵγ, ϵe

are the photon, positron efficiencies, and ϵselect is the final event selection criteria.

NSIG ∝ Rµ · T · Ω · ϵγ · ϵe · ϵselect (3.1)

Whereas the number of accidental events is proportional to the following where σEγ ,σpe ,σteγ

,σϕeγ , σθeγ are the resolutions of the photon energy, the positron momentum, the relative

positron photon timing, and the relative positron photon angles respectively.

NACC ∝ R2
µ · T · σ2

Eγ
· σpe · σteγ · σϕeγ · σθeγ (3.2)
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Note, from the equations above it’s clear that increasing the beam rate increases the number

of accidentals at a higher rate than the increase in expected signal. Therefore, a careful

balance between the number of expected signal and accidentals is required. Roughly, an

experiment with a 10% acceptance and 50% efficiency is required to run at 5 · 107µ/s at 50

weeks of physics data-taking to reach a single event sensitivity (SES) of 1 · 10−14. The SES

is defined as the signal branching fraction such that we expect to observe one signal event

in the full data set.

Therefore, the MEG I and MEG II experimental goal is to design an experiment and analysis

procedure to optimize the signal efficiency and kinematic resolutions while handling the beam

rate required to reach the goal sensitivity. The signal efficiency and kinematic requirements

will be repeatedly discussed through the thesis as they are critical to achieving our goal.

3.2 MEG I Overview

Figure 3.1: The experimental design of the MEG I experiment (Figure 1 ©2016 Springer
[5]).

The MEG I experiment was a search for µ+ → e+γ that collected data from 2009-2013 and

published final results in 2016[5]. The experiment achieved an upper-limit of 4.2 · 10−13 at
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the 90% confidence level, which is the most stringent limit on the decay.

The MEG I experimental design is shown in Figure 3.1. The experiment proceeds with a

muon beam that results in muon decays in a stopping target. The muon decay products are

then measured in a series of detectors.

The positrons are measured in a magnetic spectrometer. The magnetic field is generated

by the COBRA magnet[8]. The COBRA magnetic field is grated with a maximum field of

∼ 1.3 T near the target and drops off along the beam axis. This magnet design has the key

advantage of moving positrons away from the target in the direction of the beam axis and

thus out of the detector. This was based on one of the key shortcomings of the previous search

for µ+ → e+γ, the MEGA experiment[32], in which positrons emitted nearly perpendicular

to the beam axis would stay in the area taking many turns through the detector. In MEG

I, the positrons were measured in a drift chamber with 16 modules, each with two layers of

drift cells. The cells consisted of two cathode foils separated by ∼ 7 mm with a layer of sense

and potential wires (the sense/potential wires in the two layers had an alternating geometry)

and was filled with 50:50 mixture of He : C2H6. The positron timing was measured by an

array of scintillating bars connected to PMTs. The positron reconstruction faced significant

degradation in the tracking efficiency as the positrons would often intersect material (drift

chamber electronic, wires, etc.) prior to intersecting the timing counter. This is discussed

later as it in part motivated the design of the MEG II experiment.

The photons are measured in a single volume liquid xenon calorimeter. The photon shower

is fully contained inside the liquid xenon, the shower is detected by an array of PMTs

surrounding the liquid xenon. One of the shortcomings of the LXe detector was the inner-

face; there were instances when the shower would initiate very close to the inner face and a

large fraction of the light would escape without hitting the active area of the PMTs; this is

addressed in the design of the MEG II experiment as well.
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The MEG I experiment improved upon the previous most stringent upper-limit on µ→ eγ,

set by MEGA, by a factor of ∼ 30. However, as will be discussed in the next section, the

experience and issues observed in MEG I led to the design of an upgraded detector system,

MEG II.

3.3 MEG II Overview

Liquid xenon detector

(LXe)

Pixelated timing counter

(pTC)

Cylindrical drift chamber

(CDCH)

COBRA 

superconducting magnet

Radiative decay counter

(RDC)

Muon stopping target

Figure 3.2: MEG II experimental design.

The MEG II experiment is an ongoing search for µ+ → e+γ. The experiment maintains

the general procedure used by MEG I, but includes both hardware upgrades in all previous

sub-detectors and additional sub-detectors to overcome limitations faced in MEG I.
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The experiment proceeds by stopping a muon beam (µ+) into a thin film target; a majority

of the muons are stopped in the target and decay at rest. The decay products (i.e. e+, γ) are

measured in a series of detectors. Figure 3.2 shows the MEG II experimental layout. The

positrons are measured in a magnetic spectrometer. The core of the magnetic spectrometer

is the Cylindrical Drift Chamber (CDCH). The CDCH is a completely redesigned cylindrical

ultra-light weight stereo wire drift chamber with full ϕ coverage. The CDCH is centered

about the stopping target. The positron momentum is measured using the Constant Bending

Radius (COBRA) graded magnet. The magnetic field configuration has a maximum field

of ∼ 1.3 T, centered at the target resulting in approximately equal positron maximum

radius independent of emission angle. In addition, the field configuration moves positrons

with small axial momenta away from the target and out of the detector region, ideal for

avoiding backgrounds. The COBRA magnet is that used in MEG I. The positrons are either

emitted upstream or downstream of the target depending on the positron kinematics. The

positron time is measured in a new detector: the pixelated timing counter (SPX). The SPX

consists of two semi-cylindrical modules (upstream and downstream) each containing 256

timing counter tiles. The SPX is located at larger radius than the CDCH outer-radius.

The photons are measured in the same liquid xenon calorimeter (LXe) used in the MEG I

experiment, but the detector has been upgraded. The LXe is a fully absorbing liquid xenon

calorimeter (LXe). The LXe inner face is now covered by 4096 Multi Pixel Photon Counters

(MPPCs) and the other sides remain covered by Photo Multiplier Tubes (PMTs). The MEG

II experiment contains a new radiative decay counter (RDC) downstream of the target used

to eliminate events due to a time-coincidence between a Michel positron and an RMD photon

from the dataset. Finally, the experiment operates two cameras to photographically image

the stopping target continuously to monitor all target motion. The following sections contain

details on all MEG II systems.
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3.4 Accelerator and Beam line

The MEG II muon beam is generated from PSI’s proton accelerator. The core of the accel-

erator is the proton ring cyclotron shown in Figure 3.3. The cyclotron accelerates protons to

590 MeV; with each pass, the protons are accelerated using electric fields and reach a larger

radius due to the larger momentum in the constant magnetic field.

Figure 3.3: PSI’s proton ring cyclotron.

Proton collisions in a fixed carbon target result in π+ that enter PSI’s πE5 line (Figure

3.4). Some π+ quickly decay at the surface of the target, thus creating µ+. This produces a

“surface” µ+ beam with a maximum rate nearing 108 Hz. The surface muon beam is ideal

as it results in a narrow momentum distribution (FWHM ∼ 7%) of low momentum muons

(28 MeV/c). The low momentum is ideal for achieving a high stop rate in a thin target

(ideal for suppressing background rates). Note, this ”surface” muon beam is only possible

for µ+ production as π− will interact with target nuclei, therefore µ− production relies on

pions that decay in flight.

The µ+ beam is brought into the MEG II experimental hall and directed at the MEG II

stopping target. At the MEG II stopping target, the beam is approximately gaussian in

both directions normal to the beam axis (XMEG, YMEG) where σXMEG,YMEG
∼ 1 cm. The
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Figure 3.4: πE5 beam line.

beam spot was measured using an auxiliary detector mounted at the target position during

commissioning. The profile is shown in Figure 3.5. This narrow beam width is ideal as it

allows the use of a smaller target and thus less material, less background (e.g. AIF).

Figure 3.5: Beam spot in 2021 with beam intensity of 5 · 107 Hz.
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3.5 Stopping Target

The MEG II stopping target is made of a thin scintillating plastic film with average thickness

of 174 µm ranging from 155-194 µm and elliptical in shape, with width 270 mm and height

66 mm (shown in Figure 3.6). It is supported between two hollow carbon-fiber box frames

and allowed to float to avoid stress on the target due to dimensional changes in the frames

or foil. Ideally, this avoids deformations in the foil shape.[33]

The target is rotated ∼ 85◦ with respect to the beam axis (muons along the beam axis

intersect ∼ 700µm material) in order to maximize the stopping rate while minimizing the

amount of material in the area.

Figure 3.6: Head-on image of the target.

Precise knowledge of the position, orientation, and shape of the stopping target with respect

to the magnetic spectrometer is required in order to have a high quality kinematic mea-

surement of the positron tracks at the target (in particular the ϕe measurement, described

below). Experience with a similar target in the MEG I experiment[5] showed that the target

shape changed over a period of ∼ 1 year of operation, developing a bowing with maximum

deviation from the plane of approximately 1 mm. The time dependence of the bowing was

not well monitored. Possible time dependent target motion might also result from the peri-

odic pneumatically actuated extraction and insertion of both the MEG I and MEG II targets;

this is done for the purpose of acquiring special data used to calibrate the detectors described
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in Chapter 6. These two time-dependent effects motivate the requirement to monitor the

position, shape and orientation of the target continuously[33].

The e+ direction is determined by projecting the helical trajectory measured in the spec-

trometer to the target plane. An error in the position of the target in the direction normal

to the target plane would result in an error in the e+ direction due to the incorrect path

length to the target and hence an incorrect amount of curvature. The precision with which

the target position must be measured is set by the requirement that the impact of any error

on the e+ direction be less than that of other contributions to the error in the relative e+γ

angle. For MEG II, this angle is measured with a precision of ∼ 6 mrad and the goal is for

the uncertainty in the e+γ angle due to uncertainty in the target plane position to be < 0.6

mrad. This corresponds to an error in the target position or shape of 85 µm normal to the

target surface, giving a path length error of 120 µm for a 53 MeV/c e+ incident at 45◦ with

respect to the film’s surface in a 1.3 T magnetic field. The consequence of a target position

error on the positron track’s ϕe kinematic measurement is shown in Figure 3.7.

Figure 3.7: Two positron tracks intersecting the target at different ϕe values. The
solid/dotted lines represent the true/nominal survey target position respectively, clearly
this results in a systematic ϕe error dependent on the positron ϕe.
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3.5.1 Analysis Description

In MEG II, the stopping target position, rotation, and shape is measured continuously by a

pair of photographic cameras. The details of the camera analysis is described in Chapter 4

and here[33]. The other camera analysis is described here[34].

3.6 Drift Chamber: CDCH

3.6.1 Design Motivation

MEG II uses a new lightweight cylindrical stereo wire drift chamber (CDCH) with full ϕ

coverage. The design of the MEG II drift chamber overcomes the efficiency and resolution

shortcomings of MEG I. In MEG I there was a significant number of positron tracks that

would intersect electronics and other material prior to intersecting the timing counter; this

resulted in a significant degradation of tracking efficiency. Therefore a key component of

the MEG II design was to reduce the material to improve both the tracking efficiency and

the momentum resolution. Further, the MEG II drift cells use an ”open cell” geometry i.e.

the cell’s electric field is generated using cathode wires. This further suppresses the material

and thus the scattering. Similar to MEG I, the CDCH starts at large radius (∼ 19 cm) to

suppress the material and avoid low momentum positron interactions; the low momentum

positrons are swept out of the area along the beam axis by the COBRA magnet.

In addition, the MEG I drift chamber consisted of 16 modules each with two cell layers;

the MEG II drift chamber design contains ∼ 1000 readout drift cells and thus there are

significantly more track space points per track and thus an improved resolution.
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3.6.2 Basic Principal

A drift chamber detects charged particles using the fact that they can ionize gas atoms they

intersect. Drift chambers are typically filled with a noble gas (no valence electrons) and

thus have a high ionization energy and a long radiation length (e.g. Helium X0 = 5300 m),

this helps avoid multiple scattering contributions to the momentum resolution. The ionized

electrons are accelerated towards a sense wire using an electric field incorporated in the cell.

The time of the ionization electrons arriving at the sense wire is recorded using electronics

connected to both wire ends. The time of the ionization electrons is converted into a 3D

position using the position and orientation of the wire and drift velocity of the electrons at

all points in the cell. By measuring the track position in many cells inside a magnetic field,

the track’s radius of curvature and thus its momentum is estimated.

3.6.3 CDCH Geometry

The CDCH consists of 9 radial layers of drift cells, each with an alternating stereo angle

of ∼ ±7◦. Each layer has a total of 192 drift cells where only 128 were readout in 2021 (a

majority of the other cells are not intersected by µ→ eγ events due to the acceptance of the

LXe and the SPX). The CDCH is shown in Figure 3.8.

Figure 3.8: Picture of the MEG II cylindrical stereo drift chamber.

The electric field inside the drift cells is created by a combination of high voltage cathode
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and guard wires surrounding the sense wires. The high voltage wires are typically operated

at ∼ 17V . A slice of the CDCH wires at the center of the chamber is shown in Figure 3.9; the

cell diameter ranges from ∼ 6−9 mm. The sense/field wires are 20 µm diameter gold plated

W/40 µm diameter silver plated Al respectively. Note that O(100) field wires broke during

the chamber construction due to chemical corrosion from humidity exposure[35]. Based on

Monte Carlo studies, this is expected to have a negligible effect on the experiment, however

as a precautionary it also prompted the construction of a new chamber using new wire

material (CDCH II). The plan is to potentially use the CDCH II in 2024, but this has yet

to be decided.

Figure 3.9: A CDCH slice. The drawn boxes represent drift cells created by the high voltage
wires surrounding the sense wires.

As mentioned above, in MEG II the total material the positrons intersect is highly sup-

pressed; this improves the positron efficiency and resolution. In MEG II, the material

the positron tracks intersect consists of the target region (filled with helium), a thin in-

ner Al Mylar foil (r ∼ 17 cm), the CDCH gas mixture (described below), potentially the

sense/field/guard wires, and an outer shell (r ∼ 28.53 cm). The outer shell consists of a

100 µm Aluminum foil and then a ∼ 1.2 mm outer carbon fiber shell. The construction

procedure is described in detail here[7].
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3.6.4 Gas Mixture

The chamber is nominally filled with a 90/10 helium isobutane mixture; the helium is selected

for a small Coulomb scattering contribution to the positron momentum resolution. The

isobutane is added in order to quench self-sustained discharge. Typically a positron track

ionizes ∼ 15 Helium atoms. This ionization results in ionization ”clusters” of electrons (1 or

sometimes 2 electrons are ionized) in a cell. These electrons maintain a relatively constant

drift velocity until they get close to the sense wire. The avalanche process near the sense wire

has a typical gas gain of ∼ 1−5·105. The gas gain follows a Polya theta function (Figure 3.10)

where n and n̄ are the number electrons and the average number of electrons respectively.

Typically drift chambers with a O(105) gas gain have a θ ∼ 0.4[6], however the exact value

is difficult to measure. As will be discussed in Chapter 5.2, this non-zero probability of

very low gas gain results in difficulty detecting isolated ionization sites (particularly near the

wire).

P (n) =
1

n̄

(θ + 1)θ+1

Γ(θ + 1)
(
n

n̄
)θe−(θ+1)n/n̄ (3.3)

Figure 3.10: Poly theta function as a function of f = (θ + 1)/1 (Figure from 2008 Springer
[6]).

In the 2020 engineering run, the CDCH experiences current spikes, an example is shown
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Figure 3.11: A spike in the current on the sense wires. Each curve represents the current on
a set of sequential 16 sense wires.

in Figure 3.11. These currents were mitigated by including a small amount of isopropanol

alcohol and oxygen. However, oxygen was found to lower the number of drift electrons

that arrived on the sense wires, which could be a consequence of both lowering the gas

gain and capturing single drift electrons prior to the avalanche. Therefore, an optimization

was done to lower the oxygen while maintaining enough oxygen to operate without high

currents. Figure 3.12 shows an example of current in a sector of 16 sense wires moving from

2% → 1%, 1% → 0.5%, 0.5% → 0.1% oxygen[12]. Lowering or removing the isopropanol

again resulted in current spikes as well. In the 2021-2023 physics runs, the CDCH was

operated in stable conditions with He : C4H10 : C3H8O : O2 (88.2:9.8:1.5:0.5) with minimal

current spikes. This gas mixture results in less signal on the wires (with respect to no

additives), thus suppressing the signal/noise ratio on the wires. This makes it difficult to

detect low gain ionization clusters; this is discussed in detail in the CDCH analysis sections.
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Figure 3.12: The current moving from 2% → 1%, 1% → 0.5%, 0.5% → 0.1% oxygen. The
solid lines represent a separation in time between the three data samples.

3.6.5 Analysis Description

The drift chamber analysis is described in detail in Chapter 5.

3.7 Timing Counter: SPX

3.7.1 Design Motivation

The core of the detector upgrade is to have a significantly higher hit multiplicity to achieve an

improved positron timing resolution. This is a completely redesigned detector with respect

to its MEG I counterpart.
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3.7.2 Basic Principal

The active detector component of the SPX is scintillator; the positrons intersect the scintil-

lator and interact with electrons in the scintillator atoms, exciting them into higher states.

The electrons drop back to lower energy states, releasing photons.

These photons are then captured by Silicon Photo-Multipliers (SiPMs). This detector design

is used to achieve high timing precision. One draw back is that the positrons lose significant

energy when intersecting the scintillating material, thus making tracking post-intersection

difficult. In our case, the particle tracking is done by the drift chamber before the scintillator

is reached.

3.7.3 Detector Design

The SPX consists of two semi-cylindrical modules placed upstream and downstream of the

stopping target. The detector is shown in Figure 3.13[36]. The modules are installed at the

outer radius of the CDCH centered each starting at |z| ∼ 23 cm and extending to |z| ∼ 117

cm. The modules have nearly π coverage in ϕ from 165.8◦ < ϕ < 5.2◦ (centered below the

CDCH).

Figure 3.13: The downstream SPX module.
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Each module consists of 256 timing counter tiles, each with a hit timing resolution of ∼ 90

ps. The timing counter tiles consist of a piece of plastic scintillator (L x W x T = 120 · (40

or 50) · 5mm3) with 6 SiPMs on each of the sides of the scintillator. An example pixelated

timing counter is shown in Figure 3.14. The tiles are tilted to be typically interested by a

signal positron perpendicular to its surface.

Figure 3.14: A single pixelated timing counter tile.

In contrast with MEG I, on average, the signal positron tracks intersect 9.3 timing counter

tiles. Therefore achieving a timing resolution of ∼ 90/
√
9 = 30 ps.

3.7.4 Analysis Description

The analysis is described in detail in Miki Nishimura’s thesis[37]. Relevant kinematic reso-

lutions for the 2021 physics analysis are described in Chapter 8.
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3.8 Liquid Xenon Calorimeter: LXe

3.8.1 Design Motivation

The MEG I liquid xenon detector is one of the world’s largest liquid xenon detectors. The

choice of liquid xenon was made due to the advantages of a short radiation length and large

density including a high photon yield and a short response time.

The MEG I LXe performance was degraded due to non-uniform covering of the liquid xenon

on the inner face (incoming photon direction). The PMTs surrounding the liquid xenon

detector had gaps in the active area of the order ∼ 15 mm due to the PMT geometry.

Therefore, there were instances when the photons, particularly on the inner face, missed the

active PMT area. This in turn degraded the energy and position resolution. The objective of

the MEG II upgrade was to remove this non-uniformity by replacing the PMTs with SiPMs

on the inner face.

The design aims to significantly improve the energy resolution for all classes of events (∼

2% → 1%) and improve the position resolution near the inner-face (∼ 5 mm → 2 mm).

In addition, this upgraded inner face can be used to aid in pileup discrimination.

3.8.2 Basic Principal

The core of the detector is the scintillating property of liquid xenon. Photons enter the

single volume of liquid xenon and interact with electrons in the xenon atoms. This produces

a shower of particles as the photon moves through the xenon.

Some photons excite electrons in Xenon atoms from lower orbitals to higher orbitals (leaving

a ”gap”). This gap is eventually filled resulting in the emission of a photon. In addition,
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electrons ionize and interact with other xenon atoms, which can then excite other electrons,

etc. The signal photon eventually loses all its energy through interactions with the liquid

xenon.

The liquid xenon is surrounded by an array of Silicon Photo-Multipliers (SiPMs) and photo

multiplier tubes (PMTs), which collect the photons. By collecting all the energy collected

on the SiPMs and PMTs, the energy of the signal photon is estimated. By measuring the

average position and time of the detected photons, the position and time of the signal photon

at the calorimeter are also estimated.

3.8.3 Detector Design

The liquid xenon detector is a homogeneous single volume vat containing ∼ 800 L of liquid

xenon. The detector is shown in Figure 3.15. The LXe is ’C’ shaped with an inner radius

starts at the outer radius of the COBRA magnet ∼ 60 cm extending radially outward another

38.5 cm. The detector inner face extends vertically ∼ ±68 cm and ∼ ±24 cm along the beam

axis.

As mentioned above, the outer faces (5) are covered by a total of 668 PMTs (Hamamatsu

R9869). The PMTs are VUV-sensitive with a quantum efficiency of ∼ 16%. These are more

or less consistent with the MEG I design with an upgraded support structure.

The inner-face is now covered by 4096 SiPMs called Multi-Pixel Photon Counters (MPPCs).

The MPPCs have an active area of 12x12 mm2 with a total area of 15x15 mm2. This

allows for the inner face to have significantly more uniform coverage with gaps of the order

∼ 6mm between active regions. These MPPCs have no protection coating, allowing for VUV

detection (light expected from the LXe). Figure 3.16 depicts an MPPC and its active region.

Beyond simply improved spatial resolution, the inner-face upgrade results in improved pileup
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Figure 3.15: The liquid xenon detector.

Figure 3.16: A schematic of an MPPC.

discrimination and thus an improvement in all kinematics. An example Monte Carlo pileup

event simulated in the MEG I and MEG II LXe detectors is shown in Figure 3.17. It’s clear
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that in MEG I, it would be very difficult to determine that this is a pileup event, but in

MEG II the energy clearly comes from more than one photon.

Figure 3.17: The liquid xenon detector in MEG I (left) and MEG II (right). This is a MC
simulation of a two-photon event. The two photons are clearly distinguished only in MEG
II.

3.8.4 Annealing

During the 2021 physics run, it was identified that the LXe MPPCs were losing significant

quantum efficiency as a function of beam exposure. This is shown in Figure 3.18[38]. It is

expected to be a consequence of removing the protecting coating on the MPPCs. This loss of

gain was a ∼ 10% effect at the end of the 2021 run, but the 2022 run was significantly longer.

After the 2021 run, annealing options were investigated. The best annealing procedure was

running the MPPCs at high current to heat up the MPPCs to recover the quantum efficiency

(i.e. the Joule Method). The annealing resulted in comparable quantum efficiency before

and after the run. This was then repeated at the end of 2022.

3.8.5 Analysis Description

The analysis is described in detail in Satoru Kobayashi’s thesis[39] and Shinji Ogawa’s

thesis[40]. Relevant kinematic resolutions for the 2021 physics analysis are described in

Chapter 8.
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Figure 3.18: The quantum efficiency of the MPPCs as a function of time (and thus beam
exposure) during the 2021 physics run.

3.9 Radiative Decay Counter: RDC

3.9.1 Design Motivation

Due to the significant reduction in the CDCH material, the number of accidental time

coincidences between a high energy Michel positron and a high energy photon produced from

AIF was significantly suppressed with respect to MEG I (∼ 1/2 → 1/3 of all accidental time

coincidences). However, the other dominant source of accidental background, an accidental

time coincidence between a high energy Michel positron in the CDCH and a high energy

photon from an RMD muon decay, was not lowered (except for a narrower signal region due

to the resolution improvement).

In these accidental RMD events, there is a low momentum positron that doesn’t enter the

CDCH, but exits upstream/downstream via the magnetic field. By adding an additional

detector downstream of the target, a significant fraction of these RMD accidentals (those
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where the RMD positron travels downstream) can be eliminated from the dataset using the

relative time of the photon in the calorimeter and the positron in this detector. This detector

is known as the Radiative Decay Counter (RDC).

3.9.2 Basic Principal

The detector uses fast scintillating counters with SiPMs on the two ends (similar to the

pixelated timing counter used in the SPX detector) to estimate the time of the low energy

positrons. The positron energy is then absorbed in an array of LYSO crystals. The positrons

create scintillation light, which is then absorbed by SiPMs attached to the LYSO crystals.

3.9.3 Detector Design

The detector is situated ∼ 1 m downstream of the target along the beam axis. The detector

is roughly ∼ 22x22 mm2. As mentioned above, the detector consists of a first layer of

scintillating tiles to estimate the positron timing and a second layer of LYSO crystals to

estimate the positron momentum. Figures 3.19 and 3.20 show the scintillating tile layer and

the LYSO crystal layer respectively.

Figure 3.19: The RDC scintillating tile array.

Clearly, the RDC counter will also be crossed by Michel positrons that are accidentally

intersected (a random positron). This is a ”background” in the RDC counter detection
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Figure 3.20: The RDC LYSO crystal array.

(not to be confused with the physics background). These will have no preferential time

coincidence with the LXe and the RDC and they will be dominated by higher momentum

positrons as RMD events result in a significantly lower momentum positron on average.

Eliminating events based on this accidental time-coincidence between the LXe and the RDC

(non-true RMD events) would eliminate potential signal events and thus degrade the sen-

sitivity of the experiment. Therefore, we additionally use the RDC positron momentum to

optimally determine if the RDC intersection is a true RMD event. In Figure 3.21, we show

the expected Monte Carlo momentum for true RMD positrons and accidental positrons at

the RDC counter.

Figure 3.21: The energy expected from Michel and RMD positrons in the RDC detector.

The RDC was tested in a pilot run using a different photon detector to mimic the timing of
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the LXe (BGO, described in Chapter 7). In this run, the relative time of the photon in the

BGO and the positron in the RDC is measured. In Figure 3.22, we show the relative time

distribution between the positron and the photon with and without a cut on the positron

momentum in the RDC (< 5 MeV). It’s clear that after the positron momentum cut, a vast

majority of the accidental time-coincident RDC positrons are eliminated resulting in almost

exclusively true RMD events. Eliminating events based on this relative time coincidence and

the estimated energy, we expect to eliminate a significant fraction of RMD accidentals at the

expense of a small amount of signal efficiency. This is expected to improve the sensitivity

by ∼ 15%[7].

Figure 3.22: The relative time of a positron in the RDC and the time of a photon in the BGO.
The top histogram contains no cut on the positron momentum and the bottom requires the
positron momentum to be less than 5 MeV.

3.9.4 Analysis Description

The analysis is described in detail in Rina Onda’s thesis[41]. Relevant probability density

functions required for the 2021 physics analysis are described in Chapter 8.
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3.10 Electronics and Trigger

All detectors modules are connected to custom Waveform Domino REAdout Module (Wave-

DREAM) electronics boards[42]. This includes all O(10k) channels on the CDCH wires on

both ends, LXe MPPCs and PMTs, SPX SiPMs, and RDC SiPMs. Each channel contains

1024 ’sample-and-hold’ cells that sample and temporarily hold signals from a particular de-

tector module. The frequency of sampling is ∼ 1.2 GHz, thus resulting in a total recorded

time of ∼ 850 ns. The signal (charge) in each of the 1024 cells is digitized after receiving

a trigger. This results in a voltage and a time associated with each cell (bin). The circuit

diagram is shown in Figure 3.23 and a WaveDREAM board is shown in Figure 3.24. Each

WaveDREAM board contains two Domino Ring Sampler (DRS4) chips; each DRS4 chip

contains 8 channels.

Figure 3.23: Circuit diagram of the MEG II WaveDREAM boards.

The MEG physics trigger[43] consists of three main components in order to suppress the

number of background triggers, they are listed below.

• Energy threshold in the LXe (EThreshold < Eγ), where EThreshold ∼ 45 MeV.

• Time match between the intersected pixelated timing counter and the LXe detector
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Figure 3.24: Graphic of the MEG II WaveDREAM boards.

(|Teγ| < TThreshold), where TThreshold ∼ 12 ns

• Spatial match between the intersected pixelated timing counter and the LXe detector

region.

The energy threshold suppresses the number of low energy photon triggers that would other-

wise overwhelm the trigger rate. The energy threshold requires an online energy reconstruc-

tion estimate, which also requires time-dependent energy calibrations. The online energy

resolution is ∼ 2.4%. It is not possible to have a very precise teγ measurement as there

is no online positron track reconstruction, only a hit in the pixelated timing counter. As

mentioned, the positron track can intersect the drift chamber 3,5,or 7 times before hitting

the timing counter, where each turn (2 chamber intersections) typically takes ∼ 2 ns; the

number of turns is not known in the online analysis and thus forces a rather wide criteria

on the relative timing of the photon at the LXe and the positron at the timing counter.

The wide teγ region is also used in the physics analysis to study accidental events away

from the signal. Finally, the spatial match between the positron and the photon position is

calculated from a Monte Carlo simulation by simulating µ+ → e+γ events. At minimum,
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one can see that a roughly a factor of two can be achieved through a spatial match as a true

signal positron intersecting the upstream timing counter would require a signal photon in

the downstream region to conserve momentum. One caveat is that this is not the case if the

positron is close to θe ∼ 0, where the positron can turn around due to the magnetic field.

Combining the three trigger elements results in a trigger rate of ∼ 12 Hz at standard beam

intensity. All three trigger elements require online reconstruction that requires CPU time,

this must be complete before the sample and hold cells containing the signal we would like

to trigger on are replaced by new signals (this signal is constantly being replaced until the

online reconstruction is done and the trigger is sent).

3.10.1 Performance Description

The performance of the trigger is described in detail here[44] and here[13].
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Chapter 4

MEG II Stopping Target Analysis

4.1 Introduction

In this chapter, we describe a novel photographic technique to increase the precision of the e+

kinematic measurements at stopping target by precisely measuring the position, orientation,

and shape of the stopping target with respect to the magnetic spectrometer. Much of this

information is described in the paper[33]; some details are only described in this thesis.

The technique described monitors continuously the change in the target’s shape and in its

position and orientation with respect to the camera. It does this by imaging approximately

120 dots printed on the stopping target using a camera located about 1.2 m from the target.

This technique does not measure the absolute position of the target. To determine the

absolute position and orientation of the target with respect to the magnetic spectrometer,

MEG II uses two independent techniques described later.

The first technique is an optical survey of the target with respect to the magnetic spec-

trometer, done only at the beginning of every run. The correlation with the photographic
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results is done by analyzing a sequence of very precise photographic measurements taken

simultaneous with the optical survey. The second technique (described in Appendix A.1)

was first used in the MEG I experiment[5]; it uses momentum analyzed positrons recorded

during data-taking to image, in 3 dimensions, small holes in the target by detecting a deficit

of positrons originating from the position of the holes. The MEG I experiment achieved a

precision in the measurement of the target position normal to its surface of 0.3−0.5 mm. The

uncertainty was primarily due to lack of statistics available to measure the time dependence

of the position. By correcting for time dependence in the target geometry using the photo-

graphic technique, the full data-set of MEG II will be used for measuring relative alignment

of the spectrometer and the target. This second technique has an additional advantage that

it is independent of the optical survey.

4.2 Methods

4.2.1 Camera Installation and Operation

The implementation of the photographic alignment system is complicated by several factors.

Access is limited since the stopping target is at the center of a tracking detector ∼ 2 m long

in a solenoid with nominal field of 1.3 T at the target location. No simple optical path from

the target to a position outside the solenoid exists. The camera system cannot be closer

than ∼ 1.2 m from the target, with the camera axis nearly along the magnet axis (Figure 4.1

and 4.2), and it must be located at the incoming muon beam end of the spectrometer. The

magnetic field at this location is ∼ 0.8 T. Further, there is significant positron flux at the

camera location from muon decay in the target. This presents the possibility of radiation

damage to the sensor and camera electronics. Finally, the available space for the camera

and lens is limited.

56



Figure 4.1: Drawings of the assembly including including a) the camera used in this tech-
nique, b) the stopping target, c) the pneumatically actuated target support, and d) the LED
lights. The camera is positioned at the vertical (MEG II y-axis) center of the target, and is
rotated to center the target in the image plane. Left: Beam-axis view of assembly. Right:
Top view of the assembly, with some support pieces, a second camera not used in this anal-
ysis, and cabling omitted for clarity.

The camera is mounted approximately 1.2 m from the target, at the same height as the

target, and offset horizontally from the target by approximately 10 cm (Figure 4.1 and 4.2).

The camera axis is at an angle of 5.60◦ with respect to the MEG II beam axis and 69.40◦ with

respect to the vector normal to the target plane. It is mounted to a support structure that

is rigidly attached to a spool piece attached to the cryostat of the COBRA magnet[8]. The

structure also supports two LED lamps for illuminating the target, another camera not used

for the position monitoring described here, and a pneumatically controlled target support

that moves the target between the inserted position when it is being used and an extracted

position during certain calibration data taking. We verified that there was no motion of the

target with respect to the spectrometer by imaging and monitoring the position of a flange

on the spectrometer structure.

In 2021, the alignment system was implemented with an industrial camera[45] with a 1/2.3-

inch CMOS sensor with 3856 × 2764 pixels, each 1.67 µm square, and a 50 mm lens. The

interface to an acquisition computer is by USB3. Note, Ethernet interfaces failed in the 0.8

T magnetic field. We use an active USB extender cable to allow the acquisition computer

to be at a sufficiently small magnetic field. The manufacturer provides a graphical user

interface and provisions for operating the camera with scripts that can be written in C++

or Python. The software provides the capability to set the frame rate, exposure, gain, and
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Figure 4.2: A schematic perspective view[7] of relevant parts of the MEG II experiment
including a) the camera used in this technique, b) the stopping target, c) the liquid xenon
photon detector, d) the drift chamber, e) the COBRA magnet. For clarity, the arrays of
scintillation counters at each end, the camera support structure, and the spool piece are not
shown. The COBRA magnet is depicted as a single hollow cylindrical shell for clarity; the
inner bore is in fact stepped with a smaller diameter in the center[8].

fraction of the image plane to be read out. The focus and aperture are set manually.

The camera control and image acquisition are implemented using Python scripts combined

with scripts to control the LED lights and sequencing of image acquisition. All the acquisition

and control software is integrated with the MEG II data acquisition and control system.

During operation, we acquire a dark field image and a set of three normal images every 15

minutes. The dark-field image is used to subtract the background intensity in ‘hot’pixels.

The hot pixels remain in fixed position and comprise 0.05% of all pixels. The hot pixels

appeared after a couple weeks of operation with the muon beam on; we assume they are due

to radiation damage from muon decay positrons.

New cameras were installed prior to both the 2021 and 2022 runs to eliminate any previous

damage due to beam exposure. Unfortunately, both cameras failed after 3-5 weeks of beam
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exposure, losing connection between the camera and any computer to which it was connected.

The operational period accounts for a significant fraction of the short 2021 physics data but

only a small fraction of the 2022 data. The apparent failure due to radiation damage from

the beam motivated a search for radiation hard cameras for future runs. In the 2023 run, we

instrumented a radiation tolerant camera from Spectral Instruments (RVT-100 1700S[46])

equipped with 4MP, a pixel size of 5.5x5.5 µm, and a 50 mm lens. This camera connects

directly to a server communicating via fiber optic and removes much of the signal processing

to outside the area of high radiation. The camera has now operated successfully during the

2023 physics run for ∼ 16 weeks without any issue. Note that this camera contains less

pixels and has a wider field of view than that of the original camera and therefore we expect

a slight reduction in the resolution, but still beyond that needed by the technique.

4.3 Coordinate Systems

First, we describe the relevant coordinate systems to the camera analysis. The coordinate

systems are shown in Figure 4.3. The target frame has XTGT/YTGT parallel to the target

surface where the target frame is nominally rotated by 15 degrees with respect to the MEG

frame about the Y axis. The CT scan of the target (described later) contains a coordinate

system extremely well aligned with the target frame, the only difference is that the CT scan

data is offset by 4.295 mm in ZCT . In all practice, we only use the target frame, simply

offsetting the CT scan data by this factor. In addition, the camera analysis relies on the

camera frame, which is centered about the camera’s effective lens. The ZCAM axis is aligned

with the camera direction and the XCAM/YCAM axes are aligned with the camera’s CCD.

In the MEG coordinate system, the camera is located nominally at negative X (8 cm), and

negative Z (120 cm), and the camera is rotated by 5 degrees about the Y axis with respect

to the MEG frame. Therefore, we expect a nominal rotation of (90-20) degrees about the Y
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axis between the target and the camera frame. Finally, the CCD frame is a 2D frame on the

camera’s image plane aligned with the camera’s CCD.

Figure 4.3: Graphic of the relevant coordinate systems.

4.4 Camera Analysis

The general objective of the camera analysis is to minimize a χ2 function which compares the

measured dot coordinates on the 2D image plane (XCCD) to the estimated 3D dot coordinates

in the camera frame X⃗CAM . The 3D coordinates in X⃗CAM are projected onto the image plane

using optical projection equations so they can be compared with the measured coordinates

in XCCD.

4.4.1 Image Dot Finding

The analysis is initiated by searching for the dot coordinates on the image (XCCD). This is

done using OpenCV[9] contour analysis. The analysis uses a binary threshold (e.g. 50/255)
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to find all contours at that selected threshold on the image. As we are searching for dots

on the target foil, we reject contours based on the contour area and aspect ratio. To avoid

the cluster’s centroid depending on details of pixels association near the cluster’s edge, each

dot’s centroid is calculated using an intensity weighted mean pixel position. This method

determines the centroid of each dot with a dispersion of σ = 0.2 µm at the image plane

(approximately 4.8 µm at the target) determined from a series of sequential images taken

close in time. We then assign a 2D index to map each selected contour to a unique printed

dot based on its 2D position on the image plane. This results in an array of dots with a 2D

position on XCCD and an X/Y index (4xN array). If there are two contours within a single

dot region (e.g. the dot is broken into two contours due to lighting issues), both contours

are removed from the analysis. An example of the contours at an optimal threshold is shown

in Figure 4.5. We only use the smaller contours surrounding the inner white dots.

Figure 4.4: Top: A typical binary image of the target[9]. Bottom: From left to right we show
an original (non-binary) dot followed by binary versions with increasing threshold parameter
values.

We have verified that the lighting intensity and the threshold parameter do not affect the

measured positions in a systematic way, although they do affect the cluster size (Figure
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Figure 4.5: The measured contours at an optimal threshold drawn in green.

4.4). The dispersion in the measured dot positions does marginally increase with decreased

lighting. Additionally, we analyzed approximately 20 images while varying the threshold

parameter; this did not have a systematic effect on the resulting fit for the target shape,

position, and orientation (see Appendix A.2).

4.4.2 Dot Coordinates in Target Frame

To estimate 3D dot coordinates in X⃗CAM , we rotate and translate the 3D dot coordinates in

the target coordinate system (X⃗TGT ) into the X⃗CAM frame. To measure the 3D dot position

in the target frame X⃗TGT , we use an independent 3D CT scan. This scan was done in the

months prior to the 2021 dataset. The CT scan contains several million data points on the

target frame and foil. Data points estimate the 3D position on both sides of the target foil.

To estimate the dot coordinates in X⃗TGT , we first remove all CT data points associated with

the other side of the film. We then zoomed in on each dot. An example is shown in Figure

4.6. Here, ZTGT or the coordinate normal to the target surface is represented by color. We

estimate each dot’s 3D coordinate using a python GUI that gives the 3D coordinate at the

position of the cursor. We use this technique as it was unclear how to optimize a standard
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Figure 4.6: An example dot in the CT scan (mm). The color represents depth i.e. deforma-
tion.

fitting procedure that works for every dot, whereas by eye the position normal to the surface

is well estimated. We estimate that for most dots, our precision normal to the surface is

∼ 10 µm. We then average each column’s XCT coordinate and each row’s YCT coordinate.

We use these CT coordinates as a starting grid in X⃗TGT . These dot coordinates are indexed,

resulting in a 5x117 array of dot coordinates (X/Y index + 3D coordinate); this defines the

dots in the target frame. The CT scan dot coordinates are shown in Figure 4.7

4.4.3 Rotation and Translation

We then rotate and translate the dot coordinates from X⃗TGT into X⃗CAM . We use the MEG

standard ZYZ rotation convention. We apply the rotation to the object (dots), not the axes

so the ordering of ψ, ϕ is flipped with respect to other MEG conventions.

That is:

X⃗CAM = Z(Y (Z(X⃗TGT , ϕ), θ), ψ) + d⃗XCAM
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Figure 4.7: The target deformation at the dot coordinates in the CT scan (mm). The full
range of the deformation is ∼ 800µm.
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4.4.4 Optical Projection

To compare the estimated 3D coordinates in X⃗CAM with the measured dots on the camera’s

CCD, we rely on optical equations to project the 3D coordinates onto the camera’s CCD.

We use the following optical equations, where f is the camera’s focal length and dI is the

distance from the lens to the image plane.
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Converting that into projection equations and thus eliminating the distance to the image

plane, we are left with the following projection equations. Note that although the camera

is a complex lens, we are using a simple lens equation. This likely creates some systematic

effects. In addition, this projection requires a focal length estimate. We found that the

residuals are minimized by using a focal length of 51.2 mm with a nominal focal length from

the manufacturer of 50 mm.

XCCD =
XCAM · f
ZCAM − f

YCCD =
YCAM · f
ZCAM − f

4.4.5 Minimization

The χ2 is listed below where the X ′
CCD/Y

′
CCD are the measured coordinates on the image

plane and XCCD/YCCD are the projected coordinates from the above equations:

χ2 =
N∑
i

(Xi,CCD −X ′
i,CCD)

2 + (Yi,CCD − Y ′
i,CCD)

2 (4.1)

We minimize the χ2 in the python Scipy[47] package using the Nelder-Mead minimization

routine. Below, we show the 2D residuals after the minimization. The residuals are scaled
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using the projection equation. By scaling these residuals to the object, we are assuming that

they represent an error in XCAM/YCAM .

In general, we observe minimal residuals in YCCD/YCAM . This is expected as there is not

a physical explanation to these residuals. In contrast, we observe systematic residuals in

XCCD/XCAM . The XCAM coordinate is nominally aligned with ZTGT , so a systematic XCAM

residual can correspond to a deformation of the target with respect to the deformation at

the time of the CT scan (ZTGT ). We see a ∼ 50 µm deformation around the target holes

centered at index (2, 4).

Originally, we observed some systematic errors in the residuals column-by-column or row-

by-row i.e. each dot in a single row/column had a mean residual of 30 µm (at the object)

for all images taken near the survey. This indicates that our estimate of the dot’s coordinate

parallel to the target surface contained a systematic error (CT scan estimate). Since it is

unlikely to get a residual exclusively for every dot in a single column/row (and no other

nearby dots), we shift the CT scan measurement’s accordingly.

Figure 4.8: Example 2D residuals for an image taken at the time of the survey. The residuals
are scaled using the projection equation to show the error size at the object.

The minimization fit results in the 6-parameter rigid body rotation and translation to move
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the dot coordinates from the target coordinate system into the camera coordinate system.

At this time we do not fit for the deformation, but this is easily incorporated by including

additional drum head mode degrees of freedom into the minimization scheme. This was

tested by starting with a nominally flat target (setting ZTGT = 0 for all dots) and indeed

we are able to recover a comparable deformation to that observed in the CT scan. However,

at least in 2021 we do not observe large residuals and so we have left the fit without any

deformation parameters.

4.5 Transformation Into the MEG Coordinate System

In order to determine the target foil’s position in the MEG coordinate system from the optical

survey, we require the relative position of the target foil and the corner cubes. We (Yusuke

Uchiyama) used the CT scan to extract the position of the ’corner’ in each corner cubes

in the CT scan (i.e. X⃗TGT ). The optical survey of the corner cubes on the target results

in the corner cube positions in ⃗XMEG. We then fit for the X⃗TGT → X⃗MEG transformation

(6-parameter rotation/translation). We can then use the same transformation to move the

target dots from X⃗TGT to X⃗MEG.

We use images taken on the same day of the survey to estimate target position at the

time of the survey in X⃗CAM . We can then fit for the 6-parameter transformation from

X⃗CAM to X⃗MEG. As we have not fit for any additional deformation of the target, this is an

exact transformation. This calculates the unique transformation from the camera coordinate

system to the MEG coordinate system for all future images in 2021. We calculate the

rotation to be (-0.01861, -0.07746, 0.018103) radians and the translation to be (-10.930,-

6.497, -1231.13) mm. The two points of interest are the Z translation, which we expect to

be approximately 1.23 m from the survey, and the Y axis rotation (second angle) which is

expected.
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For any future image, we transform the dot coordinates from X⃗CAM into X⃗MEG using this

transformation. That is, camera analysis on future images results in an updated target

position in X⃗CAM , we then apply this same transformation to move the updated target

position into X⃗MEG.

In addition, using the just calculated X⃗MEG coordinates of the target, we calculate the

transformation: X⃗TGT → X⃗MEG. This yields the 6-parameter transformation from the

nominal target coordinate system (CT scan) into the MEG coordinate system at any given

image. This is used in the MEG analysis code as described later.

4.6 Survey Check

In 2021, the camera and the target were both surveyed. However, the relative position

of the camera corner cube and the camera’s CCD or the camera’s effective lens position

have not been estimated. Regardless, we can use the survey as a sanity check of the dot

coordinates in X⃗CAM . In the camera frame using the camera analysis, we observe that the

center dot is located at (-11.03, -6.49, -1231.30) or 1231 mm away from the effective lens.

The survey suggests that the camera corner cube is ∼ 1228 mm away from the target foil

center. Since we don’t know the distance from the corner cube to the camera’s effective

lens to this precision, we conclude that the relative position of the camera and the target is

consistent in the two techniques. To be clear, this is not critical for the camera analysis as

we do not use the camera to estimate the global position of the target, but only to identify

the relative movement of the target with respect to a reference point.
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4.7 Results

The 6-parameter transformation from the target coordinate system into the MEG coordinate

system as a function of time is shown in Figure 4.9.

Figure 4.9: The 6-parameter transformation from XTGT into XMEG as a function of time in
the 2021 dataset.

There are several interesting features to discuss. First is the scale of the translations. We are

mainly interested in the translations normal to the target surface. We observe total shifts

of ∼ 300 and ∼ 1000 µm in XMEG and ZMEG respectively. Both of these move the target

in positive ZTGT (normal to the target surface). Approximating the slant angle as 15◦, this

corresponds to a total movement of ∼ 600µm in ZTGT . To convert this into an error in ϕ

for a 53 MeV positron, roughly an error of 140 µm normal to the target corresponds to an

error of 1 mrad. Therefore, if there are no corrections with respect to the survey position,

we would have a systematic error of 4.3 mrad in ϕ.

Next, we found that there is some systematic motion of the target after an insertion/extraction.

We give 3 examples of extraction/insertions in Figure 4.10 where the parameters are normal-

ized such that the parameters are they are equal to zero before the insertion. It’s clear that
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in all cases, there is a relaxation of the target Y position. This relaxation seems to occur on

the time scale of 1-3 hours.

Figure 4.10: The 6-parameter transformation from XTGT into XMEG as a function of time
in the 2021 dataset for three separate periods immediately after a target re-insertion.

Finally, we show an example of the data with several distinct regions in Figure 4.11. Using

the dispersion in each region, we observe a precision in the angles of ∼ 0.006, 0.003, 0.002

degrees for ϕ, θ, ψ respectively. In the translations, we observe a precision of 10, 3, 80µm

respectively, these are very approximate numbers.

4.8 Deformed Target Implementation

Implementing the target foil deformation into the positron analysis is required for optimal

kinematic measurements at the target. The positron kinematic estimates at the target foil

are estimated by propagating the positron track using the Genfit package[48]. Genfit uses a

Kalman[30]/DAF[31] filter to fit for the positron state vector (and covariance matrix) in the

drift chamber and then propagate the state vector through the magnetic field and geometries.
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Figure 4.11: The 6-parameter transformation from XTGT into XMEG as a function of time
in the 2021 dataset. This is zoomed in to highly the motion between insertion/extractions.

This section describes the technical details of the implementation.

First, we must account for the target material at the correct position. This is to correctly

account for the energy loss and adjust the covariance matrix elements according to the

material the positron has intersected. Second, we must propagate the positron tracks to the

correct vertex position on the target surface; as mentioned deformations create a ϕe bias if

left uncorrected. In this section we describe the details of both of these procedures. These

details are outlined here mainly for any future user of the deformed target implementation.

4.8.1 Tessellation

To include the deformed target in the positron analysis, we define the target as a tessellated

grid of triangles. Triangles are ideal as each set of three vertices defines a plane. The

tessellation is described in this subsection.

71



First, we spline[47] the 3D dot coordinates over the foil’s surface so we can choose our

tessellation grid spacing. The spline is shown in Figure 4.12; the non-smooth edges are due

to the lack of dots near the edge of the foil (and inside the frame). A smaller grid spacing

results in more computation time to select/propagate to the correct tessellated triangle,

whereas too large of a spacing results in errors in the deformation.

To discuss the scale of changes in the deformation along the target surface, we point again

to the example graphic of a dot in the CT scan (Figure 4.6). We observe a gradient of

roughly 100µm from the bottom-left corner to the top-right corner. Non-linear deformations

are observed at a much lower level ∼ 10− 30µm. At the current moment, we use the spline

to create a 60x25 array of points in XTGT/YTGT , calculating the ZTGT coordinate using the

spline. Errors due to the granularity of the tessellation are negligible.

Figure 4.12: Spline function of the deformation of the target surface.

We need to convert this grid of points into an array of triangles (each of which defines a

plane). We choose to cut the grid into two types of right triangles. The first type connects
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points (i,j),(i+1,j-1),(i,j-1), the second connects points (i,j),(i+1,j),(i+1,j-1). Both sets of

points are connected clockwise. This ’fills’ the grid with an array of triangles without gaps.

For each triangle, we save the three-vector for each vertex (9 total values). As a reminder,

this defines the target foil coordinates on the face directed at the camera. This face points

in negative XMEG/negative ZMEG. We require a target surface in the middle of the foil

(for the propagation) and we need the location of both foil faces for the target geometry

implementation.

The CT scan measures the foil thickness to be ∼ 250µm. This is significantly thicker than

independent measurements of the foil thickness (Malte Hildebrandt), which resulted in an

average thickness of 179µm (σ ∼ 9µm). The thickness was measured at 15 points on the

foil. The manufacturer of the CT scan concluded this is likely a systematic in the CT scan.

Currently, the implementation assumes a thickness of 180 µm for all points on the surface.

The dot coordinates define the negative ZTGT face, we then define the positive ZTGT face at

⃗XTGT+(0,0,180) µm in the target frame.

The positron tracks are propagated to a triangular face (plane) which is in the middle of

the two faces (averaging the three vertices individually over the two faces). Finally, to form

the triangular prism geometry, we concatenate the additional three vertices on the positive

ZTGT face with those on the negative ZTGT face to form the single triangular prism in the

target coordinate system.

4.8.2 Target Geometry TGeo Definition

There is an additional difficulty associated with implementing the target geometry into the

ROOT[49]/Genfit[48] software. The target geometry must by defined in the TGeometry

ROOT framework. The only class that fits the requirements for a triangular prism is the

TGeoArb8 class. To create a TGeoArb8 object, one must define 3-4 vertices on a XY plane
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(clockwise) at -dZ and then 3-4 additional vertices on an XY plane (clockwise) at +dZ. The

geometry combines the vertices on the two planes such that there are no ’twists’. By defining

3 vertices on each plane, a triangular prism is created.

We call this reference plane the ’bench-top’ reference frame (XBT ). The ’bench-top’ refer-

ence frame is not equal to the target frame unless the target is exactly flat (no deformation

over the whole surface), which is not the case. Therefore, we must first fit for the rota-

tion/translation from the ’bench-top’ reference frame into the target frame.

To make the bench-top frame coordinates, we first assume that the (i,j) vertex is centered at

XTGT , YTGT ,−dZ, then we assert that the second vertex, (i+1,j), is atXTGT+L1,2, YTGT ,−dZ

where L1,2 is the distance between vertices (i,j),(i+1,j). We then calculate the coordinates

XBT , YBT for the vertex (i+1,j-1) using the restrictions set by L1,3 and L2,3. A similar

procedure is followed for the triangles oriented in the other direction (i,j),(i+1,j-1),(i,j-1).

We do the same for the other foil face, it is effectively the same except ZBT and therefore the

dZ offset sign is reversed. Note, since the two triangular faces are identical except displaced

in ZTGT , in the bench-top frame the two triangle faces must be slightly offset in XBT/YBT

as ZBT is not parallel to ZTGT . This offset is the thickness of the foil times the dot product

ZBT ·ZTGT . For the same reason, the distance dZ is not exactly the distance in ZTGT between

the two surfaces, but the dot product ZBT · ZTGT (nearly 180µm).

We verify that the distance between all 6 vertices on the triangular prism in both the target

frame and the bench-top frame are equal. We can now fit for the rotation/translation from

the bench-top frame into the target frame. This is done using a python script. We verify

that the residuals in the fit are drastically less than 1 µm (∼ 1nm), which is expected from

a perfect rigid body rotation/translation.

We fill the 6 vertices in the bench-top frame and the rotation/translation from the bench-top

frame to the target frame in a csv that is to be read by ROOT (18+6=24 entries/row). The
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tessellated geometries are shown in Figure 4.13 and again in Figure 4.14.

Figure 4.13: The full tessellated geometry is shown.

Figure 4.14: A zoomed in view of the tessellated geometry.

In the meganalyzer code, a ROOT macro (deformedTarget.c) is called by the MEGMain

task. The task imports parameters from the sql database including the target position,

rotation, and the deformed target csv filename. First, the macro makes a box object large

enough to contain the full target. Second, all the TGeoArb8 objects are created (in the

bench-top frame) and then rotated/translated into the box object (now in the target frame).

Finally, this box object is rotated/translated from the target frame into the MEG frame using

the database parameters. This system conveniently allows us to only adjust the database

parameters to rotation/translate the target throughout the run.

This box (containing the tessellated target) is added to a larger geometry including all of
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the materials in the experiment. That is, the timing counter, drift chamber, etc. The target

geometry included with all other geometries is shown in Figure 4.15.

Figure 4.15: The full TGeometry of the MEG II experiment is shown. The LXe/RDC is
excluded as it is not relevant for the positrons.

Note that both inserting the TGeoArb8 objects into the ’target box’ and inserting the ’target

box’ into the world (ensemble of MEG geometries) requires use of the TGeoRotation class.

This does not have Euler angle ZYZ implementation, but instead rotations about fixed axes.

We found that if we instead flip the ordering of the angles i.e. (3-2-1 instead of 1-2-3) we get

an identical rotation matrix to the euler angles matrix in the standard Rotation3D class.

The target scintillator material is included in the TGeoArb8 object creation in order to have

the correct average energy loss of positrons as they move through the target. Currently, the

carbon fiber frame and target support (positive YMEG) are not implemented in the Kalman.

In order to account for the larger loss of energy and the increased energy uncertainty from

intersecting the carbon fiber frame, we scale the triangular TGeoArb8 scintillator density.

We estimate the carbon fiber to be 4 sheets of 200 µm with a density of 1.4g/cm3 compared

to the standard 180 µm with density of 1.03g/cm3. This results in a relative density scaling

of 7.2.
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To summarize, the tessellated geometry contains the correct thickness and position of the

target foil, including its deformations. The carbon fiber was approximated by scaling the

material in the carbon fiber frame region. This implementation results in an optimal estimate

of the energy loss in the target and the optimal covariance matrix estimation.

4.8.3 Genfit Foil Definition

The Genfit MEG code is initiated by pulling the same target database parameters used

for the target geometry (previous subsection). After using the transformations described

in the previous section, we have 6 MEG coordinate vertices defining each triangular prism

(TGeoArb8). We need to define a plane in the middle of the triangular prism using these

coordinates. This is defined using a DetPlane in Genfit. This requires a TVector3 normal

to the plane’s surface, an origin point, and a size (-L,L,-W,W). To calculate the normal

vector we create two TVector3 objects defined as the vectors between the three vertices i.e.

⃗V1 − V2, ⃗V1 − V3. We then calculate the cross product of these two vectors and normalize it:

this is the vector normal to the surface. For the origin, we use the mean of vertices. For the

length, we choose an arbitrarily large plane (the rational for this will be described later).

This creates an arbitrarily large rectangular plane centered about the mean of the triangular

prism and parallel to the two triangular faces.

4.8.4 Propagation in Genfit

In the last section, we defined the target geometry in Genfit using the DetPlane class. In

this subsection, we describe how we propagate to the target plane. All of the propagation to

the target occurs in the DCHKalmanFilterGEN task. This function is initiated by filling the

track initial state, hit information, etc. The tracks are then fit. Once a track is successfully

fit, it is propagated to the target surface: this is the code that has been modified.
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With a flat target, the positrons are simply propagated to a single DetPlane defined by

the vectors normal to the target surface. Instead, we must choose what triangular plane to

propagate to. Note, the scale of the deformation gradient is ∼ 10−2 i.e. moving 1 mm on

the target surface typically contains ∼ 10µm deviations in the normal coordinate. As the

triangular array is defaulted to ∼ 1.5mm spacing, propagating to the wrong triangle (off by

1 triangle) creates an extremely small and negligible error in ϕe. This motivates the use of

a very large plane as propagating to the wrong triangle will not create a large error in ϕe.

All MEG signal events have the photon emitted towards the LXe (negative XMEG) and the

positron emitted in positive XMEG. We start with an initial propagation of the positron

tracks from the drift chamber to a flat target surface +1 mm displaced in XMEG from the

origin. The current 2021 deformations are all smaller than 1 mm and so this should get the

state vector very close to the target surface. This displacement can be altered for specific

time periods if necessary in the future.

Note, we found that even a target surface displaced by 1 mm does not always result in a

vertex position close to the target surface. To avoid this issue, in instances when the |YMEG|

vertex coordinate is larger than the target’s minor ellipse axis, we continue propagating the

positron iteratively until this criteria is satisfied. In addition, we require that the positron

track must be within 2 mm of the target surface. This iterative procedure helps a small

fraction of the events, but is required to achieve optimal efficiency.

The above procedure results in a positron vertex position very close to the deformed target,

we then propagate the track from this vertex to the triangular face with the closest center

(mean of the three vertices). This is usually a propagation of ∼ 5 ps (slightly larger than 1

mm). This is the value that is stored as the final target position. To check this procedure, we

transform the target vertex from the MEG frame into the target frame by first subtracting

off the translation and then applying the inverse rotation. Figure 4.16 shows the mean ZTGT

coordinate of positrons as a function of the XTGT and YTGT coordinates. When comparing
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the vertex coordinates to the CT scan dot coordinates, the vertex is slightly more positive

in ZTGT . This is the result of propagating the target to a surface in the middle of the foil

whereas the CT scan dot coordinates are at the negative ZTGT foil face.
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Figure 4.16: The positron position on the deformed target. The mean coordinate in ZTGT is
represented in color here as a function of the other two target coordinates [cm] (deformation
has a maximum of −700µm).

The energy loss in the target material (foil or the frame) is shown in Figure 4.17

15− 10− 5− 0 5 10 15
4−

3−

2−

1−

0

1

2

3

4

hPLost2D
Entries 133843
Mean x 0.04574−
Mean y 0.0711−
Std Dev x 8.366
Std Dev y 2.483

0

20

40

60

80

100

120

140

160

180

200

220

hPLost2D
Entries 133843
Mean x 0.04574−
Mean y 0.0711−
Std Dev x 8.366
Std Dev y 2.483

Momentum Loss In The Target [keV]

X Target [cm]

Y Target 
[cm]

Figure 4.17: Momentum loss in the target [keV] as a function of position [cm]. The large
energy loss at large radius is due to the carbon fiber frame implemented by scaling the
triangular tessellated array density.

79



4.9 Conclusion

The camera analysis results in a precision normal to the target surface of ∼ 10µm, far better

than that the goal of ∼ 100µm. Errors in the time-dependent target motion should have

a negligible effect on the positron ϕe resolution. The analysis observed large shifts of the

target position of the order ∼ 500µm from the time of the optical survey to the time of the

MEG data-taking; these were accounted for in the final analysis.

In 2023, a new radiation-hard camera was implemented. It has not experienced any issues

in the first ∼ 3 months of the run. The camera has taken an image every 10 minutes, a total

of roughly 13k images.

The deformation of the target was estimated using a CT scan. This was then checked using

the camera analysis by looking at the residuals with respect to the CT scan deformation. The

residuals with respect to the CT scan have a maximum size of ∼ 50µm, still contributing

a negligible systematic error to ϕe (< 0.5 mrad). We observed minimal change in the

deformation over the 2021 run. The deformation of the target was modeled using a tessellated

grid of triangles. The grid was used to model the 3D target geometry and propagate the

positrons to the correct target vertex position. The geometry was implemented in the ROOT

TGeometry class and the propagation was implemented in Genfit.
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Chapter 5

MEG II Drift Chamber Analysis

5.1 Overview

In this chapter we describe the MEG II drift chamber analysis[14]. The general overview

is depicted in Figure 5.1. The final objective of the positron analysis is to estimate the

kinematic variables ye, ze, ϕe, θe, pe, te at the stopping target so that the kinematics can be

compared to that of the photon measured in the LXe detector. To reiterate, the resolution

of the positron and photon kinematic measurements is critical to achieving the optimal

sensitivity of the experiment. Throughout the next several subsections, we describe in detail

the procedures in that are used to optimise resolutions.

The drift chamber analysis is initiated by searching for drift cells intersected by potential

particle trajectories (tracks). The digitized, time dependent signal (waveform) of such a

particle passage is referred to as a hit. For each hit, we estimate the arrival time of each

hit’s first ionization cluster in the waveform. Using the relative time of ionization clusters

and the relative amplitude of the signals on the two wires ends, we also estimate the position

of the hit along the wire axis. This procedure is conventionally called the waveform analysis
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Figure 5.1: Overview of the positron analysis (Graphic made by Francesco Renga).

and is discussed in detail in Section 5.2; this involves noise suppression, signal detection, hit

arrival time estimation, and the estimation of the position along the wire axis.

The hit arrival time is equal to the particle time at the cell (referred to as the T0) plus

the drift time of the ionization clusters. At this stage the T0 for the individual hit is not

yet known. The drift time of the first (primary) drift electron is converted into the track’s

distance of closest approach (DOCA) to the cell’s sense wire using the position dependent

drift velocity that is a calculated or measured value, which depends on the local electric and

magnetic fields in the cell and on the gas mixture used. This is known as a time-distance

relationship (TXY). The drift velocity is separately measured or calculated using a code

such as Garfield++[50]. In Section 5.3 a novel technique to estimate the TXY using a neural

network trained on data is presented; this results in improved resolution at the hit and

kinematic resolution level. The DOCA and the hit’s position along the wire axis (z) are

both inherently measurements in the wire’s local coordinate system, to convert them into

the global MEG II coordinate system, we require precise knowledge of the wire position,

direction, and sagitta. These wire positions, directions, and sagittas are measured using

Michel positron tracks; the alignment is described in Section 5.5.
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The hit information is input to a track finding algorithm used to assign hits into a particle

track. Finally, a Kalman Deterministic Annealing Filter (DAF) method[30][31] is used to

fit the tracks and provide a kinematic measurement at the target. The tracking procedure

is detailed in Section 5.4. This includes a refitting algorithm that uses a track found in the

first attempt at fitting to search for additional hits that should be on the track, but were

not included by the track finder. The track is then projected to the target to provide a 3D

decay position. Details on the propagation to the target surface including the deformation

were discussed in Section 4.8. The tracking relies on a magnetic field map and the relative

alignment of the drift chamber and the magnetic field map. In addition the final estimates

of the relative kinematics of the positron and the photon rely on a precise estimate of the

relative alignment of the target, the drift chamber, and the LXe detector. These alignments

are discussed in Chapter 6.

In the positron dataset, there is a subset of positron tracks that contain very low resolution;

these contribute very little to the physics analysis and can contaminate the signal with un-

wanted additional accidental time-coincident events. Section 5.6 outlines a machine learning

approach trained on data to optimize the positron track selection algorithm. The algorithm

minimizes the number of low quality tracks in the dataset while maximizing the overall

tracking efficiency.

Finally, the physics analysis requires determining the probability of being signal or back-

ground (probability density functions) given a set of kinematic variables. The probability

density functions are built using data driven kinematic resolution estimates at the target

and the correlations between those kinematic variables, this is detailed in Section 5.7.
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5.2 Waveform Analysis

5.2.1 Overview

This section describes the digital waveform analysis of the CDCH, the first step in the

CDCH analysis. It consists of noise suppression, detection of ionization clusters (signals),

estimation of the arrival time of the primary (first) ionization cluster, and estimation of the

signal position along the wire axis.

The CDCH waveforms contain a broad frequency range noise that significantly contaminates

the signals from ionization clusters. A majority of the low frequency noise is coherent over

a pair of WaveDREAM boards. The first reconstruction step is removing this noise while

preserving the signal amplitude and shap and is describe in Subsection 5.2.2. The high

frequency filter is a discrete Fourier transform (DFT) high frequency cutoff filter, this is is

briefly described in Subsection 5.2.3. This general procedure is not optimal for the channels

with known issues; treatment for these cases are discussed in Subsection 5.2.8.

After filtering the waveforms, we start the signal detection procedure. The algorithm starts

at the first waveform bin and searches for the first instance of a signal. This is done on

both ends independently. The objective is to detect the maximum number of signals due to

ionization clusters while minimizing the number of signals due to high amplitude noise; the

algorithm is described in Subsection 5.2.4.

Once a signal on a single end is detected, we estimate the signal’s leading edge time. This

is the time associated with the rise in voltage due to the first ionization cluster to reach the

wire. The algorithm is described in Subsection 5.2.5. In addition, we estimate the signal’s

coordinate along the wire axis using the difference in the signal arrival time and the difference

in the collected charge on the two ends. This process is described in Section 5.2.6.
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The signal is considered complete (no later ionization clusters associated with that signal)

if a fixed number of sequential bins after the signal are below a voltage threshold. After the

signal detection procedure is complete, the analysis results in an array of signals on both wire

ends. The analysis proceeds to combine these signals into ”hits”. For example, one expects

to find the same signal on the two ends. In addition, there may be a sufficiently large time

delay between two ionization clusters and thus the signal detection procedure results in two

”signals” on a single end that should be combined into a single hit. However, the analysis

also must avoid combining signals from two separate tracks or combining a signal from noise

with a signal from a set of ionization clusters. This procedure is described in Subsection

5.2.7.

After combining the signals into a final list of hits, the waveforms on the two ends are added

to make a final hit arrival time estimate with the maximum signal/noise ratio. The sum

waveform is built by displacing one end in time based on the fitted time difference on the

two ends for this individual hit. This time difference is approximately ±0-7 ns.

The hit arrival time, time difference and charge division on the two ends are passed to the

hit reconstruction task. This task converts the hit arrival time, time difference, and charge

division into a final hit time and hit z measurement using estimated wire-by-wire and end-

to-end calibrations (described in Chapter 7). Finally, the hit time is converted into a hit

distance of closest approach (DOCA) using a time-distance relationship, this is described in

Section 5.3. The hit DOCA and z estimates are passed to the track finder to initiate the

positron track reconstruction.

5.2.2 Coherent Noise Calculation

The objective of the coherent noise suppression is to suppress the noise that is coherent over

the CDCH electronics. A majority of the noise is coherent over an upstream/downstream
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pair of WaveDREAM boards or 4 DRS chips (4x8 channels). This coherent low frequency

noise varies event-by-event and board-by-board. As an example, we show the average voltage

bin-by-bin for the four chips in an upstream/downstream pair of boards in Figure 5.2; this is

data without beam (pedestal data), where wires 424-431 have a higher front end gain than

wires 416-423 by a factor of 2. The wires with different gain are shown to illustrate that the

noise is clearly amplified by the front end preamp. It’s clear that the low frequency noise

on the four chips has the same phase. The upstream/downstream pair of boards has no

connection other than the physical wires. This implies that the noise is generated on the

sense wire or it is generated in one board and coherently travels across the sense wires.
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Figure 5.2: An example average voltage on a pair of upstream/downstream DRS boards.
Wires 424-431 have an amplified electronic gain on the pre amplifier.

Note that attempts to suppress the noise was investigated by running with different front-end

gains. As expected, the signal amplitude scaled with front-end gain. The RMS of the noise

was measured using pedestal runs without the particle beam; the noise scaled at slightly

less than the electronic gain. Thus the highest front-end gain (×4) had the best signal to

noise ratio. The frequency spectra of the noise at different front end gains (×1,×2,×4) was

measured using a discrete Fourier transform on data without any beam (pedestal), this is

86



shown in Figure 5.3.

Figure 5.3: Power spectra of pedestal data with varying front-end gain. The gains ×1,×2,×4
are shown in black, red, and blue respectively.

In the pedestal data, calculating and thus eliminating the low frequency noise can be done

by simply subtracting the chip’s average voltage bin-by-bin. However, clearly in physics data

the calculation is complicated by the ionization cluster signals. This requires an algorithm

that calculates the coherent noise while excluding signals. The variable names are given in

parentheses to aid collaborators in understanding the code.

This procedure is initiated by first calculating a moving average baseline wire-by-wire. The

moving average baseline is the average voltage over a wide number of bins (MovingAver-

ageBaselineNBins), summing over the two ends wire-by-wire. Voltages above a threshold

(VoltageThreshold) [what is the purpose of giving these names] are excluded from the mov-

ing average baseline calculation.

Next, we perform a rough ”hit [potential confusion with other use of ” search on the non-

filtered waveform. We consider there to be a hit if a binned voltage minus the moving
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average baseline at the bin is above a fixed threshold (VoltageThreshold redundant). Again,

the binned voltage is the sum on the two ends. If a hit is detected, we exclude the nearby

bins (± ExcludeNBins) from the coherent noise calculation on both ends.

Finally, the coherent noise is calculated bin-by-bin for each DRS chip, excluding the bins

with a detected hit. To clarify, if a hit is found in bin A on wire i, bin A on wire j on the

same DRS chip is not excluded from the calculation. If every channel on the DRS chip has a

hit in a particular bin, the coherent noise is taken as the average coherent noise on the chip

over a wide range of bins (AverageNBins). This coherent noise is then subtracted bin-by-bin

for each DRS chip.

As an example, we show a set of waveforms on the same DRS chip in Figure 5.4. A majority

of the low frequency noise has been eliminated on all channels.

To quantify the amount of the noise that is coherent, we show the average power spectra in

pedestal data over all DRS chips with and without the coherent noise subtraction in Figure

5.5. In addition, we show the average power spectra in pedestal data for individual DRS

chips with and without the coherent noise subtraction in Figure 5.6. We observe that each

individual pair of DRS chips has a unique noise spectra. In all cases, a large fraction of the

noise is removed by the coherent noise subtraction.

In addition, we histogram the binned voltages in Michel data with and without the coherent

noise subtraction in Figure 5.7; the positive tail is due to signal.

The variables (MovingAverageBaselineNBins,VoltageThreshold, ExcludeNBins, AverageN-

Bins) have all been optimized based on the 2021 physics data by maximizing the number of

hits on high quality fitted tracks (this is a combination of maximizing the tracking efficiency

and the number of hits per track). The analysis is not very sensitive to MovingAverage-

BaselineNBins; it should remain a large value to account for the very low frequency noise

(wavelength is greater than the length of waveform). The analysis is sensitive to the Volt-
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Figure 5.4: Michel data waveforms with the coherent noise subtraction filter applied (no
filter) shown in red (black).
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Figure 5.6: A fast Fourier transform of the waveforms with and without the coherent noise
suppression for individual DRS chips.
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Figure 5.7: Voltage bin-by-bin with and without the coherent noise subtraction.

ageThreshold parameter. If this is too small, high amplitude noise is mistaken as a signal

and thus the noise is excluded from the coherent noise calculation and thus maintained on

the wire. If this is too large, signals are mistaken as noise; the signal is thus added into

the coherent noise calculation resulting in an incorrect average positive voltage, which when
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subtracted channel-by-channel, creates a negative baseline. Both instances negatively affect

the signal detection efficiency on the channel and may result in picking up more noise hits

on channels with no signals. ExcludeNBins is set to 50 bins, i.e. if a bin is above threshold,

the surrounding 50 bins are all excluded from the coherent noise calculation. If this is too

small, there are instances when a hit is detected, but not all voltages from the signal are

excluded, thus some low amplitude signals will contaminate the coherent noise subtraction.

If this region is too large, an excess of noise bins on that wire are removed from the coherent

noise calculation. Finally, the analysis is not very sensitive to the AverageNBins parameter,

which aids in instances when all channels have signals at the same time; this rarely happens.

5.2.3 High Frequency Noise Suppression

The standard waveform analysis applies a discrete Fourier transform to eliminate the high

frequency components of the waveform. The optimal frequency cutoff removes the noise while

maintaining the signal shape and amplitude. To aid in selecting the optimal high frequency

cutoff, we show the spectra of pure noise in pedestal data (Figure 5.5) and the spectra

of digitized ionization clusters with zero noise based on the MEG II Geant4 Garfield++

simulation (Figure 5.8). The pedestal noise spectra is shown with and without the coherent

noise subtraction. The noise spectra has several narrow peaks (e.g. 155, 160, and 240 MHz)

and several wider peaks (e.g. 255, 270, and 290 MHz). In addition, the power gradually

increases with frequency from 200-300 MHz. The signal loses power rapidly until it plateaus

at ∼ 250 MHz. Ideally, we would eliminate all noise peaks, however cutting at ∼ 155

MHz would remove significant signal power. This suggests an optimal cutoff frequency of

∼ 175 − 225 MHz to maintain the maximal signal power while eliminating the noise peak

at 240 MHz and the slow rise in power starting at ∼ 200 MHz. We additionally tuned the

cutoff frequency by maximizing the number of hits on fitted tracks; this achieved a similar

optimal frequency cutoff of ∼ 225 MHz.
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Future analysis should be tuned on this cutoff, especially if it is known that the noise

conditions have changed.

Figure 5.8: Fast Fourier transform of the digitized signals in the Monte Carlo simulation
without any noise.

5.2.4 Discriminator

The discriminator code detects signals on the waveform. The algorithm has been tuned to

maximize the number of true detected signals while minimizing the number of fake signals

due to noise. This function is applied after the noise suppression. The current discriminator

shape is roughly based on the signal shape estimated by fitting signals presumed to be single

drift electrons. An example of a fitted signal is shown in Figure 5.9. The average over many

fitted signals results is shown in Figure 5.10.

There is still some uncertainty, but it’s clear the signal shape consists of a sharp peak over

∼ 2 ns from the 10%-90% level; this corresponds to ∼ 2 bins (time/bin =1.67 ns). The

pulse shape has a wide tail dropping to the 20% level after ∼ 25 ns. In most occasions,

the waveform is not due to a single drift electron, but a sequence of ionization clusters that

create a signal from overlapping pulses.
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Figure 5.9: An example hit with the two-pulse fit (green), the two individual pulses in the
two-pulse fit (red, purple), the one-pulse fit (brown), and the residuals to the two-pulse fit
(orange). RT is the 20%-80% rise time and FT is the 80%-20% fall time; both are listed in
nanoseconds.
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Figure 5.10: The pulse shape estimated by averaging over fitted signals in the 2020 Michel
data. RT is the 20%-80% rise time and FT is the 80%-20% fall time; both are listed in
nanoseconds.

The standard discriminator requires voltage at bins i and i+1 above a voltage threshold

(BinVoltageThreshold) plus the sum voltage over sequential N bins starting at bin i to

be over an integrated voltage threshold (IntegratedVoltageThreshold over ∼ 25 ns). Both

thresholds are a fixed threshold minus the estimated end-by-end, event-by-event baseline,

which should be highly suppressed by the noise suppression.
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A signal is considered complete by using the same criteria to start a hit (two bins below a

threshold and an integrated voltage over many bins below another threshold). If this criteria

is met over a fixed number of sequential bins (UnderThresholdNBins), the signal is ended.

However, if this criteria is met again, we assume the signal has later ionization clusters and

thus resets the search for the end of the signal.

We make a few general points to close this section. First, the two thresholds (BinVolt-

ageThreshold and IntegratedVoltageThreshold) are critical to the tracking efficiency. If the

thresholds are too low, there will be an excess of noise hits in the track finder which degrades

the tracking efficiency and results in a very long track finder routine (CPU time). Signal hits

are missed if the thresholds are too high, resulting in a degraded tracking efficiency as well.

If UnderThresholdNBins is too small, later ionization clusters will be mistaken as a new hit,

however this can still be resolved by an algorithm described later that combines ”hits” on

a single end. However, if this parameter is too large, multiple hits (e.g. one from a pileup

track and another from the triggered on track) will be combined into a single hit. Therefore,

it is best for this parameter to be small (default is 40 ns).

5.2.5 Hit Arrival Time

This algorithm estimates the first ionization cluster arrival time. Frequently, the discrimi-

nator does not find the first ionization cluster, but a later higher amplitude signal. More

accurately, the discriminator detects a series of ionization clusters creating voltage on top of

one another thus creating a larger voltage. This is particularly true in instances when the

track nearly intersects the wire; in these cases there is often a lone first ionization cluster

(small voltage amplitude) that can be missed by the discriminator. Similarly, there is a large

time-distance gradient near the edges of the cell, therefore if a track only intersects the corner

of a drift cell, we are more likely to get an isolated first ionization cluster. The algorithm
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proceeds by searching backward in time from the bin triggered by the discriminator. This

task aims to find the earliest, smallest signal due to an ionization cluster without mistaking

noise as a fake signal. Furthermore, the function must avoid moving too far back that it

detects an earlier hit from a different positron track.

Similar to the discriminator, the standard leading edge time finder requires 2 bins above

a voltage threshold plus an integrated voltage threshold. The voltage thresholds are fixed

thresholds with respect to the calculated baseline. These thresholds are slightly lower than

that of the discriminator; this is ideal as unlike the discriminator, having too low of a

threshold does not result in an excess of hits, but too early of a hit arrival time (i.e. too small

a DOCA). A lower threshold should be used as we have more information; the discriminator

was passed and thus are confident we have a signal so a small amplitude peak is more likely

to be a lone drift electron that just a noise spike.

The leading edge time finder only searches back to the end of the previous hit (to avoid

picking up late signals from an earlier hit) and only searches back a fixed amount of time;

the smaller of these two is selected. Default maximum look back time is 20 ns.

The track distance of closest approach to the wire resolution (primary track position mea-

surement) is sensitive to the two leading edge time thresholds.

5.2.6 Hit Z: Cross Fit

The objective of this function is to estimate the signal’s coordinate along the wire axis. This

is done by ”fitting” one end of the waveform to the other using three free parameters: relative

scaling, time difference, and a baseline difference. Due to the wire resistivity, the charge on

the two wire ends is different (more charge if the signal is closer to the electronics). Due to

the signal propagation speed along the wire, ionization cluster arrival time at the electronics
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on the two ends has a time difference of ±0-6 ns with a signal propagation speed of c.

As there can be other signals on the waveform that could contaminate this measurement, the

cross fit uses only a section of the waveform. In theory, we should use the full hit duration,

from the start to the stop of the hit. However, this doesn’t result in a large improvement

with respect to the default, which is a fixed 30 ns, 20 ns before the start time and 10 ns

after.

The main advantage of this technique is that it uses information from all ionization clusters

whereas the conventional approach only uses the first bin. The cross fit results in compa-

rable z resolution from charge division with respect to the conventional approach (relative

integrated charge in the two hits); this is as expected as the conventional approach to z from

charge division already uses information from all bins.

The cross fit uses limits in the scaling/ time difference which are slightly larger than the

actual limitations of the detector (e.g. a time difference limit corresponding to a larger z

than the actual length of the wire). The analysis is not particularly sensitive to the cross

fit parameters and the analysis doesn’t need to be tuned on them. The current resolution

in z for charge division and time difference is shown in Figure 5.11. Note, the z resolution

has nearly zero effect on the positron kinematic resolution, but it is critical for reducing the

combinatorics in the track finder.

5.2.7 Combine Clusters

The objective of the combine clusters algorithm is to merge the signals found on the two

wire ends. Ideally, the algorithm combines all signals associated with the same hit, but keeps

signals from two individual hits separate. Additionally, this algorithm aims to not merge a

noise signal with a signal from an ionization cluster.
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Figure 5.11: The z resolution for the two measurements: time difference and charge division.

The algorithm starts by looping through all possible signal pairs. The pair is merged if the

difference between their leading edge times is below a threshold (TimeThreshold, default

of 300 ns) and the difference between their cross fit end-to-end time difference is below a

threshold (TimeDifferenceThreshold, default of 2 ns).

The hit leading edge time is taken as the earliest signal leading edge time. The stop time is

replaced by the latest stop time. The relative time difference and relative scale (z measure-

ments) are replaced by a weighted average of the two signals being combined. The weighting

is the uncertainty from the cross fit routine (Minuit).

Once two signals are combined, they are eliminated from the signal list and replaced by the

hit (combination of the two). Thus, the resulting hit can still be combined with additional

signals.

The analysis is sensitive to the TimeDifferenceThreshold parameter. If this parameter is too

small, the analysis doesn’t combine enough clusters, leaving a large number of hits in the

track finder (increased CPU time). If this parameter is too large, the analysis is more likely

to combine the signals from two separate positron tracks or the signal from an ionization
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cluster and a noise hit. In general, the smaller this value is, the higher the CPU time and

the higher the tracking efficiency; the tracking efficiency eventually reaches a plateau.

5.2.8 Wire Noise and Bad End Treatment

In this subsection we list the categories of known wire issues. The wire lists are contained

in a mysql database that needs to be tuned every year, or in instances when a time period

is known to have increased noise.

5.2.8.1 Single Channel Readout

Some wires only have one end read out. As the bulk of the analysis is done on single ends,

this is a minor issue. When creating the sum waveform, we instead sum two copies of the

read out end. This is to have the peak amplitudes at the same level as the standard wires.

In addition, we assert the z of the hit to be 0. We implement a larger σz in the track

finder/fitter for these hits.

5.2.8.2 Non-Coherent Noise Channels

If a wire has non-coherent noise on either end, the wire is excluded from the coherent noise

calculation. This wire would otherwise contaminate the coherent noise calculation. In order

to suppress the low frequency noise on these wires, we instead implement a high pass moving

average filter of 50 ns. This has been shown to lower the peak voltage and the signal/noise

(this is why we don’t use this on all waveforms). We then proceed with the standard analysis.

These have a degraded track position resolution due to the worse signal/noise ratio. Note,

we also tried a discrete Fourier low frequency cut off, this gave a degraded tracking efficiency.
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5.2.8.3 High Noise Channels

An additional set of channels have non-coherent noise on a single end that is consistently

high amplitude (> 50 mV). For this reason, it is very difficult to distinguish the signal from

noise. We remove these channels from the analysis and treat the wire as if we only have a

single end.

5.2.9 Analysis Status

The analysis for the 2021 physics data has been tuned over a few iterations optimizing the

number of hits on tracks, the tracking efficiency, and the tracking resolution. There are still

some methods that can be improved upon, these are listed below.

• The optimal treatment for waveforms with known pileup has not been fully optimized.

e.g. if we see a signal before the T0 (e.g. after tracking), it’s known that we have an

early pileup hit on the waveform. The optimal method for detecting the leading edge

time method in these situations has not been investigated thoroughly.

• The cross fit uses a fixed window of -20 ns before the hit time and 10 ns into the

hit. This is to avoid pileup issues. However, we can use the total hit length (-20 ns

before the hit arrival time to the hit stop time) to increase statistics. On average, hits

are drastically longer than ∼ 20 ns. By adding in more bins, we should improve the

measurement in z by sqrt(NBins). This should be explored.

• In wires with non-coherent noise we use a moving average high pass filter. This has

not been optimized thoroughly. In addition, these wires use the same discriminator

even though it is well known that the signal shape has been distorted.

• The calculation of the baseline after the coherent noise calculation is applied has not
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been investigated in detail. In addition, using a fixed threshold compared to a thresh-

old with respect to the RMS (and the RMS calculation) has not been investigated.

Currently we are using a fixed threshold with respect to the baseline.

• One technique that could be implemented in order to improve the detection of low

amplitude hits would be to use a sum waveform for hit detection. e.g. at z=0 the hit

peak amplitude improves by a factor of 2 and the noise (if non-coherent) increases by

a factor of sqrt(2). For this reason this should allow us to detect hits with smaller

amplitude. These will be mainly hits near the edge of the cell with a small number of

clusters. To be clear, this does not affect the leading edge as we use the sum waveform

for already detected hits.

In addition, we briefly note here that there is an alternative hit detection algorithm, devel-

oped by Yusuke Uchiyama, which uses a neural network for hit detection. The algorithm

is trained using noise from pedestal data and signal shapes from the pulse fitting described

previously. This algorithm results in a very large amount of hits with respect to the conven-

tional waveform analysis. Adding these hits into the hits found by the conventional analysis

results in very high CPU time in the tracking algorithms, higher tracking efficiency, and

degraded kinematic resolutions. The precise treatment of mixing the hits and the tracks

from the two hit detection algorithms is describes in the track selection chapter.
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5.3 Neural Network Applications to Improve Drift Cham-

ber Track Position Measurements

5.3.1 Overview

This chapter describes applications of two neural networks to improve drift chamber position

measurements. One network calculates a data-driven estimate of the drift cell time-to-

distance relationship that is conventionally estimated by a numerical calculation based on

the anode and cathode wire geometry, wire potentials, and gas properties. The second

network additionally uses the full digital waveform of the signal in the drift chamber, hence

accessing information on the full ensemble of ionization clusters. This network uses more

information than the conventional position estimate that relies exclusively on the arrival time

of the first drift electron. In principle, this technique improves resolution even when multiple

ionization clusters cannot be separated, in contrast with a cluster-counting technique. The

performance of both networks when applied to MEG II drift chamber data is reported and

compared to that of a conventional approach.

5.3.2 Introduction

The primary position measurement of an ionizing particle traversing a drift chamber is the

distance of closest approach (DOCA) of the particle to the cell’s sense wire. Optimizing

the accuracy and precision of the measurement is critical to a variety of modern day parti-

cle physics experiments ranging from high energy lepton collider experiments to rare decay

searches at low momentum. In many applications, the positron measurement resolution in

a magnetic spectrometer has significant contributions from both the position measurement

and scattering in the drift chamber material. The position resolution has contributions from
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ionization statistics, longitudinal diffusion, electronic noise, and effects that contribute to

tracking errors (e.g. signals from an out-of-time ionizing particle). This paper focuses on

improving the position measurement by applying neural network techniques. In Section

5.3.2.1, we discuss limitations to the conventional DOCA estimation and how using a neural

network might improve it. In Section 5.3.3.1, we give a brief overview of the MEG II exper-

iment and an explanation of how the neural network application could improve its DOCA

estimation. We then present the neural network methods in Section 5.3.3.2. In Section 5.3.4,

we discuss the improvements in kinematic measurements resulting from applying the neural

network approach to MEG II drift chamber analysis. Finally, in Section 5.3.5, we discuss

potential improvements to the technique.

5.3.2.1 Improving the Conventional DOCA Estimate

Here, we list the issues with the conventional DOCA estimate that may contribute to sys-

tematic errors in the most probable value and dispersion of the DOCA estimate, and how

using a neural network avoids or minimizes these effects.

First, the conventional approach systematically overestimates the DOCA in any drift cham-

ber with a low cluster density. This is illustrated in Figure 5.12, which shows the mean

DOCA bias (i.e. DOCA of the 1st ionization cluster - the track DOCA) as a function of the

track DOCA in the MEG II Geant4-based simulation[51]. At small DOCA (¡2 mm), the first

ionization site is farther from the wire than the track DOCA by 50-200 µm. By training on

data, the neural network approach can learn and thus remove this bias as a function of drift

time, track angle, cell size, etc.

Next, in many analyses, including that of MEG II, the DOCA estimate relies on Garfield++[50]

to accurately estimate the ionization pattern/statistics and the drift velocity in the gas mix-

ture in use. This comes with uncertainty that is eliminated by a data-driven TXY function.
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Garfield++ is inherently two dimensional; if the cell size or relative anode cathode geometry

is changing along the wire axis, the algorithm necessitates an interpolation of the TXY

function from calculations at fixed positions along the wire axis. Additional uncertainty

in the TXY function arises from assembly variations in wire positions and the effects of

bowing of wires from electrostatic and gravitational effects. These variations in the TXY

function can in principle be corrected in the machine learning analysis given a sufficiently

large training sample.
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Figure 5.12: The mean value of the difference between the first ionization cluster position
and the distance of closest approach (DOCA) of the track to the sense wire (DOCA bias)
as a function of the track DOCA, from a Geant4 based simulation of the MEG II CDCH. It
is summed over all wires to show the general trend of the DOCA bias. This bias shows the
ionization statistics effect in the gas mixture.

Finally, the conventional DOCA estimate uses only the drift time of the first (primary) drift

electron. An improved DOCA resolution can be achieved by identifying ionization clusters

and their times (i.e. cluster counting). Cluster counting algorithms map the cluster time

distribution to an improved final DOCA estimate relying on a correct determination of the

number and pattern of clusters in a hit. In drift chambers with a low signal/noise ratio,

it is difficult to distinguish overlapping clusters and differentiate noise from low amplitude
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clusters. Since all available ionization cluster information is stored in the digital waveform,

a neural network may use the available information without explicitly counting clusters to

determine the best DOCA estimate.[52][53]

5.3.3 Methods

5.3.3.1 MEG II Experiment Limitations

Here, we list limitations of the conventional DOCA estimation specific to the MEG II ex-

periment.

First, in the CDCH, the location of the cathode wires surrounding a given anode wire varies

with position along the wire due to the stereo geometry in the drift chamber. In addition, the

cell size is changing along the wire axis and layer-by-layer. Since Garfield++ is an inherently

2D program, the analysis relies on slices along the wire axis; the magnetic field and therefore

the TXY function is then approximated along the wire. This explicit binning is not required

by the neural network.

Simulating any gas mixture comes with uncertainties; this is especially true when using

a non-standard gas mixture like the 4-gas mixture used in MEG II. The standard MEG II

Garfield++ simulation of the TXY function does not include oxygen or isopropanol; including

them did not yield any clear improvement in the DOCA estimate. Training a machine

learning algorithm on data removes reliance on the simulation. Further, the isopropanol and

oxygen lower the gas gain and therefore the signal/noise ratio in the waveform, worsening

the precision with which the first ionization cluster time is measured and making estimating

the number and time distribution of clusters (cluster counting) more difficult.
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5.3.3.2 Neural Networks

In this section, we describe the two neural network approaches to DOCA estimation. First,

a dense neural network (DNN) is trained to create a data-driven TXY function. That is,

converting the waveform analysis hit arrival time into a DOCA estimate depending on other

variables like cell size and track angle. Here, there is no explicit dependence on these other

variables, but the network can implicitly learn how the DOCA estimation depends on these

variables. Second, a convolutional neural network (CNN) also uses the full waveform to

access information from all ionization clusters. The convolutional network layers are used to

incorporate the temporal correlations between the waveform bins.

5.3.3.3 Training

The networks are trained using MEG II data taken at low beam rate. We use the fitted track

DOCA (unbiased by the hit itself) as an estimator of the true DOCA for the training. This

technique results in a data-driven DOCA estimator. Both networks were trained in Keras[54].

The input variables (Xi) have been normalized using their mean (µi) and standard deviation

(σi): Xi → Xi−µi

σi
. The track DOCA (Y) estimate has the same normalization: Y → Y−µ

σ
.

This normalization is applied for optimal training (i.e. find the optimal network weights and

thus the minimal loss function). The network was trained with a mean absolute error loss

function (
∑

|Y − Ŷ |) to avoid a large dependence on outliers (Y represents the fitted track

DOCA and Ŷ represents the network’s DOCA estimate).

The use of low beam rate data (1 · 106 Hz, ∼ 40 times lower than standard beam intensity)

effectively removes all out-of-time or ”pileup” tracks that otherwise contaminate the signals.

We found that using low intensity beam rate data improves the DOCA resolution even at

standard beam intensity. This implies that the network has difficulty learning the TXY

function at the same time as distinguishing between in and out of time signals (i.e. pileup
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discrimination). We come back to this point in Section 5.3.5.

Below, we list the input variables with some justification. All variables are included in both

networks. Some of these variables are specific to the MEG II application. For example, if

the cell size and relative anode cathode geometry was independent of the position along the

wire axis, it would not be necessary to include this as an input variable.

5.3.3.3.1 Input Variables

• Hit arrival time - This reconstructed hit time is the result of conventional waveform

analysis and is the primary input to the TXY function.

• Layer number - The cell size decreases with layer number. There could be unique

properties to specific layers (e.g. the first/final layers) so it’s also included as a hot

encoded variable (binary length 9 array).

• Wire number in the layer - The average track angle varies with the wire’s global ϕ.

There may be trends in the anode cathode geometry as a function of wire number in

a layer.

• T0 at the wire - This is required for any DOCA estimator. It is the SPX-based estimate

and has an uncertainty, σT0 , of 35-90 ps with a full T0 range of ±10 ns.

• Track angle at the wire - Isochrones are not circular, thus the angle is required for the

optimal estimate.

• Kalman filter stereo reconstructed longitudinal wire coordinate - Cell size and thus the

TXY function vary along the wire.

• Waveform channel time and gain calibrations - These are useful for the convolutional

network to normalize the wire-by-wire and channel-by-channel differences due to gain

differences, cable lengths, etc.
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• Binary flags to represent if a given wire end has been disconnected or is noisy - These

ends are excluded from the analysis.

• First stored waveform time bin - Each bin contains a stored voltage and time; this

binned time is included to avoid the possibility of mapping the binned voltages to an

incorrect drift time and thus an incorrect DOCA.

5.3.3.4 Dense Neural Network

The dense neural network calculates a DOCA estimate given a hit arrival time; this is the

TXY function. This network is shown in Figure 5.13. Since it is trained on data, it can

learn the true TXY function as a function of the input variables. In addition, this network

can learn the bias due to ionization statistics.

Figure 5.13: The dense neural network architecture is shown. The neural network estimates
the time-distance relationship using the hit arrival time and tracking information.
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5.3.3.5 Convolutional Neural Network

All available information about the time distribution of the clusters in a hit is stored in the

digital waveform. Here, the neural network is trained to ”learn” how to extract the useful

information from the waveform in order to optimize the DOCA estimate. The convolutional

layers take advantage of the temporal relationship between waveform bins. We use 300 bins

of data per waveform (300/0.6 GHz ∼ 500 ns). The starting bin is 60 ns before the estimated

track time (T0) at the hit. The model is initiated by reshaping the binned waveform data

into a 300x2 array such that, for each of the 300 time bins, there are two waveform values

(upstream/downstream wire ends). The convolutional neural network is shown in Figure

5.15. To show how the waveform itself can be used to estimate the time-distance relationship,

in Figure 5.14, we show the average voltage bin-by-bin in the waveform for several slices of

track DOCA. The waveforms are alignment such that the waveform bin time equal to the

track T0 is set to zero for every hit. Each rise of the voltage roughly represents the drift

time associated with the smallest track DOCA in each track DOCA window. In addition to

just the drift time, the structure of the voltage in the waveform can be used to differentiate

between different values of DOCA, for example the smallest track DOCA measurements on

average contain more voltage ∼ 200 ns after the track T0 than those with a track DOCA of

∼ 2 mm. We note that at least in MEG II, this is clearly a small effect and thus there will

be difficulty in using this information to improve at the ∼ 100µm level.

5.3.4 Results

Here, we compare results for the conventional DOCA estimator, the DNN, and the CNN.

All results here use independent test data to avoid any training sample dependence. For

all three DOCA estimators (NNs and the conventional approach), the hit DOCA estimates

are re-evaluated after the first pass of tracking and then the tracks are refit. The first pass
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Figure 5.14: The average voltage bin-by-bin in the waveform for several slices of track DOCA.
The waveforms are alignment such that the waveform bin time equal to the track T0 is set
to zero for every hit.

analysis uses the conventional analysis. We refit the tracks in all three cases for consistency.

The Kalman filter requires both a DOCA and a σDOCA estimate to fit the track. The σDOCA

is used by the Kalman filter for both the DOCA uncertainty and for removing outliers.

For all time-distance approaches, we use a 4th order polynomial to fit the squared DOCA

residuals as a function of track DOCA to estimate σDOCA. We then scale the σDOCA constant

parameter in the fit to achieve a comparable number of hits per track and a comparable

χ2/DOF (Figure 5.16). We use the same σDOCA for both neural networks. This yields

nearly the same tracking efficiency with a fixed track selection; facilitating the comparison

among the different approaches. The neural network σDOCA is ∼ 9% smaller than that of

the conventional approach. Alternatively, using the same σDOCA in the three cases results in

a lower tracking efficiency, less hits per track and a larger χ2 in the conventional approach.

The results using the same σDOCA are compared in Appendix B.1.

The description of results of the neural network analysis applied to MEG II data are organized
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Figure 5.15: The convolutional neural network architecture. It estimates the time-distance
relationship using the hit time and the CDCH digitized voltages.

as follows. Section 5.3.4.1 compares the hit residuals for the three techniques. Section 5.3.4.2

compares the Garfield++ TXY function to that of the DNN. In Section 5.3.4.3, a data-

driven positron measurement resolution technique is used to compare the DOCA estimator’s

effect at the kinematic level. The full MEG II analysis is ongoing and improvements in

hit resolutions and kinematic measurements presented here may change as improvements

to the MEG II analysis (e.g. tracking, wire alignment, magnetic field mapping, etc.) are

incorporated. The final MEG II detector performance will be given in [13].
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Figure 5.16: The number of hits per track and the χ2/DOF are compared in the three
techniques. The conventional DOCA estimate uses a larger σDOCA in the track fitting in
order to get a comparable χ2/DOF and number of hits. NML represents the standard
or conventional DOCA estimation, DNN represents the dense neural network, and CNN
represents the convolutional neural network that uses the full waveform information .

5.3.4.1 Hit-Level Results

Here we present and discuss the results at the hit residual level, shown in (Figure 5.17).

The DOCA residual distributions for all approaches are shown top-left. As expected, all

distributions have a positive tail due to the asymmetry created by the ionization statistics

(track is closer to the wire than the first ionization site) and instances when the first cluster

is not detected in the waveform analysis. Both neural network techniques result in less bias,

with a slightly negative mode. The CNN has a slight reduction in the positive tail and a

slight increase in the number of entries in the core compared to those for the DNN. We infer

that the CNN uses the full waveform information to further suppress the ionization statistics

bias, whereas the DNN is simply removing the average bias. In training, the CNN resulted

in a ∼ 3% smaller loss with respect to the DNN (
∑

i |Yi − Ŷi|). In the top-right, we show

the DOCA residual distribution near the wire (track DOCA < 800µm). Here there is the

largest ionization statistics bias and also the largest improvement seen by the neural network

approaches.

We show the root mean squared residuals as a function of DOCA in the bottom-left. To
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Figure 5.17: The hit level results for the three DOCA estimators. NML represents the stan-
dard or conventional DOCA estimation, DNN represents the dense neural network, and CNN
represents the convolutional neural network that includes the full waveform information.

avoid the effect of outliers, hits with a residual larger than 500µm were excluded from the

calculation. The improvement due to the two networks is largest(∼ 18%) close to the wire

due to the larger ionization statistics bias there. The CNN does better than the DNN mostly

close to the wire (track DOCA < 1 mm).

We show the ¡hit DOCA - track DOCA¿ (DOCA bias) as a function of track DOCA for the

three techniques in the bottom-right. The non-zero mean DOCA bias in the conventional

case is comparable to the DOCA bias expected from the MC from ionization statistics (Figure

5.12); this is a good indication that at least on average, we are correctly estimating the TXY

function. In the CNN and DNN cases the ¡DOCA bias¿ has been highly suppressed in the

middle of the cell, with a bias between ∼ [−20, 20]µm for all hits with track DOCA between
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∼ [0.06, 0.38]cm.

Since both the hit and track DOCA are positive definite, when the track DOCA is close to

zero, the only possibility is that the residual (hit DOCA - track DOCA) is positive. Hence,

we expect a large bias simply due to this effect. The opposite is true at the edge of the

cell. The neural network DOCA estimates should always return a value inside the cell to

minimize the loss function and therefore we expect a negative ¡DOCA bias¿.

In Appendix B.2, we discuss whether a simpler technique can suppress the DOCA bias in the

conventional TXY function approach by using the transformation: tdrift → tdrift − 2ns. On

average, this corrects the bias and gives a < DOCAbias > similar to that of the the dense

neural network. However, there are still fewer hits on tracks at small DOCA and a positive

tail in the hit DOCA - track DOCA distribution with respect to the NN approaches.
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Figure 5.18: The time-distance relationship as a function of layer (column 1), position along
the wire axis, (column 2), and track angle (column 3) are shown for the dense neural network
(top row, DNN) and the conventional Garfield++ TXY function (bottom row, No ML).
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5.3.4.2 Time-Distance Comparison

Here we compare the TXY function from the conventional Garfield++ calculation to that of

the dense neural network as a function of the layer number, the position along the wire axis

(z), and the track angle. This comparison is shown in Figure 5.18. Since the convolutional

network requires digital waveforms to make a DOCA estimate, it’s difficult to compare the

TXY function in the same way. As a reminder, both layer number and position along the

wire axis affect the cell size.

The Garfield++ TXY function results in non-smooth functions near the edges of the cell.

This may be an effect of the positions of the cathode wires. The TXY function dependence

on the CDCH layer is suppressed in the DNN case.

Comparing the DNN case to that of Garfield++, the hit’s position along the wire has a

larger effect on the TXY function at drift times around ∼ 100 ns, but a smaller effect at

the edges of the cell. This implies that the dense neural network ”learned” a different TXY

function dependence on cell size than that simulated by Garfield++.

Finally, we observe that the TXY function dependence on track angle is significantly different

at large drift times (> 150 ns). This is likely the result of smoothing between the anode

cathode geometry over many cells. An interesting point is that both the Garfield++ TXY

and the DNN TXY show a significant difference between positive and negative track angles

once reaching a drift time of ∼ 120 ns.

We conclude that the observed improvement in the root mean squared residuals and a sup-

pressed DOCA bias at all track DOCA (Figure 5.17) indicates that the dense network pro-

duces the more accurate TXY function.
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5.3.4.3 Evaluating the Effect on Positron Kinematic Measurements

Here we verify that the improved DOCA resolution improves the resulting e+ measurements.

We use the following procedure to estimate the relative e+ track measurement quality using

the three DOCA estimators. In the MEG II experiment, ∼ 15% of e+ tracks pass through

the drift chamber 5 times (9x5 layers intersected). An example double turn event is shown

in Figure 5.57. For these tracks, we independently fit and measure the first turn (2x9 layers

intersected) and the second turn (3x9 layers intersected). We then use a Kalman filter

to propagate both state vectors (one forward and one backward) to the extended target

plane between the two turns. Improved agreement between the kinematics implies improved

resolution. This double turn analysis method was originally developed and implemented in

the MEG I experiment[5].

These distributions are not the MEG II signal positron resolutions, but the resolution of

the first and second turns of Michel positron tracks added in quadrature. The first turn

only interests the chamber two times and thus has a degraded resolution with respect to

the standard Michel track (three intersections). We fit each histogram to the convolution of

two double Gaussians. We fix the two double Gaussians to be identical. Extracting out the

eventual MEG II signal resolutions requires corrections from the Monte Carlo simulation.

Nonetheless, this fit gives resolution estimates that can be used to compare the DOCA

estimators.

All positron resolutions have improved when incorporating either neural network DOCA

estimator. Here, the relative amplitude of the core and the tail of the two Gaussians are fixed

for all DOCA estimators. When comparing the conventional approach to the convolutional

neural network, the CNN core resolutions improve by 4.0%, 11.7%, 7.5%, 5.8%, 0.6% for ye,

ze, ϕe, θe, pe respectively. The uncertainties in the core σ are 0.0073 mm, 0.019 mm, 0.066

mrad, 0.076 mrad, and 1.16 keV for ye, ze, ϕe, θe, pe respectively, well below the differences
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Figure 5.19: Here, we show the kinematic comparison at a common plane between two inde-
pendently fit and measured turns of a single two-turn track. NML represents the standard
or conventional DOCA estimation, DNN represents the dense neural network, and CNN rep-
resents the convolutional neural network that inputs waveform voltages. These distributions
are preliminary and do not represent the signal positron resolution, but the resolution of the
first and second turns of Michel positron tracks added in quadrature.

between the network resolutions and the conventional resolutions. In MC studies, improved

DOCA resolutions had the largest fractional improvement on the ze kinematic resolution;

this supports our results, which also show the largest fractional improvement in ze. The

tails are also wider in all kinematic distributions in the conventional approach. In Appendix
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B.1, we note that if the same σDOCA is used in all cases, the double turn analysis results in

less entries in the peak and degraded resolutions with respect to the neural networks. We

also mention that the double turn resolutions improve when using the CNN instead of the

DNN. This implies that the network’s use of the waveform results in an improvement at the

kinematic level, though this is a minor effect.

5.3.5 Discussion

In this subsection, we discuss potential improvements to the technique.

5.3.5.1 Potential Improvements

We discuss potential improvements to the networks and their use in particle tracking soft-

ware, some particular to the MEG II and some more general. In the MEG II application, the

algorithm has access to the unique layer number through a hot encoded array (Figure 5.15).

Alternatively, the neural network could input a hot encoded array containing the unique

wire number. This would require significantly more training data (factor of ∼ 100) in order

to have the same precision i.e. creating the TXY function for each wire as a function of

drift time, position along the wire, track angle, etc. This would allow the network to learn

wire-specific subtleties such as the relative anode cathode geometry or signal/noise.

In some applications, a hybrid application using both the conventional and the neural net-

work TXY functions might improve performance. This was tested for the MEG II case

by including the Garfield++ based DOCA estimate as an additional neural network in-

put variable. This did not yield significant performance improvement, but might lead to

improvements for other experiments.

In the MEG II application we found that the convolutional neural network could achieve a
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DOCA estimate without using the waveform analysis-driven hit arrival time but performance

was worse than even that of the conventional approach. Achieving optimal resolution without

the waveform analysis might be possible, but developing such an analysis is beyond the scope

of this paper. It may require a multi-step neural network. For example, a first step that

finds the hit arrival time and then a second step of converting that into a DOCA estimate.

Another possible approach to improve performance is to use a hybrid of conventional cluster

counting (e.g. finding peaks in the waveform) with machine learning. This could involve

adding a list of the waveform peak times (possibly not resolving all clusters) as an additional

input to the neural network. Just as the waveform analysis hit time is required to have the

optimal neural network, maybe the found peak times could improve the network further.

Finally, we return to the point that our training was optimized by using low intensity beam

rate data. The improvement using low intensity data implies that the neural networks are

not able to learn how to distinguish between the contributions from in-time and out of time

(pileup) tracks to the waveform in the training process. One possible method to improve

the performance is to implement a conventional pileup detection algorithm that produces a

binary flag indicating evidence of more than one hit on the waveform. By developing separate

machine learning algorithms for the two cases, the network might improve performance for

the signal DOCA in the pileup case.

5.3.6 Conclusions

In this chapter, we describe the application of neural network models to improve the distance

of closest approach measurement in drift chambers. The application results in a data-driven

time-distance relationship, unlike conventional approaches. The data-driven approach ac-

counts for all detector-specific properties (e.g. longitudinal diffusion, gas properties, ioniza-

tion statistics, electronic noise, etc.). In an example application to the MEG II drift chamber
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data, the networks improve the track position measurements with respect to those of the

conventional approach. The optimal configuration is a convolutional neural network that

uses the signal waveforms. This gives the network access to information from all ionization

clusters, which is not conventionally used in DOCA estimation.

5.4 Tracking

5.4.1 Overview

In this section we describe the positron tracking algorithm. It entails grouping CDCH hits

into tracks, fitting the tracks, and propagating them to the SPX and target. Note, here

the primary objective is to maximize the number of hits on tracks, optimize the tracking

resolution (DOCA), and maximize the tracking efficiency.

In the MEG II drift chamber, positron tracks intersect the drift chamber three, five, or seven

times (1.5,2.5,3.5 turns respectively) before leaving the chamber’s outer carbon fiber shell

and intersecting the timing counter. The track finding task is to identify the CDCH drift

cells intersected by the particle track on a single turn or half turn through the CDCH. The

set of CDCH hit in the turn are matched to an SPX cluster, yielding a T0 at each hit by

correcting for the propagation time from the SPX to the CDCH hit. The TXY tables (and

the machine learning algorithm described previously) are then used calculate 3D CDCH hit

position estimates. The hits are fit to yield a preliminary estimate of the track state vector

in the CDCH (i.e. the momentum and track position at each hit).

The track fitting stage uses a DAF filter which is an application of a Kalman Filter, to fit

the CDCH hit positions and produce the best value of the positron state vector along the

track. This DAF filter aids in solving the hit-by-hit left-right ambiguity discussed later. The
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track fitting involves multiple updates to identify the maximum number of hits on the track,

eliminate outliers that might be the result of noise hits or mismeasured hits, and derive the

optimal position of the track at each hit. The final fitted track is eventually propagated to

the target to estimate the kinematics ye, ze, ϕe, θe, pe, te and the Kalman covariance matrix

at the target.

5.4.2 Positron Track Trajectory

First, we briefly discuss the typical trajectory of positron tracks.

A majority of positron tracks (signal momentum) do not reach the carbon fiber outer shell

on the first ”turn” through the CDCH due to the higher magnetic field (maximum near

the target, dropping off in |ZMEG|). On the second turn, the track is at larger |ZMEG| and

thus reaches a larger radius. The typical positron track leaves the target region, reaches

maximum radius, returns to small radius, then exits the chamber and intersects the timing

counter (a total of ∼ 50 drift cells). About 5% intersect the carbon fiber shell on the first

turn; these tracks are difficult to reconstruct with precision and are mostly rejected.

Tracks close to θe = 0 take more turns prior to intersecting the SPX. About 14% of tracks

make 2.5 turns and < 1% of the tracks make 3.5 turns. In Figure 5.20, we show the ze,TGT :

θe,TGT distribution for reconstructed 1.5,2.5,3.5 turn tracks (black, purple, red respectively).

At large |ze,TGT | multiple turns are achieved when the positron reverses its axial momentum

(i.e. starts near the downstream end of the target going upstream, reverses direction in the

graded field and reaches the downstream SPX).

The prominent band of events with negative slope in the distribution corresponds to physical

2.5 turn tracks missing the first turn; this was an effect observed in MEG I and can be used

to estimate the number of double turn tracks with a missing first turn (this is an inefficiency).
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Figure 5.20: The ze,TGT [cm]: θe,TGT [◦] distribution for 1.5,2.5,3.5 turn tracks (black, purple,
red respectively). The black line with a negative slope was found in MEG I to represent 2.5
turn tracks missing the first turn.

5.4.3 Track Finding

5.4.3.1 Initialization

The track finder is initiated by importing the set of CDCH hits and the SPX clusters (set of

SPX tiles intersected by a single positron). CDCH information consists of the wire number,

arrival time of the first ionization cluster (hit time) on the wire and the hit position estimate

along the wire axis (z). The hit time requires a wire-by-wire time calibration described in

Chapter 7. The hit arrival time is converted into a DOCA estimate at this stage using the

conventional TXY assuming a T0 based on the mean trigger time. Clearly, at this stage, the

DOCA resolution will be very degraded due to the large errors in the T0.

The z estimate (zlocal) uses a combination of two estimates from the time difference in the

arrival of ionization clusters on the two wire ends and the difference in charge on the two
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wire ends. The z estimates require calibrating the two ends of the wire, described in Chapter

7.

At this stage, the DOCA can be converted into a xlocal, ylocal position estimate by asserting

the tracking angle to be the average track angle of a positron track in the cell. The position,

angle and sagitta of each wire is required to transform the local hit position into the global

MEG coordinate system; the alignment procedure is explained in Section 5.5.

The track finder also imports the SPX cluster time and the position of the first intersected

SPX tile (ϕSPX , zSPX). The track finder additionally imports the magnetic field map, but

not the geometry file including the detector and target materials. This is only used to achieve

a rough momentum estimate that will be replaced by the track fitting task.

5.4.3.2 Track Finding Algorithm

This process is describe in more detail here[14]. After importing the CDCH hit and SPX

cluster information, the track finder first groups them into turns. Due to the magnetic

field, low momentum positron tracks (∼< 45 MeV) do not reach the outer layers and so

it is intersected by less positron tracks. This makes the outer layers ideal for initializing

the tracks. A cluster of CDCH hits in the outer layers is used to ”seed” a positron track

”candidate”.

This seeding is a difficult combinatorics problem as we still have a very degraded DOCA

resolution and the z resolution is ∼< 10 cm. The z resolution of the hits is extremely useful

for suppressing the combinatorics (distinguishing between two tracks with similar hit arrival

times).

We replace the nominal DOCA estimate with a reasonable approximation of the DOCA to

help find an eventual track. This requires a T0 estimate better than the nominal trigger time,
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which could be displaced by as much as 10 ns from the T0 at the cell. At a drift velocity of

20µm/ns, a 10 ns T0 error would result in a 200 µm DOCA error, larger than the resolution.

The current track finding algorithm does not contain a fit for the T0 using the CDCH hits.

Instead, the finder relies on the SPX cluster time. For each SPX cluster, we try setting the

T0 at the CDCH hits to T0,SPX−Fi, where F is a set of fixed offset corresponding to a typical

offset between the SPX cluster time and the CDCH turn (F=[0.6, 4.5, 8.5] ns). The best

offset yields the lowest errors between the track and hit DOCA estimates. Using the correct

”best” offset, this simple T0 approximation should results in maximum errors of the order

±2ns ∼ 70µm. This is sufficient for the track finder stage and will be replaced by a more

precise measurement in the fitting stage.

The track searches for hits nearby the cluster using a ”road width”, that is, using a rough

estimation of the track kinematics at the seed, the algorithm extrapolates the seed towards

lower radius and searches for hits along the trajectory within the road width consistent with

the track seed. If the hit has a DOCA and a z consistent with the seed, the hit is added to

the track candidate. Note, the track kinematic resolution is improving as this procedure is

continued.

The end result is a track candidate that contains a list of all hits on the turn and an estimate

of the track state vector (ye, ze, ϕe, θe, pe) at the first and final hit on the turn. Note, a large

fraction of the turns will be the final half turn (moving from r=0 until hitting the SPX

at maximum radius). These half turns have significantly degraded resolution and will be

discussed later.

5.4.3.3 Status

The track finder was written before the CDCH was ready for data taking (written before

2019). The signal and noise situation has changed dramatically since that time (expected
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that the CDCH signal/noise ratio would be significantly higher). However, many of the

parameters had not been tuned. In addition, through trial and error, the tracking efficiency

has improved significantly by removing hits with a hit arrival time before the nominally

trigger T0 (i.e. known pileup hits). The tracking efficiency also significantly improved by

including the ML hit finding algorithm mentioned in Section 5.2 that resulted in significantly

more hits/event. Both changes to the hit distribution resulted in track finder efficiency

improvements of the order ∼ 10− 20%, neither of these were expected and it is unclear how

much higher of a track finding efficiency could be achieved. In addition, the track finder

CPU time is a very large fraction of the overall MEG II CPU time (> 50%), which is not

ideal for reprocessing the data. For these reasons, one of the main focuses on the CDCH

analysis in future years will be on modifying the track finder and developing alternate track

finders that may yield significant efficiency improvements.

5.4.4 Track Fitting

In this subsection, we describe the track fitting procedure. As mentioned, the procedure uses

a DAF to fit the positron tracks. The DAF is used to solve the CDCH hit left-right ambiguity

problem, that is, given a hit DOCA and a track angle, there are two unique solutions to the

hit xlocal, ylocal coordinates. In general, this increases in difficulty as a hit is closer to the

wire (two solutions are very similar).

The task is initiated by fitting single and half turns output from the track finder. The task

then merges the turns into a full positron track. At each stage of track fitting, the track

angle at the intersected drift cell is known more precisely and therefore the DOCA can be

improved further by reevaluating the DOCA estimate. Similarly, the propagation length

from an intersected drift cell to the SPX and thus the T0 at each drift cell is known more

precisely. We additionally update the DOCA accordingly and refit the track.
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At the end of the track fitting, we propagate the positron track from the CDCH to the target

and to the SPX. This yields the final kinematics at the stopping target (ye, ze, ϕe, θe, pe, te).

Note, the target is thin film subject to deformations O(1 mm); the deformed target has been

implemented as described in Chapter 4.

After the track has been fit, we search for hits nearby by the positron state vector, but are

not on the track. If these hits are found, they are added to the track and the track is refit.

5.4.5 Updating DOCA using T0 and Track Angle

After fitting the turns, the tracks are propagated to the first intersected tile in the SPX

cluster used to estimate the T0 (SPX seed). If the track successfully propagates to this tile,

the SPX cluster and the track are considered a match if the distance between the position

of the track on the tile and the SPX hit position estimate is less than 10 cm and the track

propagates within 3 cm of the physical timing counter tile. This is a rather loose selection

criteria. However, this requires propagating through the drift chamber outer carbon fiber

shell where the tracks can scatter, adding uncertainty to the trajectory. In addition, some

tracks without the final half turn can be propagating ∼ 80cm to this SPX match.

If this CDCH-SPX matching is a success, we set the T0 at each CDCH hit to the time of

the SPX cluster minus the propagation time from the intersected wire to the SPX. This is

successful for ∼ 99% of positron tracks that pass our standard selection criteria.

We then recalculate the hit DOCA with this improved T0. At this stage, the T0 is known

extremely precisely (< 100ps) and therefore completely eliminates its contribution to the

DOCA resolution. Each time we re-calculate the drift time as the arrival time of the first

ionization cluster - hit T0 and convert the drift time into a DOCA estimate using the time-

distance relationship. We additionally input the updated track angle at the drift cell into
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the DOCA estimator to improve the resolution further.

Note that some hits contain a negative drift time (arrival time is before the T0). On a hit-by-

hit basis, the cause is unclear. The main causes are mistaking noise on the waveform as an

early cluster or picking up the signal from an earlier cluster due to a pileup track. Currently,

we simply assert that the drift time is equal to zero. This is not fully optimized.

This update is repeated before and after the track turn merging procedure that is described

in the next section.

5.4.6 Positron Turn Merging

For the ∼ 85% of tracks than contain 1.5 turns, the first full turn and the final half turn

need to be merged to achieve the optimal precision. Additional turns are merged for longer

length tracks.

To decide which turns should be merged, the turns are propagated to the closest point to the

beam axis (r=0) in both directions. Then, in a double for loop over all turns, the kinematics

of the two turns at the beam axis are compared loosely. The comparison requirement is very

loose (e.g. |p2 − p1| < 8MeV and |t2 − t1 < 3 ns, |z2 − z1| < 12 cm). The requirements

mainly exist to avoid attempting to merge poorly measured tracks or attempting to merge

pileup tracks.

If the comparison succeeds, then one of the tracks is propagated slightly further to the plane

perpendicular to the other’s state vector (at r = 0). The kinematics are compared using a χ2

incorporating the covariance matrix elements of both turn state vectors and the kinematic

comparison. If the χ2 is below a threshold (χ2/DOF < 150) the merging is attempted.

Regardless if the merging was a success or a failure, the two original non-merged tracks and

the final merged track are stored in the track folder. Therefore even if the merging fails,
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there is still a full first turn and other methods to recover the final half turn.

Unfortunately, this technique often fails to successfully merge the final half turn, this is likely

caused by the difficulty in estimating the momentum of a half turn track. The track only

propagates ∼ 7 cm or 60◦ and can have as little as 10 hits.

5.4.7 Positron Refit Algorithm

After the turn merging procedure, we still observe a large fraction of tracks that are missing

the final half turn. This is a combination of difficulty from the track finder finding the half

track (less hits in the ”seed” region) and the difficulty of merging low quality half turns.

This loss of the final half turn and hits in general motivates a search to find additional hits

that are associated with the positron track. This algorithm is described in this subsection.

The algorithm propagates the positron track from the first CDCH hit to the intersected SPX

cluster searching for intersected drift cells that should be on the track, but are missing. This

falls into two main categories: hits that were not added by the track finder (e.g. due to a

bad z measurement) or hits on additional turns (full or half turns) not properly merged.

5.4.7.1 Track Propagation to Search for Intersected Wires

The algorithm starts by propagating the track between the first CDCH hit and the SPX

cluster in time steps (3 mm or 10 ps); this distance is appropriate as the mean cell diameter

is roughly 8 mm. The only hits missed by the algorithm are those with large DOCA where

the track only intersects the edge of the cell.

To have the best track estimate at each time step, we determine the closest hit (in T0 space)

to the given time step. We propagate from the state vector at the closest hit to that time
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step. If the propagation length is less than 5 cm, we assume we are searching for a hits on

a new turn. If we are searching for hits on an existing turn, our track position estimate

is significantly more accurate and thus we apply tighter criteria for determining if the hit

should be added to the track (discussed in detail later).

At each time step, we determine the closest drift chamber layer. At each time step, we search

for a wire in the layer we such that the distance between the track position and the wire

position at this ZMEG coordinate is smaller than ∼ 6 mm. If this is satisfied, we flag this as

a hit candidate.

If the hit is considered on the track, we propagate further to the wire POCA (point of closest

approach). All the details of the propagation e.g. the 3D position at the POCA, T0 at the

POCA, track angle, propagation length from the hit to the wire, etc. are all saved.

5.4.7.2 Matching Hits in Preexisting Hit Folder

For all hit candidates, we determine if there is an existing hit in the CDCH hit folder (found

and saved by the waveform analysis) with a comparable position to the hit candidate.

To determine if there is a match, we compare the DOCA and z of the track (hit candidate)

and hit. We use the hit candidate T0, the hit arrival time, track angle, and the conventional

TXY table to convert the hit time into a DOCA estimate. If both the DOCA and z conditions

are met, we add the hit onto the track. If there are multiple hits on the same wire that pass

these thresholds, we add the hit with the smallest difference in DOCA.

5.4.7.3 Refit

After adding all hits, we refit the track. We assign the initial value of the state vector at

each hit to be the point of closest approach with the calculated momentum vector (previous
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section), and a dummy covariance matrix. We sort all hits on the track by the T0 at the hit.

Similar to the merging algorithm, both the ”old” and the ”refit” track are saved. Here is

another instances of populating the track folder with multiple reconstructed tracks associated

with the same physical track (ghost tracks). Of course in general, the one with the best

number of hits, χ2/DOF , etc. is the ”best” version. Selecting the best ghost track to go

into the final physics analysis is described in Section 5.6.

5.4.7.4 Sensitive Parameters

The analysis is most sensitive to the DOCA thresholds for adding hits onto existing turns/

new turns. These have been tuned using data using the following procedure.

First, we set the thresholds to be larger than expected. We separate the hits added to the

track into two categories: hits successfully added to the fit and those rejected by the fit.

For these two categories, we then histogram: (hit DOCA - hit candidate DOCA) in Figure

5.21. The hit candidate measurement is effectively the track DOCA (but prior to the track

fit incorporating the new hit). We additionally show the histogram of (hit DOCA - track

DOCA) for hits added to the fit after the fit is complete.

In general, we’d like to maximize the number of hits successfully added to the fit and minimize

the number of hits rejected by the fit. Note, if too many hits are rejected, the Kalman

occasionally fail completely, and thus the refit fails. On the other hand, forcing tighter

criteria results in rejecting some hits that should be on the track.

The result suggests that for hits on new turns even an error of ∼ 1 mm prior to the refit has

a significant probability of being added to the track. Whereas if the hit is on an existing

turn, it should only be added if the error is less than ∼ 500µm.
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Figure 5.21: The DOCA residuals before and after the fit routine. The data is sliced based
on two binary categories hits successfully/unsuccessfully added to the fit and whether the
hit is on a new turn or an existing turn.

5.4.7.5 Results

In this subsection, we compare the measurables for tracks with and without the refit algo-

rithm applied. In instances when the refit fails, we are showing the non-refit version of the

track.

In Figure 5.22, there is a category of tracks where the refit adds a very small amount of

hits. This is due to the track already having the full 1.5 turns or instances when the refit

effectively fails. The other category is tracks where ∼ 10 hits are added. These are instances

where a large fraction of the final half turn is recovered.

This is verified by the change in the propagation distance between the last hit in the CDCH
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and the SPX hit. After the refit, a very large fraction of the tracks have some hits on the

final half turn. Note, in the final analysis of the 2021 data, there are still some instances

with a propagation length to the SPX greater than 1 ns due to tightened fitting criteria. In

particular, we tightened the σDOCA for all hits due to improved resolution observed in the

double turn analysis (Section 5.7).

We then show the Kalman estimated momentum resolution. The momentum resolution

is two peaked without the refit algorithm; this is the difference in momentum resolution

for single turn tracks and tracks with one and a half turns. With the refit, the degraded

resolution peak is eliminated, but some tracks still have a core resolution greater than ∼ 100

keV.

Finally, in Figure 5.23 we show the Michel edge fit using the ”best” track without the refit

task and the ”best” track with the refit task for each event in the final 2021 dataset. The

ranking of tracks is based on the ML track ranking described in Section 5.6. We use the

standard selection criteria except that we loosened the requirement for the distance between

the final hit in the CDCH and the SPX cluster to be less than 150 cm. This avoids a

difference in efficiency (many tracks without the refit have a long propagation to the SPX

as they are missing the last half turn). The main difference between the two Michel edge

fits is the sigma1 parameter or the core uncertainty (101 → 87 keV) or an improvement of

14%. We also observe sigma2 is lower by ∼ 10%. Roughly, looking at the covariance matrix

plot in Figure 5.22, we see a ∼ 15% improvement, which is consistent with the Michel edge

improvement.

5.4.8 Tracking Efficiency

The tracking efficiency is difficult to measure in data as there are triggers based an SPX hit

that is not actually associated with a high quality positron track. Without any selection
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Figure 5.22: Comparison of the track kinematics of all tracks with and without the refit
algorithm. The left-hand side shows the results with and without the algorithm and the
right-hand side shows the relative improvement. The top row is the number of hits on the
fitted tracks, the middle row is the propagation length from the CDCH to the SPX detector,
and the final row is the Kalman estimated resolution.

criteria, the mode of the number of SPX hits in a cluster is 1 for a physics trigger whereas

a high momentum positron should have ∼ 9 on average.

Note that the normalization of the MEG II dataset and thus the experimental sensitivity

does not require a precise measurement of the positron tracking efficiency, but only the
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Figure 5.23: The Michel edge fit used to estimate the momentum resolution for tracks that
successfully refit compared to those without any refit.

relative efficiency of 52.8 MeV positrons and positrons greater than 50 MeV (this is a minor

correction). The normalization is described in Section 8.10.
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Although not needed for the normalization, of course it is critical to optimize. During the

optimization of the waveform analysis, track fitting, TXY, etc. we calculate a ”tracking

trigger efficiency” where the numerator is the number of events with at least 1 high quality

positron track in the signal region and the denominator is the number of physics triggers.

By maximizing this tracking trigger efficiency, we can optimize our analysis without knowing

the absolute efficiency.

We can also rely on the Monte Carlo to estimate the absolute tracking efficiency for signal

positrons. Here, this efficiency is such that the positron is in the ”signal region” i.e. back-to-

back with the calorimeter and the positron has a momentum of 52.83 MeV. This numerator

only requires that the positron is inside the final analysis region described in Section 8; these

are very wide cuts. This results in a positron efficiency of 52.4%, however this does not

include the ML hit finding algorithm that resulted in a ∼ 28% efficiency improvement (this

algorithm was not tested on the Monte Carlo). This suggests a signal efficiency of ∼ 67%.

In addition, the efficiency has been measured using an independent trigger, triggering only on

a single hit in the pixelated timing counter. Here, we measure the total number of positrons

reconstructed in these triggers with a momentum greater than 50 MeV. We then divide

this by the total number of expected positrons greater than 50 MeV (this includes several

corrections including the trigger efficiency, the branching fraction for Michel positrons with

a momentum greater than 50 MeV, the beam rate, etc.). We then make a minor correction

due to the fact that signal positrons have a higher efficiency than Michel positrons with

an energy greater than 50 MeV (∼ 1.09). This results in an efficiency of ∼ 70% that is

dependent on the beam rate. This shows good agreement with our MC result.
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5.5 Wire Alignment

5.5.1 Overview

This chapter describes the iterative track-based alignment technique using the 2021 data.

The alignment corresponds to CYLDCHConfid=41 (MEG database entry). We discuss the

procedure, shortcomings, the resulting residuals, and the required translations, rotations

and sagitta with respect to the survey position. The iterative-track based wire alignment

is compared to the survey alignment by comparing the mean residuals and the double turn

analysis.

5.5.2 Motivation

The CDCH global position was measured in both 2021,2022,2023 using an optical survey.

Additionally, the wire-by-wire alignment of the chamber with respect to the CDCH global

position was calculated from a variety of measurements spanning back to the construction

of the chamber.

After incorporating all survey information into the wire-by-wire alignment, systematic errors

in the hit residuals wire-by-wire were still observed of the order ∼ 100µm. The wire-by-wire

residuals are shown in Figures 5.24 and 5.25 in the X and Y global coordinate systems

respectively. These systematic errors degrade the overall CDCH resolution (in addition to

others e.g. TXY tables, magnetic field alignment, etc.) or create systematic biases in the

positron kinematics (pe, θe, ϕe, ye, ze). This motivates improving upon the survey alignment.

We discuss the use of Michel positron tracks to align the drift chamber wires.
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Figure 5.24: (Hit - Track) X global errors per wire using the survey alignment.
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Figure 5.25: (Hit - Track) X global errors per wire using the survey alignment.

5.5.3 Track-Based Alignment

In this section, we describe the procedure used to improve the alignment of the drift chamber.

To be clear, the track-based alignment is only used to improve the relative wire-by-wire

alignment.

First, Figure 5.27 illustrates how tracks can be used to align the drift chamber. The solid and

dotted X represent the true and misaligned wire position respectively. The solid and dotted
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Figure 5.26: Sample of the X global residuals as a function of the position along the wire
axis per wire using the survey alignment. Here, wires 400-415 are shown (L2S1).

circle represents the hit distance of closest approach isochrone (approximated as a circle).

The misalignment creates a systematic residual in the direction of the misalignment for all

track angles except that parallel with the misalignment direction (case D). By iteratively

adjusting the wire coordinates based on the mean residual, we iteratively improve the mean

residuals and thus the wire alignment.

The general approach is to fit the mean residual per wire as a function of the position along

the wire axis (z). An example of the mean residual is shown in Figure 5.26. The residual

plots in X,Y, and Z global are fit using the equation below.

p0 + p1 · z + p2 · [(z/
L

2
)2 − 1] (5.1)

The p0, p1, and p2 correspond to a translation, rotation, and a wire sagitta respectively. This

is the sagitta equation used in the MEG II software. The sagitta equation conveniently sets
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Figure 5.27: Four example tracks with the same misalignment. It’s clear that in all cases
except when the track is parallel to the misalignment, the misalignment creates a mean
residual in the direction of the misalignment. This mean residual is used to align the track.

the sagitta to p2 at z=0 and 0 at the wire edges (L
2
). The sagitta is calculated in the X and

Y global coordinate system and converted into the local coordinate system; this has a small

and negligible error by not taking into account the global Z error due to the sagitta.

The sagitta can be due to electrostatics and gravity. In Figure 5.26, some wires have a

sagitta as large as ∼ 100µm.

In the MEG II software, the angles θ3 and ϕ3 are stored in the database to define the wire

direction. The direction is obtained by the following transformation.


Dirx

Diry

Dirz

 =


0 0 S(θ3)C(ϕ3)

0 0 S(θ3)S(ϕ3)

0 0 C(θ3)

 ·


0

0

1

 (5.2)
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5.5.4 Limitations

As mentioned in the previous section, the method relies on tracks that are not parallel with

the wire misalignment in order to align the wire. As shown in Figure 5.27, tracks parallel to

the misalignment cannot be used to align the wire.

Figure 5.28: Examples of the track angle as a function of wire number and the wire axis (z).

Ideally, we’d use tracks incoming at all angles. However, we are using MEG triggers which

often have only a limited range of track angles in a given cell. Some example incident track

angles wire-by-wire are shown in Figure 5.28. There is clearly a large variation in the track

angles as a function of wire number. This is best explained alongside Figure 5.30. The MEG

trigger requires the positron to be nominally back-to-back with a γ intersecting the LXe

detector. Therefore, in small sector numbers (positive X or the right side of the graphic),

the track must be on the first half turn or the third half turn. e.g. wire 208 (top-left in

Figure 5.28) are incident at ∼ −170◦ and z=0 and ∼ −140◦ and large —z—. Even this 30◦

difference is enough to align the wire in all directions. In the central sectors (e.g. wire 816,

bottom-left in Figure 5.30), tracks intersect the cell on all three half turns. This results in

three distinct track angles: −150◦,−130◦, 150◦. This is the optimal case as −130◦ and 150◦
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track angles are separated by 80◦ and thus almost perpendicular to one another. Whereas

at large sector numbers (e.g. wire 304 - top-right in Figure 5.28), tracks only intersect on

the second half turn and therefore at only one track angle. This is the least optimal case

and we have minimal sensitivity to the radial alignment.

We also note that at large layer number (small radius, e.g. wire 1776) there is the largest

separation between the track angles of the first and second half turn (−130◦ and 130◦). As

these are almost perpendicular to one another (100◦ difference), these wires are easily aligned

in all directions. This is more difficult in smaller layer numbers.

To summarize, our alignment is most limited in large sector numbers where tracks only

intersect the cells on the second half turn. Further, in general it’s easier to align wires in all

directions at large wire number / small radius due to the larger difference in the track angle

between the first and second half turns.

We note that this discussion is for the standard 1.5 turn tracks in the MEG trigger data.

Using out-of-time half turn tracks would allow us to gain sensitivity in regions with limited

track angles, but with a degraded resolution.

Further, we note that for the same reason we are not sensitive to these alignment errors,

the alignment errors shouldn’t actually affect the track quality. To give a simple example,

in a simple drift chamber where all tracks through cell A are perfectly vertical, if the cell is

misaligned vertically, it has zero impact on the track quality. However, it is possible that

the combination of misalignment over several wires could potentially affect the alignment.

This still needs to be investigated.

Additionally, we note that this alignment requires a mixing of tracks with varying intersected

wire distributions in order to properly align the chamber. To give a simple example, in a

hypothetical drift chamber intersected by three distinct categories of tracks, if all of the three

categories share no common wires, the wire-by-wire alignment is not a global alignment, but
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Figure 5.29: The two-dimensional histogram containing the number of tracks intersecting
wire y given a track intersects wire x.

Figure 5.30: A slice of the MEG II experiment with two sample positron tracks. It’s clear
these are the possible angles to intersect this particular cell in the central region of the
acceptance.
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an alignment of three separate sections of the drift chamber. Thus we would still require the

relative alignment of the three sections. Similarly, if all tracks intersect wires at z < −30cm

and 30cm < z, we still require the information on how the two ends of the chamber are

connected (upstream,downstream).

As for our chamber, we are lucky that the mode of the hit distribution is around z=0 and

thus the z=0 region is connected to the upstream and downstream regions with upstream and

downstream tracks. The upstream and downstream regions are thus connected via higher

order mixing of upstream/downstream tracks with the common intersection point at z=0.

However, for the individual wires or sectors, the situation isn’t as clear. As mentioned above,

we benefit from the fact that the central sectors connect the first and final sectors via the

tracks that intersect the central sectors on the first, second, and third half turns. Figure

5.29 shows the number of hits on wire A given the same track intersects wire B. For a more

condensed plot we don’t use the true wire number, but iwire− [192 ∗ ilayer − 128 ∗ (ilayer − 1)]

in order to show exclusively readout wires. It’s clear that the largest region with no mixing

is the first and final sectors; this has some variation on the layer number, but isn’t very

significant. This is expected and implies that the alignment here requires the second order

of mixing by tracks intersecting the first and central sectors with tracks intersecting the

central and final sectors.

It’s interesting to note that there are clear regions with high coupling. e.g. region (500,

700) has three high coupling sub-regions. These are likely the most common sector/layer

intersections for a 1.5 turn track through that chamber region.
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5.5.5 Results

We used approximately 500 runs each with 2000 events. With a trigger tracking efficiency

(not the true efficiency) of ∼ 43% and ∼ 40 hits/tracks, the analysis contains ∼ 17 M hits.

The final mean residuals as a function of wire number in the X and Y global coordinate

systems is shown in Figures 5.31 and 5.32 respectively. The residuals are highly suppressed

with respect to the survey alignment. This contains 14 iterations of track-based alignment.

To be clear, the edges of each layer have a very small amount of hits (< 2000) and thus have

been excluded from the alignment procedure.

In addition, Figure 5.33 displays the same example wires shown above in 5.26. It’s clear

that when compared to the survey, these errors have been highly suppressed not only in the

average error, but the average error along the wire.
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Figure 5.31: X global residuals as a function of wire number after the track-based iterative
alignment.

Next, Figures 5.34 and 5.35 show the fitted intercept (translation of the wire or p0) and

the sagitta (p2) wire-by-wire after all track-based alignment iterations for both the X and

Y coordinates. For both X and Y, the two follow a linear correlation with a slope of 1.

This is expected, as this implies that the center of the wire is well aligned and centered

at zero error, but there are still some fluctuations in the sagitta term, which then forces a
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Figure 5.32: Y global residuals as a function of wire number after the track-based iterative
alignment.
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Figure 5.33: Sample residuals wire-by-wire after the track-based alignment.

fluctuation in the translation term. The remaining sagitta has a magnitude of σ ∼ 13µm.

Wires with large remaining sagitta are usually associated with wires with a small amount

of hits; even with 17M hits in the sample, many wires have only a few thousand hits and

thus have a large uncertainty in the sagitta Of course, this can be suppressed with higher

statistics. Exactly 1000 wires pass our number of hits criteria (2000 hits/wire). Roughly 54

wires contain zero hits due to electronics issues, leaving 9 · 128− 50 = 1100 wires, or roughly

100 readout wires that are excluded from the analysis. A majority of the excluded wires are
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Figure 5.34: The fitted intercept (translation of the wire or p0 and the sagitta (p2) wire-by-
wire after all track-based alignment iterations for the X global coordinate.
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Figure 5.35: The fitted intercept (translation of the wire or p0 and the sagitta (p2) wire-by-
wire after all track-based alignment iterations for the y global coordinate.

in the final half sector of each layer (9x8=72); these wires have an extremely low hit rate.

The other excluded wires are in the first or final sector.

5.5.6 Discussion

Here we describe and quantify the changes in the wire position, rotation, and sagitta as well

as the remaining alignment errors.
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Figure 5.36 shows the final translations, rotations, and sagitta of all wires with respect to the

survey. It’s clear that the translations are centered at zero by coincidence. This is slightly

expected as any time a wire is misaligned, this will create a large residual on that wire and

then a smaller residual on nearby wires in the opposite direction (to account for the large

residual in the fit). Whereas with the ϕ3 angle, we observe a mean rotation of 1.1 mrad. It

would be interesting to make an identical alignment with and without this mean rotation

and see how it compares. Additionally, we note that the θ3 requires a minimal rotation (σ ∼

0.1 mrad).
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Figure 5.36: The final translations, rotations, and sagitta in a set of histograms.

Further, Figure 5.37 shows the change in position at z=0 cm, z=100 cm, and the difference

between the change in position at z=100 cm and z=0 cm (this extracts the change in position

due to the change in wire rotation). This confirms that this alignment doesn’t shift the mean

wire position in X or Y global or the mean radius of the wire at the extrema.

We also include the translations and rotations as a function of wire number in Figure 5.38.

It’s clear there is some structure layer-by-layer as well as sector-by-sector. The explanation
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Figure 5.37: The final change in wire position in X, Y, and R. These are shown at z=0,
z=100 cm, and the difference between z=0 and z=100 cm.

behind the discrepancy between this alignment and the original survey alignment is not well

understood.
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Figure 5.38: The final translations, rotations, as a function of wire number.

Next, the orientation of the sagitta and the sagitta amplitude as a function of wire number

is shown in Figure 5.39 for all wires with a sagitta larger than 30 µm to avoid plotting the

angle of a negligible sagitta. The most interesting feature is that the sagitta has a very

polarizing angle depending on the layer number, this has not been explained.
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Figure 5.39: The final sagitta and the angle of the sagitta.

After the final alignment, we again fit for the required translation, rotation, and sagitta to

quantify the remaining error in the wire position wire-by-wire. The fit parameters wire-by-

wire are all shown in Figure 5.40. To be clear, to get the value of the error in the intercept,

we take the value of p0 − p2 as this is the fitted value of the average error at z=0.

At z=0, the error in the intercept is 2 µm at the 1 σ level. At the 1 σ level, the remaining

errors due to remaining sagitta are 0, 6, 12 µm at z=0, z=50, and z=100 cm respectively

in both X and Y global. Similarly, at the 1 σ level wire-by-wire due to remaining angular

misalignment results in errors of 0, 5, 10 µm at z=0, z=50, and z=100 cm respectively.

5.5.7 Double Turn Analysis

In order to evaluate how the change in the wire alignment affects the resolutions, we use

the double turn analysis. This is a data-driven approach to estimate the positron kinematic

resolution (pe, θe, ϕe, ye, ze). The technique uses positron tracks that intersect the chamber

on two ”turns”. An example of a two turn track is shown in Figure 5.57. The first turn

(2 chamber intersections) and the final turn (3 chamber intersections) are independently

measured and fit. The two positron turns are then propagated to a common layer between

the turns that is parallel with the target surface. Comparing the kinematics at this common
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Figure 5.40: The resulting fit parameters wire-by-wire after all track-based alignment itera-
tions.

layer yields a resolution estimate of the positron tracks: the better the comparison, the

better the resolution.

Figure 5.41 shows the resulting double turn analysis for the survey alignment, the fifth

iteration of the track-based iterative alignment, and the 12th iteration of track-based iterative

alignment (CYLDCHConf.id=40).

It’s clear that the ϕe, ye, ze mean errors are higher suppressed, whereas the θe comparison

gains a 0.5 mrad offset. The offset in the momentum is suppressed by 10 keV. We also

observe a dramatic improvement in the overall resolutions.
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Figure 5.41: The resulting double turn analysis for the survey alignment, the fifth iteration of
the track-based iterative alignment, and the 12th iteration of track-based iterative alignment
(CYLDCHConf.id=40).

These resolutions and biases can be further improved by improving other alignments and

calibrations. For example, Figure 5.42 contains the double turn analysis using CYLDCH-

Conf.id=41 (final alignment) with the default magnetic field and an alternative magnetic
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field optimized by suppressing the biases observed in the Michel edge fitting and the double

turn analysis (kCalculated, scale=0.999, Y Shift = 1 mm). All kinematic comparisons have

a suppressed bias when using the optimized magnetic field. Note that the momentum double

turn bias still persists (∼ 50 keV).
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Figure 5.42: The resulting double turn analysis for the final wire alignment (CYLDCH-
Conf.id=41) with the default magnetic field and a modified magnetic field to suppress the
biases.
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5.5.8 Possible Improvements

This analysis could be improved at the edges of the acceptance by including more hits into

the analysis. Further, to improve on the alignment in regions with a limited range of track

angles, we can try adding out-of-time half turn tracks into the alignment procedure. This

allows us to have a larger range of track angles and thus align the wires in all directions.

Finally, we mention that the wire alignment does not attempt to align the wires globally,

but only the relative wire-by-wire alignment of the chamber.

5.5.9 Conclusion

This note presents a track-based iterative approach using MEG trigger data. The alignment

includes wire translations, rotations, and a wire sagitta. We estimate that the remaining

wire-alignment errors are 2, 5, 15 µm at z=0, z=50, and z=100 cm respectively. Results

and improvements are shown at the double turn analysis and at the wire-by-wire level. We

conclude by presenting some methods that could be used to improve the alignment further.

5.6 Track Selection

5.6.1 Introduction

A subset of positron tracks contain low quality reconstruction and therefore have wide kine-

matic resolutions (e.g. ∼ 1 MeV tails where the typical core resolution is ∼ 0.09 MeV).

For signal, the tracks are often far from the signal energy and therefore do not significantly

contribute to the signal efficiency. Instead, lower momentum accidental positrons can be mis-

measured to high momentum resulting in increased background and thus a degradation of
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the signal/background. This chapter discusses the usage of a neural network trained directly

on data to remove these low quality tracks while still maintaining high signal efficiency.

In theory, the low quality tracks could be correctly handled by the physics analysis (maximum

likelihood analysis) and thus should be maintained. However, for these tracks it is difficult

to have a quality kinematic resolution estimate event-by-event as the wide resolutions are

not observed in the covariance matrix. As an example, we show the mean MC pull (σ of the

(ERec − EMC)/σKalmanE) as a function of different measurables (Atsushi Oya 10/6/22). In

all cases when the track is low quality (low hits, high χ2/DOF , or high diagonal covariance

matrix elements, etc.), the mean pull increases. Therefore, to optimally define the resolution

event-by-event, additional corrections as a function of a multi-dimensional measurable space

would need to be taken into account. This comes with uncertainty and difficulty. If instead,

we simply define the pull as the pull integrated over all measurables, we are underestimating

the resolution for low quality events and overestimating the resolution for high quality events.

This in turn degrades our likelihood analysis.

Figure 5.43: The MC momentum pull [(ERec − EMC)/σKalmanE], as a function of different
kinematic variables (Figure made by Atsushi Oya).

To summarize, the track selection is motivated as the events do not significantly contribute

to the signal efficiency, can result in additional mismeasured accidental background events

in the signal region, and it is difficult to estimate their true resolutions. Further, optimized

track selection significantly simplifies the analysis and there is significantly less reliance on the
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handling of tails in the final physics analysis. However, we are also attempting to maximize

the number of tracks in the data sample to maximize the overall sensitivity. Therefore, our

summed objective is to remove tracks with wide tails where the true resolution does not

agree well with the pull, while still maintaining a high efficiency.

Note, the tracking procedure results in the possibility of two reconstructed tracks corre-

sponding to the same physical positron track i.e. ghost tracks. The final physics analysis

will only use one reconstructed positron track per event; the neural network track selection

is additionally used to rank these ghost tracks.

5.6.2 Conventional Approach

Here we discuss a conventional approach to track selection. Selection criteria can be made by

looking at measurable distributions in the Monte Carlo (MC) and removing events accord-

ingly. For example, we can remove tracks with less than 30 hits, χ2 > 1.7, etc, such that the

pull distributions aligns have a width of ∼ 1. We could additionally search for measurable

values that typically have very wide kinematic tails and cut accordingly.

However, this doesn’t take into account correlations between the measurables. We could

instead make selection based on the multi-dimensional histogram between relevant measur-

ables (e.g. a linear selection criteria), but it is difficult to do this in a multi-dimensional

space. This technique has another shortcoming in that it relies on the MC; we’ve found

discrepancies between the data and the MC in the waveform noise level, hit resolution,

kinematic resolution, etc.

Alternatively, similar selection could be based on the double turn pull distributions in data,

e.g. the pull of the energy distribution ( P2−P1√
sigma2p,1+sigma2p,2

) as a function of the number of

hits on the 1st turn, 2nd turn, average χ2/DOF , etc. However, this would identify selection
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Figure 5.44: (a) The momentum distribution at [MeV] integrated over all beam rates. (b)
The square root of the Kalman covariance diagonal element [keV] event-by-event integrated
over all beam rates.

criteria for a quality double turn comparison, not selection for a standard 1.5 turn tracks so

it’s unclear what systematics to expect.

5.6.3 Machine Learning Data-driven Approach

5.6.3.1 Description

Here we describe a data driven machine learning approach to track selection. Positrons from

muon decay can not have true energy larger than 52.83 MeV. Positron momentum larger than

53.5 MeV (for example), have been mismeasured by at least 700 keV. In Figure 5.44a, the

positron momentum distribution of events that satisfy relatively loose track quality selection

criteria is shown on a log scale; many events with momentum errors greater than 700 keV

remain.

The data-driven momentum resolution estimates from the Michel edge fit and the double

turn distributions have a core resolution of σpe ∼ 90 keV with a significant tail component

extending to > 1 MeV. Events with momentum larger than 53.5 MeV are mismeasured by
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at least 7 σcore. In Figure 5.44b, we show the square root of the Kalman diagonal element

representing the momentum resolution for tracks with momentum greater than at least 53.5

MeV. The mode of σKalmanE for these events is ∼ 90 keV. Such badly measured events

also exist in the acceptable momentum region. The goal of the machine learning selection

procedure is to devise a method to identify these events with large momentum errors. Since

the Kalman covariance diagonal does not identify these events, an alternative method is

needed.

The dataset is split into two categories, ”good”/”bad” with momentum <53.5 and >53.5

MeV, respectively, to measure track characteristics for mostly well measured tracks (< 53.5

MeV) and those known to have large errors (> 53.5 MeV). The ”bad” sample all have at

least a 700 keV error. On the other hand, a ”good” track includes tracks with the full range

of quality, that is quality tracks and a small fraction of the ”bad” quality tracks.

The objective is to use the measurables to learn how to distinguish between these low quality

tracks and the standard quality tracks. The machine learning approach trains directly on

data to learn the correlations between the measurables and the probability of being a ”bad”

track. The end result is a network that inputs all measurables and returns a 0-1 float defined

as the probability of being a ”bad” track (Pbad). We then remove tracks with Pbad greater

than some threshold, chosen to remove bad events at high probability with small probability

of removing well measured events.

The current training set uses a combination of tracks found both with and without the ML

hit finding algorithm. This set contains about 1M positrons that pass the standard loose

selection criteria to select events to be used in the final analysis. We train using all input

variables mentioned in Subsection 5.6.3.2 except those that are known to or could bias the

momentum distribution. The obvious example of bias is that the ML algorithm could not

use the momentum itself, as the network would not be learning to distinguish between high

and low quality, but instead high and low momentum. This is discussed later in more detail.
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5.6.3.2 Measurables

Here we describe the track observables that could be used in any track selection approach and

describe whether or not each potentially biases the momentum distribution. We explicitly

state if a measurable is not used.

• Number of hits on the fitted track - More measurements indicates an improved

kinematic resolution given the same track path length from the target-SPX. This vari-

able may create a small bias in the momentum distribution due to the fact that low

momentum positron tracks do not reach the outer layers and therefore will have less

hits.

• Hit efficiency and plane efficiency - As above, given the same χ2 and path length,

we expect high hit efficiency to have high quality. We describe how these efficiencies

are determined in the refit task (described in a previous chapter provide the section).

• Number of hits on the first and last half turn - A low number of hits on either

half turn indicates a degraded kinematic resolution and hence the quality of projection

to the target or SPX. We found that including these variables in the neural network

biases the momentum distribution and hence is not used.

• χ2/DOF - A large χ2/DOF will have worse resolution.

• Covariance matrix elements - These are explicit indications of the Kalman fitter

kinematic resolution.

• Propagation length from the target to the CDCH - A longer path length to the

target results in worse vertex position resolution.

• Propagation length from the CDCH to the SPX - A large propagation length

to the SPX indicates a degraded extrapolation and thus a degraded timing resolution.
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This shouldn’t affect the other kinematic variables significantly (negligible effect on

the CDCH T0 and thus the DOCA resolution).

• Propagation length from the target to the SPX - Combining this with the

number of hits is comparable to a rough hit efficiency. This value biases the momentum

distribution due to the large correlation between energy and overall path length. This

should not be used, this is described in later sections.

• Kalman-estimated energy loss - In general, the more energy the track loses, the

more uncertainty there is in the track kinematics due both to scattering and to dis-

persion in the energy loss since the fitter assumes median energy loss as the particle

traverses matter. The energy loss is due to the positron intersecting the target between

the first and second turn, intersecting the inner mylar shell and the outer carbon-fiber

shell, and to loss in the CDCH gas. This summed energy loss is split in the next three

measurables.

• Kalman-estimated energy loss from the target to the drift chamber - Losing

energy in this region would significantly degrade the track resolution at the target.

• Kalman-estimated energy loss from the end of the first turn in the DCH to

the start of the second turn - Large energy loss between the turns could result in

kinematic differences between the first and second turns. This could indicate hitting

the target between turns.

• Kalman-estimated energy loss from the start of the DCH to the end of the

DCH - An overall higher energy loss would indicate a lower resolution.

• Positron target position, angle, energy - Selecting positron tracks based on the

kinematic variables is more likely to introduce bias than other variables as it may bias

the final positron track kinematic distribution. Therefore, the technique described in

this note does not use the position angle, vertex, or energy.
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• Match distance and χ2 between the DCH track and the SPX hit measure-

ment - If a positron track completely misses a physical SPX tile it is suspected that

the track is low quality. Similarly, if the distance between the track projection at the

SPX and the SPX hit position itself is large, one of the measurements has a large error.

• Boolean ML Hit Finding - This is described in section 5.6.5. The 2021 dataset uses

a combination of tracks from two reprocessings (with and without ML hit finding).

The machine learning algorithm may find different optimization for these two classes

of events.

• Number of Physical Turns - The positron tracks typically have 1.5 turns in the

CDCH; ∼ 15% of positron tracks emitted at small θe make an additional turn and an

even smaller fraction make 3.5 turns. These positrons will obviously have more hits,

different covariance matrix elements, etc. We’ve included this as a hot-encoded array

e.g. (0, 1, 0) for a double turn track.

Figure 5.45 contains histograms of the measurables for ”good” and ”bad” tracks. This

demonstrates that some variables have significantly better discrimination power than others.

Figure 5.46a shows a 2D histogram of the hit efficiency vs. the χ2/DOF , as expected, ”bad”

tracks are more often associated with a high χ2 and a smaller hit efficiency. In Figure 5.46b,

we show the 2D histogram of the χ2/DOF and the Kalman σp for ”good and ”bad” tracks;

on average ”bad” tracks have a larger covariance diagonal. However, as shown above, there

are also many instances when the covariance diagonal is ∼ 100 keV.

5.6.3.3 Machine Learning Optimization

Here we list several optimizations that were performed.

• Dataset weighting towards ”good” tracks - The training sample is heavily weighted
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Figure 5.45: Histograms of all variables used to classify the ”good” and ”bad” tracks.

(a) (b)

Figure 5.46: (a) The pair scatter plot matrix of the number of hits and the χ2/DOF .”good”
and ”bad” tracks. (b) The 2D histogram of the Kalman σP and the χ2/DOF for ”good and
”bad” tracks.

with ”good” tracks. This results in a machine-learning algorithm that avoids labeling

a track as ”bad” as it is too unlikely. To remove this feature, we eliminate a large

fraction of ”good” tracks (75%). These are later used for validation studies. One could

also adjust the loss function, but we are only limited in the statistics of the ”bad”
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tracks, not the ”good” tracks, so this data removal shouldn’t degrade our overall track

selection power.

• Optimizing the neural network structure - The default network is shown in Figure

5.47. It is a simple series of dense layers. We found that increasing the number of nodes

per layer beyond the number of input variables improved the prediction accuracy.

Currently, the number of nodes per layer is set to six times the number of inputs.

• Optimizing the neural network loss function - We found the best loss function

to be the binary crossentropy loss function (compared with a mean absolute error or a

categorical crossentropy).

• Comparison with other ML algorithms - We also attempted the following clas-

sification algorithms in sklearn: GradientBoostingClassifier, RandomForestClassifier,

SupportVectorMachine (SVM), but the dense neural network out-performed them in

the validation classification. Some exploration of model parameters was done, but it

was not exhaustive.

• Avoiding Bias - We found that an increased number of parameters (number of nodes)

or increased number of training epochs resulted in a biased momentum distribution.

We avoided biases by checking the momentum distribution of the prediction. We also

found that momentum distribution can be biased by adding specific input variables,

this is described in Section 5.6.4.1.

5.6.4 Results

5.6.4.1 Momentum Bias Check

Before discussing the quality of the selection, we discuss a verification that we are not biasing

the momentum distribution with this track selection approach. That is, we want to avoid
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Figure 5.47: The neural network used for training/prediction.

removing a disproportionate amount of tracks at high momentum. This would be the result

of a correlation between a measurable and momentum. This is a potential negative side

effect of using the Michel edge to discriminate between high and low quality tracks. This

bias would indicate that we are not selecting tracks based on quality alone, but a combination

of quality and probability of high momentum.

In Figure 5.48a, we plot the momentum distribution for ”good” and ”bad” tracks with the

standard set of input variables in test data. We select a threshold such that we remove 6%

of the ”good” tracks. Both histograms are normalized to the number of entries. The two

histograms follow the same shape as a function of momentum, indicating that the momentum

distribution is not biased.

In Figure 5.48b, we add the following variables: maximum radius on the first turn, the

number of hits on the last half turn, and the total propagation length from the target to the

SPX. It’s clear that these variables bias the momentum. We added these variables one at a
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(a) (b)

Figure 5.48: The momentum distribution for ”good” and ”bad” tracks. Both histograms
are normalized to the number of entries. (a) The histograms follow the same shape as a
function of momentum indicating that the momentum distribution is not biased. (b) In this
subplot we add the maximum radius on the first turn, the number of hits on the last half
turn, and the total propagation length from the target to the SPX into the training. Clearly
the distribution gets biased.

time to verify that they each bias the momentum distribution. These inputs are not used in

this technique. As noted above, we also observed this bias when the data was over-trained

(too many epochs or parameters).

5.6.4.2 Momentum Spectrum With Varying Selection

Here we show a few example momentum spectra with different selection. First, in Figure

5.49a, we show the momentum distribution using a conventional cut: ngoodhits - 10χ2/DOF .

This was previously optimized using the Monte Carlo; of course, a more sophisticated con-

ventional cut could be made, but was not investigated. In Figure 5.49b, a neural network

was trained using only the number of hits on the fitted track and the χ2/DOF . In Figure

5.49c, the neural network uses all variables (that don’t bias the momentum). In each figure,

we plot the momentum spectra with no cut, removing the ”worst” 3% and the ”worst” 6%

of the data. That is, we select a threshold X that Y% of the data is removed. As expected,

using a neural network that only uses ngoodhits and χ2/DOF has similar selection power
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to a conventional cut on the combination of the two input variables. The improvement from

the neural network procedure comes from using a combination of all input variables.

(a) (b) (c)

Figure 5.49: The histograms show the momentum spectra for three different track selections
for the two neural networks. The momentum spectra is shown with no cut, removing the
”worst” 2% and the ”worst” 5% of the ”good” sample. That is, we select a threshold X that
removes only Y% of the data. (a) A conventional cut (nHits - 10 · χ2/DOF ). (b) A neural
network only using the number of hits on the fitted track and the χ2/DOF . (c) A neural
network using all variables that do not bias the momentum.

5.6.4.3 Kinematic Resolution Comparison

Here we discuss the relative kinematic resolutions of positron tracks with and without the

ML track selection. The current default threshold eliminates tracks with Pbad > 0.1, this

results in an efficiency loss of 7%.

First, in Figure 5.50, we show the results of fitting the Michel edge distribution with and

without the ML track selection.

As a reminder, the main objective is to not improve the core resolution, but eliminate the long

tails. The Michel edge is fit to the known Michel momentum distribution, an acceptance

function, and a resolution function (sum of three gaussians). The core gaussian width is

effectively the same in the two cases, but σ2 narrows from 443 → 336 MeV, the fraction in

the widest gaussian, frac3, drops from 0.084 → 0.033 and the width of the widest Gaussian

drops from 2.509 → 1.723 MeV. All values indicate a high suppression of the tails.
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Figure 5.50: Fit of the Michel edge in the momentum distribution used to estimate the
momentum resolution with and without the ML track selection applied. The distribution is
shown on a log scale.

We can also use the double turn analysis to determine if the ML selection removes the wide

tails in the kinematic resolutions. However we found that the ML track selection did not

have a significant impact on the double turn resolutions. This is due to the fact that there

are a very small number of double turn tracks with momentum greater than 53.5 MeV even

without the ML track selection. Only ∼ 0.4% of the full dataset is a double turn track

that had a momentum outside the allowed region (after already removing 75% of the good

tracks). There are several steps that are required to have a successful double turn track that

are not required for a single turn: successfully fit both turns, successfully propagate them

to a common plane, pass merging criteria, and successfully fit the two turns together. None

of these steps are required for the single turn tracks and therefore we do not observe the

extremely long tails in the double turn analysis that are seen in the true MC resolutions or

the Michel edge (dominated by single turn tracks). For this reason, the double turn analysis

underestimates the wide resolution tails of single turn tracks. However, after getting rid of

these tails using the ML track selection, the tail (and the core) of the kinematic resolutions

are well represented by the double turn analysis. Note, this was one of the objectives of the

ML track selection technique.
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Figure 5.51: The Monte Carlo resolutions with and without the ML track selection. The
distribution is shown on a log scale.
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Below in Figure 5.51, we show the true MC resolutions for all kinematics with and without

the ML track selection applied for signal positrons at 5 · 107 Hz. The identical neural

network (threshold, weights, etc.) was applied to the Monte Carlo simulation. There is a

large improvement in the tail resolutions. In the MC, the standard threshold results in a

7.5% reduction in events. This reduction results in a 2.4% reduction in the number of events

that pass all kinematic cuts at the 3σ level (e.g. |pRec − pMC | < 3 · 90keV ) and a 19.1%

reduction in the number of events that fail at least one kinematic cut at the 3σ level.

To summarize, even though the neural network was trained and therefore optimized for

data, in the Monte Carlo, we see a reduction in the tail resolutions by ∼ 25 − 45% and a

reduction in the number of events that fail kinematic cuts by 19.1%. This comes at the

expense of 2.4% of signal efficiency (3σ region). In addition, we note that the ML track

selection has an additional advantage that it yields a similar tail resolution in the Monte

Carlo (true resolution) to the double turn analysis; without this selection the double turn

analysis underestimates the tail resolutions. This comparison with the double turn analysis

is shown in the next section.

5.6.4.4 Variable Importance

Here we estimate the importance of all input variables. One technique used to measure each

variable’s importance is to start with a simple neural network only using the number of hits

on the fitted track, then adding other variables into the training sequentially. In each neural

network, we measure the accuracy of validation data.

To illustrate the accuracy, we use an accuracy curve, that is, for a given accuracy in ”good”

tracks, what is the accuracy for ”bad” track prediction i.e. given a total relative tracking

efficiency (with respect to the standard cuts) of 96%, the selection removes ∼ 70% of the

”bad” tracks that would otherwise be in the final dataset (passed the standard cuts). To
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reiterate, this selection removes ”bad” tracks over the entire momentum space. It is clear

from the curves that the first few input values have a large amount of power, but even the

last few variables continue to improve the neural network. This is another check that adding

in additional variables improves our track selection.

Figure 5.52: The accuracy of ”good” tracks vs. the accuracy of ”bad” tracks. We additionally
plot this as a function of the number of variables in the neural network.

One criticism of machine learning when compared to a conventional approach is that it’s

often treated as a ”black box”, not knowing how the variables are used in the prediction.

We use validation data to probe how the variables are used in the neural network.

In Figure 5.53, we histogram the average prediction value for each input variable shown in

Figure 5.45. We integrate over all other variables. We expect that a track with measurable

values closely associated with a ”bad” track will have a high probability of being a ”bad”

track (Pbad). Note, the neural network probability output has a full range of 0-1. In addition,

Figures 5.54a/5.54b use the same 2D variable pairs as in Figures 5.46a and 5.46b, but now

are filled with the average prediction for a pair of variables. The histograms are as expected;

given a low hit efficiency or a bad match between the positron track and the SPX hit,

< Pbad > is higher. The higher the peak value of < Pbad >, the more ”power” each input
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variable has. It’s clear that the hit efficiency being less than 50% is one of the most powerful

indicators of track quality; this is not surprising.
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Figure 5.53: The average prediction as a function of all variables used to classify the ”good”
and ”bad” tracks.

5.6.5 Final Track Selection and Ranking in the 2021 Dataset

Here we discuss the details of the implementation of track selection and track ranking in the

final 2021 data set.

In the final 2021 analysis, the data was reprocessed twice: with and without the ML hit

finding analysis (Yusuke Uchiyama). The ML hit finding yielded an improved tracking

efficiency (∼ 25%), but at a degraded resolution (∼ 15% in all kinematics). Therefore,

we decided to combine the datasets preferentially selecting ”ghosts” (reconstructed tracks

associated with the same physical track) from the reprocessing without ML hit finding.

Since tracks with and without ML hit finding have slightly different distributions (number of
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(a) (b)

Figure 5.54: The two plots show the average prediction for two pairs of meaurables (a) The
mean prediction is shown as a function of the number of hits and the χ2/DOF .(b) The mean
prediction is shown as a function of Kalman σP and the χ2/DOF .

hits, χ2, etc.), a Boolean was added to the ML track selection indicating whether or not the

track was from the ML hit finding reprocessing. As mentioned, the likelihood analysis only

uses one reconstructed positron track for each event. In the analysis, there can be instances

of several physical positron tracks in the region of interest. Further, there are frequently

multiple versions of the same physical positron track (i.e. ghost tracks). Therefore we

require a procedure to select a single reconstructed track.

In this subsection, we discuss the track selection criteria, the ghost ranking and then the

selection of a single positron track.

5.6.5.1 Final Track Selection

First, the standard MEG II analysis applies a set of selection criteria to all reconstructed

tracks. This includes selection on all the variables mentioned above (number of hits on the

fitted track, χ2/DOF , diagonal elements of the covariance matrix, propagation length to the

target, etc.) and the ML selection threshold. These thresholds are listed below. The ML

selection threshold is currently set by removing a large fraction of the high momentum tails
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without removing too many tracks: ∼ 7% efficiency loss at the default threshold of 0.1.

5.6.5.1.1 Track Criteria

• Successful fit, propagation to the target

• Distance between the CDCH track at the 1st SPX hit and the estimated SPX hit

position < 10 cm

• Time between the CDCH track at the 1st SPX hit and the estimated SPX hit time

< 15 ns

• CDCH track must propagate within 3 cm of the physical SPX tile

• Fiducial target elliptical limit (AIn.Frame − 2 · σze , BIn.Frame − 2 · σye)

• Number of hits on the fitted tracks >= 18

• Number of hits on the fitted track on the first half turn >= 5

• chi2/DOF < 13/3 - number of hits on fitted track/60

• σpe < 0.3 MeV

• σϕe < 50 mrad

• σθe < 12 mrad

• σye < .5 cm

• σze < .5 cm

• Extrapolation length from the CDCH to the target < 45 cm

• Extrapolation length from the CDCH to the SPX < 80 cm

• T0 from successful propagation to SPX cluster

• ML Prediction < 0.1

The standard selection criteria are loose in order to maximize the positron tracking efficiency.

The track selection is then cleaned up by the ML track selection described previously. Note,

even after the ML track selection, there is some ∼ 20− 30% (depending on the beam rate)

of tracks have a propagation length to the SPX greater than 50 cm, which implies that both

algorithms designed to add these hit have failed. This will be explored in the future.
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5.6.5.2 Ghost Ranking

We only use the ”best” track in the final analysis, this relies on the same ML track selection.

The tracks are ranked based on the ML track selection’s prediction probability of being a

”good” track (1 − Pbad). Determining which reconstructed tracks correspond to the same

physical track is based on the matched SPX cluster. It’s highly unlikely that two physical

tracks will hit the same SPX cluster of SPX tiles at the same time. This has an error rate

significantly less than 1%.

However, there are two additional points. First, as mentioned above, the ML hit finding

tracks have degraded kinematic resolution (double turn analysis). We found that without

an explicit force, there are instances when the ML track selection chooses a ML hit finding

track (e.g. with more hits), but it actually has a degraded resolution (using the double turn

analysis or the Michel edge fit). We therefore force the track ranking to preferentially select

tracks without ML hit finding over any track with ML hit finding. The ML track predictions

are between 0-1 (1 being a bad track); we add 1 to the ML hit finding tracks. Second, some

physics double turn tracks (2.5 turns) are missing the first full turn. This results in a target

vertex time displaced by roughly 2 ns (and an incorrect position and angle at the target).

The hit efficiency, plane efficiency, and propagation length to the target all appear consistent

with a 1.5 turn track and therefore the track appears to be of good quality (from the point

of view of the selection criteria). There are instances with the following ghosts on a single

physical 2.5 turn track: ML hit finding results in a full 2.5 turn track and the no ML hit

finding reprocessing only results in a 1.5 turn track (matched to the same SPX). In this case,

regardless of the ML hit finding flag, we select the 2.5 turn track. The 2.5 turn track is the

only track with a reasonable time, vertex, etc. at the target, even if it is lower quality. We

add 2 to the ranking per turn.

The final track ranking is below where MLRank represents the ML ranking (0-1, 0 being
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the best track), the MLHit is a Boolean representing if the track is from the ML hit finding

reprocessing, and NTurns represents the number of turns on the fitted track.

Rank = -MLRank - MLHit + 2 · NTurns (5.3)

5.6.5.3 Physical Track Selection

At this stage, each physical track only contains one reconstructed track. We then apply the

following kinematic cuts using both the positron and photon kinematics:

5.6.5.3.1 Kinematic Cuts

• |te,TGT − tγ,TGT | < 3ns

• 50 < pe < 56MeV

• 48 < Eγ < 58MeV

• −0.988 < cos(θe,γ) < −1.01

• |θe,γ| < 0.1 rad

• |ϕe,γ| < 0.1 rad

An extremely small fraction of events have two physical positron tracks that pass the above

selection criteria. At the current moment, the track is chosen which has the smallest relative

angle between the positron and the photon.

5.6.6 Conclusions

In this section, we presented a neural network application to track selection and track rank-

ing. In the MEG II dataset, positrons with a momentum pe+ >
mµ+

2
+X·σp are mismeasured

by at least X·σp. The neural network learns the differences in the measurable distributions
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between ”good” tracks (pe+ <
mµ+

2
+X·σp) and ”bad” tracks (pe+ >

mµ+

2
+X·σp). The neural

network creates a 1-dimensional probability of being a ”bad” track (0-1) using a combination

of the many measurable input variables (16). By training directly on data, the selection has

no reliance on the Monte Carlo simulation unlike other approaches. We show that a ML

track selection threshold that removes 5-10% of the data nearly completely eliminates the

high energy tail seen in the Michel momentum distribution; we also show that the selection

did not bias the momentum distribution. In addition, when applying the neural network to

the Monte Carlo, we observe a large suppression of tracks with low kinematic resolution in

all kinematic variables, not only the momentum (i.e. tails). This is applied in the standard

2021 data.

5.7 Kinematic Resolutions and Correlations

5.7.1 Introduction

The physics analysis relies on kinematic resolution estimates to calculate the probability of

an event being signal or background. In this chapter, we estimate the kinematic resolution,

width of the pull distributions (described later), the correlations between the kinematic

variables and the correlations between the pull distributions in the 2021 data set. We present

this study at 3 ·107 Hz beam rate, but it was done for all beam rates ( here). The resolutions

are estimates using the double turn analysis technique on both the data and Michel MC

samples.

In the MEG II detector, approximately 15% of all positron tracks intersect the drift chamber

5 times before leaving the CDCH outer shell (2.5 turn track). For these events, we inde-

pendently fit and measure the two turns on these tracks (1 turn and 1.5 turns respectively).

By propagating both turns to a common plane parallel to the target between the two turns,
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we compare the kinematics and thus estimate the kinematic resolution for standard tracks.

That is, histogram (X2 − X1) for kinematics pe, ze, ye, ϕe, θe. Note, the final momentum

resolution estimate uses the Michel edge fit, this was described in the previous chapter.

The physics analysis takes advantage of measured correlations between the kinematic vari-

ables to properly assess the likelihood any given positron is signal or background. Some of

these correlations can be observed directly in the data using the double turn analysis. Other

correlations require the MC and thus have additional uncertainty in the measurement.

In the 2021 data, all MC distributions are well-described by a double gaussian. To properly

estimate the resolution of a single turn in the double turn analysis, we fit the double turn

distributions to the convolution of two equal double Gaussians. This will be described in

more detail below. This likelihood analysis requires the resolutions for signal positrons, and

the correlations between the kinematic variables, both are described here.

The final physics analysis takes into account the Kalman filter event-by-event covariance

matrix. That is, using the hit uncertainties, position of the hits, track residuals, propagation

length to the target, and the number of hits on the track, the Kalman filter estimates the

kinematic resolutions at the target (pe, ze, ye, ϕe, θe). The covariance matrix is a good esti-

mator of the resolution, but needs corrections resulting from the covariance matrix elements

on average being too large or too small. These corrections are estimated by measuring the

pull distributions in both the double turn distributions ((X2 − X1)/σX,1,2 where σX,1,2 is

the square root of the relevant Kalman filter covariance matrix diagonal element of the first

and second turns added in quadrature) and the MC ((XRec − XMC)/σX,Rec) where σX,Rec

is the square root of the reconstructed track’s relevant diagonal element of the covariance

matrix). In both cases, the pull distribution is expected to have a zero mean with a width

(Gaussian σ) of 1. However, the widths are often in the range of 0.9 − 1.3 and therefore

we must correct the covariance matrix elements accordingly. In addition, the pulls are often

not described by a single Gaussian; in our case, the pulls are well described by a sum of
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two Gaussians. The widths of the pull distributions are measured here. This analysis also

requires the correlations between the pull distributions, not the kinematic variables. A sep-

arate set of correlation parameters (describing the same physical correlations) for the pulls

is provided here.

5.7.1.1 Kinematic Distributions and Track Selection

For all data, we apply the standard track selection using the MEGPhysicsSelection class;

this includes the ML selection described in the previous chapter. We do not include the cuts

on the relative positron photon kinematics. In the case of “ghost” tracks (described in the

previous chapter) we only use the ”best” track. The ”best” track is based on track selection

and ranking described in the previous section.

Figure 5.55 presents the reconstructed positron kinematic distributions for Monte Carlo

signal and Michel positrons, and for 2021 MEG trigger data. The data has a different beam

center, significant entries in the carbon fiber frame of the target, and a significantly different

ϕe distribution. The angular difference is due to the fact that we do not simulate events

based on the MEG trigger, but only restrict the angular distributions of the positrons.

5.7.2 Kinematic Resolutions

In this subsection we estimate the kinematic resolutions using both the double turn analysis

and the Monte Carlo comparisons. The goal of the section is to estimate the resolution in

the data for signal.
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Figure 5.55: The kinematic distributions for data and MC.

5.7.2.1 MC Resolutions

First, we present the kinematic resolutions in the Monte Carlo. To avoid pileup tracks

entering the histograms, we also include a simple cut that requires the reconstructed time of

the positron at the target to agree with the MC within 2 ns. Of course a more sophisticated

technique could be used to remove accidentals, but the current technique should not bias

the distributions.

The distributions are shown below for signal positrons in Figure 5.56 at 3 · 107 Hz; the

distributions are fit to double gaussians. Note that we found that the histograms are well fit
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to a when A2/A1 = 0.1 (fit χ2/DOF < 2) in nearly all cases. For simplicity this has been

fixed for all histograms except pe, θe. In the case of θe, pe, we restrict A2/A1 = 0.15. In these

cases, allowing a variable A2/A1 did not significantly improve the fit’s χ2/DOF .

The tails eventually diverge from the fit on the order of < 10 entries/bin with a maximum

of ∼ 5000 entries/bin. The most significant divergence from the fit occurs when the recon-

structed momentum is too small. This is likely due to the fact that some positrons experience

bremsstrahlung. The positrons have a small probability of losing a large amount of energy in

a material whereas Kalman only removes the typical amount of energy from different physics

processes.

Note, in the case of the ϕe resolution, we present the resolution for positrons where |ϕe| < 0.2

rad. We also include the correlation between the errors in ϕe, pe however this is a very minor

effect. In addition, the ye resolution contains the correlation between the errors in ye, pe.

Finally, we note that these wide tails can be further suppressed by including a more aggressive

cut using the ML track selection, but this results in a lower efficiency.

All of the resolutions can be found in the attached Google Sheets. As an example, we

tabulate the signal and Michel resolution at 3 · 107 Hz below in Table 5.1.

Table 5.1: We list the resolutions as determined by the MC comparison. We fit the distri-
butions to a double gaussian where the tail has an amplitude fixed to 0.1 the amplitude of
the core (except θe where A2/A1 = 0.15).

MC Double Gaussian Components XRec −XMC

Data Y [mm] Z [mm]
Φ
[mrad]

Θ
[mrad]

P [keV]

Signal Core 0.64 1.65 5.18 6.47 84.4
Michel Core 0.75 1.79 5.39 6.76 87.09
Signal Tail 1.95 4.65 13.10 16.33 235.6
Michel Tail 2.20 4.79 14.33 17.42 240.8

In the MC signal sample, the vertex resolution is effectively at the design of the experiment,

the momentum is significantly improved with respect to the design, and the angular reso-
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Figure 5.56: The reconstructed kinematics are compared to the true MC kinematics. The
distributions are fit to a double gaussian in a wide region. Distributions are on a log scale.

lutions are degraded with respect to the design. Even the angular resolutions are now not

far off (σθe , σϕe = 6.5, 5.2 mrad compared with 5.3,3.7 mrad respectively). We note that the

ϕe resolution in the design paper is likely also taking into account the correlation between

errors in ϕe, ze; this is a large effect. Taking into account this correlation, ϕe resolution

∼ 3.66 mrad (achieving the design resolution).
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5.7.2.2 Double Turn Resolutions

Here we discuss the results of the double turn analysis. First, Figure 5.57 shows an example

of a 2021 data example of a double turn event.

Figure 5.57: An example of a double turn positron track. The green dots show intersected
wires with signal in the drift chamber; the yellow tiles show the pixelated timing counter
tiles with signal.

In addition to the standard selection, we also require both turns to have at least 18 hits on

the fitted track. This hit requirement is the same as that in the standard track selection.

The double turn comparison is done after all tracking algorithms have been applied (turn

merging, updating of T0, refit for additional hits, machine learning doca estimate, etc.).

The 1st turn (2 intersections) and the final 1.5 turns (3 intersections) have different resolu-

tions. This is particularly true for the momentum; without the final half turn, the momentum

is degraded significantly. As mentioned above, the kinematic difference between the first and

second turns contains the resolution of first and second turns added in quadrature. We fit

the distribution to a convolution of two double gaussians; we assume the two double gaus-

sians are identical for the first and second turns. This is of course, an approximation, but

ends up yielding a quality resolution estimate for both the tail and the core of the kinematic

resolutions. The distributions are shown below for the 2021 data 5.58.

We tabulate the double turn resolutions σ for 2021 data and Michel MC events both at 3 ·107

Hz in Table 5.2. We also tabulate the MC corrections to convert this double turn resolution
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Figure 5.58: The double turn resolutions for data at 3 · 107 Hz. The technique compares the
kinematics of the 1st and 2nd turns at a common plane parallel with the target. The smaller
of the two ϕe comparisons only contains comparisons where the first turn’s |ϕe| < 0.2 rad.

into an estimate of the signal positron resolution in data.

Ideally, there is good agreement between the true MC resolutions and those estimated by

the double turn resolutions for Michel MC data. The calculated ratio of the two resolutions

(true resolution and that estimated by the double turn analysis) in Michel MC data are

between 0.93-1.12 for the core and 0.84-1.15 for the tail components i.e. corrections are of

the order 10%. There are two main effects that influence these corrections. The first is that

the double turn resolution assumes the two turns have equal resolution, therefore, we expect

the double turn resolution to be worse (particularly for the momentum). The table indicates
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Table 5.2: The resolutions as determined by the double turn analysis in both data and Michel
MC data. We list the relevant ratios of kinematic comparisons in order to extract a data
estimate of the signal resolution. The ∗ represents the ϕe resolution including the correlation
between ϕe, ze.

Double Turn Gaussian Components X2 −X1

Data Y [mm] Z [mm] Φ [mrad]
Θ
[mrad]

P [keV]

2021 Data Core 0.75 2.03 5.58 7.72 106.32
2021 Data Core !MLHit 0.70 1.88 5.24 7.02 101.25
Michel MC Core 0.67 1.71 4.85 6.85 93.6
2021 Data Tail 2.19 6.26 17.77 25.42 375.21
2021 Data Tail !MLHit 2.09 5.95 17.58 24.18 359.85
Michel MC Tail 1.92 5.24 15.77 19.60 288.12

Ratios to Estimate Signal Resolution in Data
Data Y Z Φ Θ P
MC Signal/MC Michel
Core

0.85 0.88 0.96 0.96 0.97

MC Michel/DT Michel
Core

1.12 1.05 1.08 0.99 0.93

MC Signal/MC Michel
Tail

0.89 0.93 0.92 0.94 0.98

MC Michel/DT Michel
Tail

1.15 0.91 0.91 0.89 0.84

2021 Data-driven Single Gaussian Signal Resolution

Data Y [mm] Z [mm] Φ [mrad]
Θ
[mrad]

P [keV]

Data Signal Core 0.72 1.86 5.76/4.07* 7.29 95.87
Data !MLHit Signal
Core

0.67 1.73 5.41/3.81* 6.63 91.30

Design Signal Core 0.7 1.6 3.7 5.3 130
Data Signal Tail 2.22 5.30 14.83 21.18 306.76
Data !MLHit Signal
Tail

2.12 5.04 14.67 20.15 294.20

that the true MC core resolution is ∼ 7% narrower than that predicted by the double turn

(∼ 16% narrower than the tail resolution). The second effect is that the double turn tracks

have already had to pass intrinsic analysis ”cuts” to output a double turn track: the track

fitter must successfully fit the two full turns, the two turns must successfully propagate to a

common plane between the tracks, satisfy a loose merging criteria, and the two turns must
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successfully merge. Therefore we’d expect the double turn resolutions to not contain the

long tails; this ends up not being a dominant effect as in general the double turn tails are

actually wider than that of the MC.

Finally, we note that the resolutions in data are ∼ 10% degraded with respect to the Michel

MC. This difference is the result of many differences between the data and the MC. This

includes the signal and noise on the waveforms, magnetic field errors, wire alignment errors,

etc. Further, a critical point is that the analysis on the Monte Carlo excludes a few analysis

techniques that were developed based on the data. In particular, the ML hit finding technique

is not included; excluding this software (only using double turn events without ML hit

finding) results in narrower double turn distributions in data by ∼ 7%. This is also shown in

Table 5.2. We observe a high level of consistency between the data without ML hit finding

and the Michel double turn resolutions.

5.7.3 Pull Distributions

The final maximum likelihood analysis relies on the covariance matrix from the Kalman

filter. The likelihood analysis includes a variable resolution function based on the number of

fitted hits on the track, the χ2/DOF , etc. This yields a large improvement to the analysis

sensitivity. However, we must verify that the resolution estimated by the covariance matrix

match the true resolution. The general technique to modify the Kalman estimated resolution

is to calculate the pull distributions. In the MC, the pull for a kinematic variable X is defined

as:(XRec − XMC)/σX,Rec where σX,Rec is the relevant diagonal element of the covariance

matrix. In the double turn analysis, the pull is defined as: (X2 −X1)/σX,1,2 where σX1,2 is

the Kalman filter covariance matrix diagonal element of the first and second turns added in

quadrature). Below we calculate the width of the pull distributions in the MC for Michel

and signal positrons. We then calculate the width of the pull distributions in Michel MC
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and the 2021 data using the double turn analysis. We then use the combined information to

estimate the pull distribution of signal positrons in the data.

5.7.3.1 MC Pull Distributions

Here we present the kinematic pull distributions in the Monte Carlo. All selection criteria

are the same as described previously. The pull distributions are shown for signal positrons

at 3 · 107 Hz beam rate in Figure 5.59. The resolutions are tabulated for MC Michel and

signal positrons in Table 5.3.
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Figure 5.59: The pull distributions for signal MC positrons. The distributions are fit to a
double gaussian in a wide region. Distributions are on a log scale.

184



Table 5.3: The pull distribution widths as determined by the MC comparison. We fit the
distribution to a double gaussian where the tail has an amplitude fixed to 0.1 the amplitude
of the core (except θe where A2/A1 = 0.15).

MC Pull Double Gaussian Components XRec −XMC

Data Y [] Z [] Φ [] Θ [] P []
Signal Core 1.07 1.56 1.11 1.05 1.00
Michel Core 1.06 1.61 1.13 1.05 1.00
Signal Tail 2.89 4.65 2.82 2.42 2.68
Michel Tail 2.84 4.02 2.87 2.46 2.51

The distributions are fit to a double gaussian using the same restriction that A2/A1 =

0.1/0.15. Unlike the phie resolution, the ϕe pull uses all ϕe values as the covariance matrix

should be handling the difference in resolution at different ϕe. In addition, the ye pull

contains the correlation between ye : pe. The most significant divergence from the fit occurs

when the reconstructed momentum is too small; this was described in the previous section.

In general the pull widths are close to 1, except for ze, which is around 1.6. It’s unclear why

the core of the ze pull is significantly wider than the others.

5.7.3.2 Double Turn Pulls

We use the same selection stated above when calculating the double turn pulls. The Kalman

should already include information indicating that the resolution of the first turn (two cham-

ber intersections) is degraded with respect to the second turn (three chamber intersections).

Therefore, the double turn pull distributions should account for the resolution of both turns,

and so we fit the histograms to a sum of two gaussians. The double turn pull distributions

for the 2021 data is shown in Figure 5.60.

We tabulate the double turn pull widths for 2021 data and Michel MC events both at 3 · 107

Hz in Table 5.4. We also include corrections from the MC comparison needed to convert

this into a pull width for signal positrons.
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Figure 5.60: The double turn pull distributions for data at 3·107 Hz. The technique compares
the kinematics of the 1st and 2nd turns at a common plane parallel with the target divided
by the Kalman estimated resolution of the first and second turns added in quadrature.

The closer the width is to 1, the closer the covariance matrix is to correctly estimating

the resolution. For the most part, the covariance matrix underestimates the resolutions by

∼ 20% in the core. Further, the covariance has no tail component, which we observe is

typically ∼ 3x the core. Note that again, all core σ for the ze pull is between 1.5-2. This

could be a consequence of the σDOCA, which is also a single Gaussian and does not take into

consideration the tails of the DOCA resolution. The typical value of σDOCA is about 110µm,

but our DOCA resolutions contain a significant tail of 300µm. We have observed in the MC

that the DOCA resolution has the largest fractional effect on the ze resolution.
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Table 5.4: The results of fitting the pull distributions in the double turn analysis in both
data and Michel MC data to a sum of two gaussians. We list the relevant ratios of kinematic
comparisons in order to extract a data estimate of the signal pull widths.

Double Turn Gaussian Components (X2 −X1)/σX1,2

Data Y [] Z [] Φ [] Θ [] P []
2021 Data Core 1.25 2.04 1.27 1.34 1.17
Michel MC Core 1.13 1.62 1.19 1.19 1.17
2021 Data Tail 2.86 4.43 3.20 3.24 3.06
Michel MC Tail 2.50 3.82 2.65 2.57 2.97

Ratios
Data Y Z Φ Θ P
MC Signal/MC Michel
Core

1.01 0.97 0.98 1.00 1.00

MC Michel/DT Michel
Core

0.94 0.99 0.95 0.88 0.85

MC Signal/MC Michel
Tail

1.02 1.03 0.98 0.98 1.07

MC Michel/DT Michel
Tail

1.14 1.02 1.08 0.96 0.85

2021 Data-driven Double Gaussian Pulls
Data Y [] Z [] Φ [] Θ [] P []
2021 Data Signal Core
Pull

1.18 1.96 1.21 1.18 1.00

2021 Data Signal Tail
Pull

3.18 4.78 3.42 3.07 2.66

Next, we note that the differences between the pull width in the Michel MC truth comparison

and the Michel MC double turn comparison yield a very comparable result in all cases; the

ratio of the cores is between 0.85-0.99 in all kinematics i.e. the double turn technique

provides a slightly wider core. We also see a small between the signal and Michel MC

positrons, especially in the core of the distributions. This implies that the covariance is

correctly identifying the improved resolution for signal positrons. Finally, we note that the

data double turn pulls are about ∼ 10% wider than those of Michel positrons in the MC.

This is consistent with the fact that the data resolutions are also ∼ 10% wider than that of

the Michel MC in the double turn analysis. This implies that the covariance is comparable

in the data and the MC.
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5.7.4 Correlations

In this subsection, we estimate the positron correlations observed in MEG II. All correlations

were observed in MEG I. An exhaustive search for correlations between all pairs of kinematic

variables as a function of positron angles (θe, ϕe) has not been done. The correlations with

a ∗ symbol indicate that the correlation is observed in the double turn analysis. In MEG

I, correlations 5.4, 5.5,5.6, 5.7 are explained in detail in TN70[55]. Correlations 5.9 and 5.8

were found later and are only described briefly in TN84[56] for MEG I. These correlations

are listed below:

∗δϕ = [pϕ0 + pϕ1 · tan(ϕ)] · δE (5.4)

∗δY = pY0 + pY1 · δE (5.5)

∗δZ = [pZ2 + pZ3 · cot(θ)] · δE (5.6)

δZ = pZ0 + pZ1 · δθ (5.7)

∗δϕ = [pϕ5 + pϕ6 · ϕ+ pϕ7 · ϕ2] · δZ (5.8)

δϕ = [pϕ2 + pϕ3 · ϕ+ pϕ4 · ϕ2] · δθ (5.9)

Several kinematic variables are correlated with the positron momentum (ze, ye, ϕe). If the

positron momentum is mismeasured to be larger than the true momentum, the radius of

curvature will be larger; this on average results in a systematic change in the positron vertex

and emission angle at the stopping target. For example, in a simple case where a positron

has a radius of curvature of ∼ 25 cm, a fractional error of 100 keV/52.8 MeV ∼ 0.0019 and

thus changing the radius of curvature by 25 · 0.0019 = 500µm; this mainly affects the ye

coordinate and the angle in ϕe.
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We are searching for the µ → eγ signal with a known momentum of 52.83 MeV. Therefore,

in the signal positron probability density function, the positron ze, ye, ϕe kinematics will be

shifted based on the difference between the measured momentum and the signal momentum.

All of these correlations are observable in the Monte Carlo and the double turn analysis.

Next, correlation 5.7 between the positron’s vertex ze and θe at the target is another geo-

metrical consequence: given the positron is measured with an error in θe, one should expect

a linear relationship between the error in θe and ze. This is only visible in the Monte Carlo,

not the double turn technique as explained here[55].

Finally there are the 5.9 and 5.8 correlations. Both correlations are dependent on the positron

ϕe at the target. The fact that there are two correlations is almost exclusively due to

the previous mentioned correlation between ze, θe. That is, simply taking into account the

correlation between ze, ϕe makes the correlation between θe, ϕe negligible. Only the ze, ϕe

correlation is visible in the double turn technique therefore, we choose to first account for

the correlation between ze, ϕe and then inspect the θe, ϕe correlation. We will show later that

the remaining θe, ϕe is negligible. The correlation can be thought of as producing a similar

effect as an error in the target position. That is, an error in ze nominally shifts the target’s

normal coordinate by sin(15◦) ∗ dze; this shifts the ϕe coordinate. This effect is accentuated

at large |ϕe|. Roughly dze = 2mm; dxTGT ∼ 0.5mm, thus changing the ϕe by ∼ 5 mrad.

5.7.4.1 Correlations between Kinematic Variables

First, we start by showing the correlations between the kinematic variables in the data (beam

rate 3 · 107 Hz) in Figure 5.61. It’s clear that the 5.4, 5.5,5.6, 5.8 correlations are all visible

in the data double turn analysis. We additionally show the correlation between the positron

ϕe and the squared error in ϕe (i.e. (ϕe,2−ϕe,1)
2) as this is also incorporated into the average

PDF likelihood analysis.
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Figure 5.61: The correlations in data using the double turn analysis. This does not include
all possible correlations as some are not accessible by this technique.

Next, Figure 5.62 shows the correlations in the MC comparison for signal positrons at 3 ·107

Hz.

To be clear, we calculated the correlations between the kinematic variables for the data using

the double turn technique, the Michel MC using the double turn technique, and in the MC
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Figure 5.62: The correlations between the kinematic variables by comparing the recon-
structed kinematics to the true MC kinematics for signal positrons.

using signal and Michel MC data (4 total data types). We then estimated these correlations

for all beam rates. Therefore, we made 16 versions of the correlations.
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5.7.4.2 Comparison of Datasets and Techniques

Here we describe the details of the agreement in the correlations between all datasets. Fre-

quently, we calculate the typical value in data, then apply a small correlation based on the

MC. In other cases when the data disagrees significantly with the MC, we rely on the MC.

For correlation 5.4, using all 16 versions, we calculate σpϕ1
/µpϕ1

or the fractional fluctuations

in this parameter to be 9%. We also calculate:
pϕ1,MCMichel

pϕ1,DTMichel

· pϕ1,MCSignal

pϕ1,MCMichel

= 0.946. This factor is

used to convert the data double turn correlation parameter into one for signal. We calculate

the data pϕ1 = −0.0143 rad/MeV. We rely on the average MC signal value for pϕ0 = −0.0096

rad/MeV as it is significantly different in the signal MC than other data sets.

Next, we discuss correlation 5.5. We calculate σpY1 /µpY1
or the fractional fluctuations in this

parameter to be 6.30%. We calculate:
pY1,MCMichel

pY1,DTMichel
· pY1,MCSignal

pY1,MCMichel
= 1.010 to convert the data

double turn correlation parameter into one for signal. We calculate the data pY1 = 0.314

cm/MeV. In all techniques we find pY0 to be consistent with zero.

For correlation 5.8, the most relevant parameter is pϕ5 . This is effectively the correlation

between dϕe, dze at ϕ = 0. We calculate σpϕ5
/µpϕ5

= 9.7% and
pϕ5,MCMichel

pϕ5,DTMichel

· pϕ5,MCSignal

pϕ5,MCMichel

= 0.88.

We calculate pϕ5 = 0.0176 rad/cm using this correction factor. On the other hand, the linear

and quadratic terms (pϕ6 , p
ϕ
7) do not have the same structure in the double turn technique

and the MC comparison; in particular in the Monte Carlo, the dϕe, dze dependence on ϕ has

a significant quadratic term and a negligible linear term. We set pϕ6 = 0 and take pϕ7 from

the signal MC (pϕ7 = 0.01313 1/(cm*rad)).

Next, the ϕe : θe correlation is effectively eliminated once the ϕe : ze correlation is accounted

for with a correlation dϕe/dθe ∼ 0.02 at ϕe = 0 or dθe ∼ 14mrad (2 σ) creates a 0.3 mrad

systematic. This has a very small effect on the eventual ϕe resolution (∼ 90% of events has

a correction smaller than 0.4 mrad). In addition, this correlation is not visible in the double
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turn analysis and therefore has a larger uncertainty.

Correlation 5.6 was excluded in MEG I physics analysis as it was a small correction. In

MEG II including this correlation improved the ze resolution of ∼ 5− 10%. The slope of the

correlation’s dependence on θe is different in the Monte Carlo comparison and the double

turn comparison by ∼ 2; for this reason, we use the signal MC to measure pZ3 = −1.907

cm/MeV. The curve does not fit perfectly to a cot function and therefore a higher order

polynomial fit could be used in the future. All values of pZ2 are consistent with zero.

Finally, we discuss correlation 5.7. As mentioned above, this is only observable in the MC.

Therefore, we simply take the average values calculated in the MC for signal (pZ1 = 20.29).

The intercept (pZ0 ) is consistent with zero.

The qualitative and quantitative results discussed are summarized in Table 5.5.

Table 5.5: The correlation parameter values. The DT row represents if the parameter is
visible in the double turn analysis. The zero row is Boolean depending on if the parameter
is zero consistent. The origin row states how the value was measured. DTC abbreviates the
double turn analysis data value corrected using the MC. MCS abbreviates the signal MC
value.

Correlation Parameters

Param pϕ0 pϕ1 pϕ2 pϕ3 pϕ4 pϕ5 pϕ6 pϕ7 pY0 pY1 pZ0 pZ1 pZ2 pZ3
Units rad

MeV
rad
MeV rad rad2

rad
cm cm cm∗rad cm cm

MeV
cm cm

rad
cm

MeV
cm

MeV

DT N Y N N N Y Y Y Y Y N N Y Y
Zero N N Y Y Y N Y N Y N Y N Y N
Origin MCS DTC - - - DTC - MCS - DTC - MCS - MCS
Final
Value

−9.6·
10−3

−14.3·
10−3 - - -

17.6·
10−3 -

13.1 ·
10−3 - 0.314 - 20.29 - -1.91

5.7.4.3 Correlations Between Pull Distributions

In this subsection we revisit the same six correlations described in the previous section, but

measure the correlations between the kinematic pulls. These correlations are needed for the

event by event physics analysis.
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Note that correlation 5.4 and the Kalman σϕ are both functions of ϕ. Therefore we fit

correlation to an alternate function shown in Equation 5.10. Here, the s represents the pull.

This effectively assumes that the ϕ resolution has a tan(ϕ)2 dependence on ϕ and a resolution

of σ2
ϕ,0 at ϕ = 0. In TN84 pϕ0 = cϕ and pϕ1 = kϕ. The cϕ is the correlation at ϕ = 0, which

is non-zero especially in the case of signal positrons. The kϕ represents the ϕ dependence of

the ϕ resolution. We simply fit for all three parameters: pϕ0 , p
ϕ
1 , σ

2
ϕ,0.

sϕ

sE
=

pϕ0 + pϕ1 · tan(ϕ)√
σ2
ϕ,0 + (pϕ1 tan(ϕ))

2

(5.10)

For the remaining correlations: 5.6,5.7,5.8,5.9, we maintain the same fit, but replacing the

kinematic errors with the pulls.

Same as before, correlation 5.7 and 5.9 are not visible in the double turn distributions. Figure

5.63 shows the correlations visible to the double turn analysis in the 2021 data at 3 · 107 Hz.

Note, correlation 5.4 is well fit to the equation in 5.10.

The correlations between the pulls for Monte Carlo signal at 3 · 107 Hz are shown in Figure

5.64.

5.7.4.4 Comparison of Datasets and Techniques

Here we compare the correlations between the pull distributions from the double turn analysis

and the Monte Carlo comparison.

First, we discuss correlation 5.10. Here, σϕ,0 is effectively the same in all techniques with

a mean of 6.46 and a fractional RMS of 4.6%. We extract pϕ0 using MC signal positrons;

the mean is -1.056. When calculating pϕ1 , an outlier with a significantly larger correlation is
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Figure 5.63: The correlations between the kinematic pulls in the 2021 data using the double
turn technique. The denominator contains an uncertainty contribution from both turns.

observed only in the double turn analysis on Michel MC data at 5·107 Hz. All other values (15

total) agree within 16% of one another (full RMS). We calculate
pϕ1,MCMichel

pϕ1,DTMichel

· p
ϕ
1,MCSignal

pϕ1,MCMichel

∼ 0.75.

We then correction factor to the data estimate: pϕ1 = 1.46.

The correlation between the pe and ze pulls (correlation 5.6) has a θe dependence that is

smaller in the double turn than that observe in the Monte Carlo. Therefore, we rely on the

Monte Carlo signal value of -2.56.

The measured correlation between the pulls of ϕe, ze ( correlation 5.8) has a fractional RMS

of 5.19% between all 16 measurements. We calculate the correction factor:
pϕ5,MCMichel

pϕ5,DTMichel

·
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Figure 5.64: The correlations between the kinematic pulls in the Monte Carlo for signal at
3 · 107 Hz. The denominator is the Kalman uncertainty in the reconstructed kinematic.

pϕ5,MCSignal

pϕ5,MCMichel

∼ 0.926. We apply this correction to the average data value resulting in pϕ5 =

0.421. We also see a nontrivial linear dependence of the correlation on ϕ in all MC samples

that is not observed in the double turn analysis. Therefore, we set pϕ6 = −0.0578, the average

of all signal MC comparisons. The quadratic dependence on the correlation is negligible.

The correlation between ϕe, θe or correlation 5.9 is almost completely eliminated after taking

into account correlation 5.8. We think it is best to just remove this correlation in 2021.

The correlation between θe, ze is only observable in the MC. Using MC signal positrons,

pZ1 = 1.188.
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Finally, we tabulate the results in Table 5.6.

Table 5.6: The correlation parameter values between the pulls. The DT row represents if
the parameter is visible in the double turn analysis. The zero row is Boolean depending on
if the parameter is zero consistent. The origin row states how the value was measured. DTC
abbreviates the double turn analysis data value corrected using the MC. MCS abbreviates
the signal MC value.

Correlation Parameters

Param σϕ,0 pϕ0 pϕ1 pϕ2 pϕ3 pϕ4 pϕ5 pϕ6 pϕ7 pY0 pY1 pZ0 pZ1 pZ2 pZ3
Units cm cm

MeV

DT Y N Y N N N Y Y Y Y Y N N Y Y
Zero N N N Y Y Y N N Y Y N Y N Y N
Origin DTC MCS DTC - - - DTC MCS - - DTC - MCS - MCS
Final
Value

6.46 -1.056 1.46 - - - 0.421 -0.0578 - - 0.314 - 1.188 - -2.56

5.7.5 Conclusions

In this chapter, we discussed the MEG II CDCH resolutions and the widths of the pull

distributions in data using the double turn analysis and the Monte Carlo. We also estimate

the correlations between the kinematic variables and the pulls using the double turn analysis

and the Monte Carlo.

First, we discuss the signal positron resolutions with respect to the design of the experiment.

Removing the ML hit finding tracks results in a kinematic resolution improvement of roughly

∼ 5− 10% as seen in Table 5.2. This results in a signal positron core resolution of 0.67 mm,

1.73 mm, 5.40 mrad, 6.7 mrad, and 95.1 keV for ye, ze, ϕe, θe, pe. The vertex position and

the momentum are already comparable with the resolutions proposed in the design of the

experiment. The ϕe resolution quoted in the design of the experiment has actually not been

achieved even in Monte Carlo simulations since shortly after the design paper (Francesco

Renga Sept. 2018 σϕ ∼ 5.5 mrad over all ϕ). Personally, it seems that the 3.7 mrad goal

seems difficult to achieve unless this resolution estimate takes into account the correlation

between ϕe : ze. The θ resolution is still large with respect to that of the design, but
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hopefully could be improved via improved pileup discrimination, improved noise reduction

on the waveforms, or improved track fitting algorithms.

Further, we note that the ML hit finding algorithm is still a new algorithm. It’s possible that

this could result in comparable resolutions to that of the tracks without this algorithm. In

future analyses we likely want to assign a different resolution/ pull value for the two classes

of tracks.

We’d also like to comment on the agreement between the data and the MC Michel tracks.

Comparing the resolutions without any ML hit finding, the resolutions are very comparable

with the data having a wider resolution in ze, ϕeθe, pe by roughly ∼ 8 − 10% and nearly

the same resolution in ye. It’s possible that there are still differences between the signal and

noise on the waveforms, etc. between the data and the MC. The ML DOCA estimator is also

not applied to the MC data (yielding improvements in the kinematics of the order 5− 13%).

But it is clear that further improvements in the wire alignment, TXY, magnetic field map

update etc. should not yield a very dramatic improvement in the resolutions.

Next, we discuss the resolution as a function of beam rate. This information is only available

in the attached Google Sheets document. Comparing the data at 2·107 Hz to that of 5·107 Hz

results in a degradation of the resolutions by roughly ∼ 10%. This suggests that suppression

of pileup effects at higher beam rate could potentially result in improvements of this order.

Finally, we discuss the beam rate dependence of the correlations. We observe a slight beam

rate dependence in pZ1 however the (min−max)/max of all values has a difference of ∼ 3%.

Since this value was taken from the MC, it must be assigned an uncertainty significantly

larger than the observed differences so it seems acceptable to use the mean value for all

conditions. This is also true for pZ3 , which has a (min−max)/max of ∼ 10%, again this is

also taken from the signal MC so it seems acceptable to use one value for all beam rates.
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Chapter 6

MEG II Alignment

In this chapter, we give an overview of the internal detector alignment for the LXe, SPX,

CDCH detectors and the relative alignments of the mentioned detectors, the target and the

magnetic field map. We link several documents (some only available to MEG II collaborators)

that describe the alignments in more detail.

6.1 Introduction

The alignment of the MEG detectors is critical to achieve the desired kinematic resolutions

of the muon decay products and thus our sensitivity to µ→ eγ. First, the detectors must be

aligned internally i.e. LXe MPPC-to-MPPC, CDCH wire-to-wire, and SPX tile-to-tile. The

importance varies detector-by-detector, but in general an internal misalignment degrades the

kinematic resolution and can create biases in the kinematic measurements.

In addition, the detectors must be aligned with respect to one another. In general, the

relative detector alignment shifts the relative kinematics of the positron with respect to

the photon at the target (mainly θeγ, ϕeγ). Table 6.1 tabulates the detector alignments.
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It contains the technique used to measure the alignment, the desired resolution (σD), and

the measured resolution (σM). We estimate the desired resolutions in the later sections by

calculating how misalignments affect the positron or photon kinematic measurements. In

some cases, for example the relative wire-by-wire alignment in the drift chamber, this is not

as straightforward and so we make an estimate based on double turn analysis results. The

achieved resolutions have been pulled from a variety of talks.

σM=
Measured σ,

σD=
Required σ

COBRA
Cryostat

Magnetic
Field CDCH LXe SPX Target

COBRA
Cryostat

Optical
Survey

σD < 1mm
σM < 1mm

COBRA design
coil positions Survey Survey Survey Survey

Magnetic
Field

σD = 250µm
σM ∼ 1mm

Field Map
σD ∼ 2 · 10−4

σM ∼ 1 · 10−3
Michel Edge
Double Turn

CDCH -

Ad-Hoc
Corrections
σM ∼ 250µm

Construction,
Iterative (Sect 5.5)
σD/σM ∼ 10µm

Cosmics in
LXe+CDCH

e+ Match
at SPX

Hole
Analysis

LXe -

dZCOSMIC

∼ 1mm
σM ∼ 1mm
σD ∼ 500µm

FARO +
X-ray

σD < 1mm
σM ∼ 100µm

SPX -
σD ∼ 1mm
σM < 1mm

FARO +
Laser

σD ∼ 1mm
σM ∼ 400µm

Target -

(⊥)
σD ∼ 100µm
σM ∼ 200µm

Camera
Analysis (⊥)
σD < 100µm
σM ∼ 10µm

6.2 MEG Coordinate System

All measurements in the MEG coordinate system refer to the alignment of the detectors with

respect to a standardized set of fiducial markers defining the MEG coordinate system. For

example, some of these markers are on the COBRA exterior and support structure, positions

on the floor, walls, etc. This defines the “local area coordinate system”. All detectors, the

COBRA cryostat and the target were measured by an optical survey in this coordinate

system.
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The coordinate system is right handed with the z-axis (ZMEG) nominally aligned with the

beam axis. At the time of each survey, the local coordinate system is estimated using a laser

tracker (i.e. the position and orientation of the laser tracker in the area coordinate system).

The LXe detector is located at negative XMEG, and thus signal positrons are emitted from

the target at positive XMEG. The YMEG coordinate is aligned against gravity.

Since there are many fiducial markers in the area, some are used to achieve the coordinate

system and some are used later to validate the found coordinate system (i.e. the coordinate

system can be repeated with a different set of fiducial markers as a check). This valida-

tion results in a measurement precision of < 1mm; this unfortunately results in ∼ 1 mrad

uncertainty in the mean value of θeγ, ϕeγ; this will be discussed later.

6.3 Target

6.3.1 Motivation

A target misalignment normal to the target surface results in an incorrect path length to

the target and thus a ϕe error. Roughly a 90 µm misalignment normal to the target surface

results in a 1 mrad ϕe error. Therefore, a resolution significantly less than a mm is required.

This is illustrated in Figure 3.7 and was described in detail in Chapter 4.

6.3.2 Description

This alignment is determined by a variety of techniques. More detail can be found in Chapter

4. Briefly, an optical survey and a CT scan of the optical corner cubes yields the position

of the target in the MEG coordinate system. The time-dependence of the target position

is taken out via the target camera analysis. The time-dependence is expected due to the
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insertion/extraction of the target for weekly (or biweekly) LXe calibrations.

6.4 CDCH Internal Alignment

6.4.1 Motivation

Misalignment of the relative wire positions, orientations, etc. results in systematics in the

track residuals wire-by-wire. This degrades the overall positron kinematic resolution. In

addition, we observed that wire misalignments of the order ∼ 100µm resulted in biases in

the double turn analysis (e.g. < ϕTurn2 − ϕTurn1 >! = 0). For this reason, wire alignment

to a precision of < 10µm is desirable to suppress the misalignment’s effect on the kinematic

resolutions.

6.4.2 Description

The relative wire-by-wire alignment of the drift chamber was done by Macro Chiappini using

a variety of measurements dating back to the construction of the drift chamber. The details

are attached in these slides: Chiappini Alignment Slides. First, the relative position of the

wire ends to the CDCH end plate spokes (16 total) was calculated. This was done using a

precise camera at the time of the chamber’s construction. An image is shown in Figure 6.1.

The wire coordinates in this local spoke-based frame are transformed into the global CDCH

frame in each sector using the nominal values of end plate mechanical features and mea-

surements of the spoke edges. This is done for both the upstream and downstream side

independently. This effectively results in the wire coordinates at both end plates.
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Figure 6.1: The relative spoke-wire alignment (Graphic made by Macro Chiappini).

Finally, the end plate is measured in the MEG coordinate system. This is shown in Figure

6.2. The measurement is done using a CMM touching probe at many points on the end plate.

This measurement assumes the end plate is a flat plane; residuals of the order ∼ 100µm were

observed. This results in the wire position/direction in the MEG coordinate system.

Figure 6.2: Here, we show a graphic illustrating how the end plate position is measured
(Graphic made by Macro Chiappini).

When using this alignment, fitted positron tracks contained mean residuals in the coordinates

normal to the wire axis that varied wire-by-wire. This implies the wire alignment had errors

of the order ∼ 100µm. These wire positions were corrected by translating, rotating, and

applying a wire sagitta iteratively based on the observed residual. This is described in
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Section 5.5. This resulted in improved track residuals and improved positron kinematic

resolutions. This effectively eliminated biases observed in the double turn analysis.

6.5 SPX Internal Alignment

6.5.1 Motivation

Misalignment of the relative tile-by-tile alignment results in degraded positron timing resolu-

tion. The relevant position measurement is that normal to the tile surface i.e. perpendicular

to the positron path.

The same level of precision required by the CDCH wire alignment is not needed for this

alignment as we are only interested in the timing. For an e+ traveling at c, a misalignment

of 1 mm results in a timing error of 3 ps. The resolution per tile is ∼ 100 ps, therefore

a 1 mm misalignment has a negligible contribution to the timing error. However, the goal

precision was set to ∼ 1mm in order to have no contribution to the relative positron photon

timing.

6.5.2 Description

A FARO technique was applied to estimate the relative position and orientation of the SPX

tiles, this is described here: SPX FARO Measurement. An example graphic is shown in

Figure 6.3.

A laser tracker is then used to measure the position of reference markers on the timing counter

geometry inside the MEG coordinate system and at the time of the FARO measurement (a

local coordinate system). This yields the position of the SPX tiles in the MEG coordinate
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Figure 6.3: FARO SPX measurement (Graphic made by Yusuke Uchiyama).

system. Additional information is available here: SPX Alignment.

6.6 LXe Internal Alignment

6.6.1 Motivation

The position of the MPPCs on the inner-face must be known precisely to have a precise

measurement of the photon intersection point (or the initial shower position) on the detector’s

inner-face in the global coordinate system. This photon position measurement is eventually

propagated back to the positron vertex position at the target to compare the relative angles

(and time) of the positron and the photon. The goal was set to measure the relative MPPC

alignment to a precision of ∼ 100µm to have a negligible effect on the relative angles of

positron photon pairs. The photon energy and timing resolution degradation will be model-

dependent. e.g. a simple charge integration over all LXe MPPC/PMTs will not affect the

energy resolution.
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6.6.2 Description

The LXe MPPCs were measured using two independent measurements. The first is a FARO

measurement of the relative MPPC alignment when the detector is at room temperature, thus

the positions may be different than that during MEG physics data collection. The technique

did not scan all MPPCs as it was not possible to access them. The second technique used

a collimated X-ray source to estimate the MPPC positions. The X-ray interacts in the

calorimeter, producing a 1 mm3 interaction measured by the MPPCs. The position and

orientation of the X-ray source in the MEG coordinate system is known precisely using an

optical survey. Using the relative position and orientation of the X-ray source and thus the

intersection point on the LXe inner face, the MPPC positions in the MEG coordinate system

are estimated. It is described in detail in this paper[10]. The X-ray source and the alignment

setup is shown in Figure 6.4. It is also described briefly in Shinji Ogawa’s thesis page 53[40].

Figure 6.4: An image of the X-ray source and a graphic of the experimental setup (Figure 3
©2023 Elsevier [10]).
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6.7 Magnetic Field Measurements and CDCH Mag-

netic Field Map Alignment

6.7.1 Motivation

The magnetic field measurement is critical for measuring the positron tracks. This includes

three vector B⃗ at all points inside the magnetic spectrometer. In general, a precision of

< 1/2000 is desirable as this corresponds to a fractional resolution of ∼ 50 MeV/2000 = 25

keV or adding ∼< 4% to the resolution when added in quadrature with a resolution of ∼ 90

keV, even better would be ideal.

6.7.2 Discussion of the Magnetic Field Maps

There are several magnetic field maps available at the time of the 2021 physics data. We

outline them here.

First, there is a calculated magnetic field based on the expected position and orientation of

the magnet coils with respect to the exterior of the COBRA cryostat. The main difficulty of

using this measurement is that it relies on a precise knowledge of both the CDCH and the

COBRA magnet coils in the MEG coordinate system (more precisely, their relative position

and orientation). This is difficult as the CDCH position in the MEG coordinate system

is only quoted at ∼ 500µm. In addition, the magnetic coils may shift when in use with

respect to the relative position of the coils and the COBRA exterior estimated at the time of

construction. Furthermore, of course, this field could include systematic errors with respect

to the true magnetic field.

There are also three measured magnetic field maps. The first was taken in 2008, another
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in 2014, and a third in 2018. Below in Figure 6.5, we show the discrepancy between the

2008 magnetic field map and the calculated field. There are systematics of the order ∼ 10−3.

During the 2008 and 2014 magnetic field measurements, there was suspicions that the rail

used to move the position of the Hall probes along the magnetic spectrometer may have

bowed, thus resulting in systematic effects. In addition, it was found that the 2008 field map

did not satisfy Maxwell’s equations. This was handled by only using the Bz from the 2008

magnetic field measurement and relying on a fit to Maxwell’s equations to yield the other

two components. This fit to Maxwell’s equation could be tried with the 2014 map, but was

never investigated. The Hall probes used in the 2018 measurement were never successfully

calibrated and thus the map was never used.

Figure 6.5: The discrepancy between the calculated magnetic field from the magnet coil
positions and the measured magnetic field (Figure made by the MEG I collaboration).

Regardless of the map, we use the double turn analysis and the fit to the Michel edge

were both used to determine the “best” magnetic field map. That is, in the double turn

analysis, we optimize the double turn resolutions, the double turn biases (e.g. minimizing

| < ϕ2 − ϕ1 > |), and the double turn biases as a function of different parameters (e.g. the

two turn match point). In the Michel edge fit, we optimize the momentum resolution (in

particular the core resolution), and the mean position of the Michel edge as a function of the

positron emission angles (ϕe, θe). Ideally the mean position of the Michel edge is centered at

52.83 MeV and is flat as a function of emission angles.
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In addition, these two techniques can be used to find the relative position and orientation of

the CDCH and the COBRA magnetic field map and the optimal scale of the magnetic field

map. This is a multidimensional optimization that requires the optimal magnetic field map,

the optimal relative position and orientation of the magnetic field map and the CDCH, the

optimal scale of the map, and a previous optimized wire-by-wire alignment.

When using the calculated field map without shifts or scaling, all of the double turn resolu-

tions except the momentum (P2 − P1 ∼ −80 keV) were near zero bias. In addition, it was

quickly found that a shift in the relative position of the magnetic field map and the CDCH

in YMEG resulted in a shift of P2 − P1. Thus a shift of 1 mm was applied in YMEG. This

nearly centered all double turn histograms. This is shown in Figure 5.42.We then applied

a scaling of 0.999 to force the Michel edge to be centered correctly at 52.83 MeV (1/1000

scaling).

The shift of 1 mm was ad hoc, but considering the optical survey of the CDCH precision

(∼< 1 mm) and the uncertainty in the relative position of the magnetic coils with re-

spect to the COBRA cyrostat, this seems warranted. This magnetic field measurement was

later optimized further by Atsushi Oya by flattening the Michel edge further as a function

of the positron emission angle. The optimal shift of the calculated field was found to be

(100, 700, 300)µm with an optimal scale of 0.9991. Note that the 2014 magnetic field map

without any use of Maxwell’s equations resulted in a comparable Michel edge momentum res-

olution, but larger biases in the double turn distributions. Applying Maxwell’s equations to

the 2014 field map in the future could lead to further improvements. The relative orientation

of the calculated field with respect to the CDCH was not explored in much detail.

In conclusion, in the 2021 physics analysis the optimal magnetic field map was that calculated

using the expected position of the COBRA coils with respect to the CDCH, with a shift of

(100, 700, 300)µm and a scale factor of 0.9991.
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Figure 6.6: The location of the Michel edge as a function of the emission angles at the
stopping target for varying shifted magnetic fields.

To investigate how errors in the magnetic field would effect the resolutions, we ran the MC

with a magnetic field map (2008 map with Maxwell’s equations) and then ran the analysis

with varying shifts, scales, and different magnetic field maps. We observed that in general

the ϕe, θe, ze, ye resolutions were not significantly effected (∼< 5%), but the momentum

resolution could be significantly degraded up to ∼ 25%. Therefore, with a perfect magnetic

field map we could expect to improve the momentum resolution (rough guess of a few or

10%), but should not expect much improvement in the other kinematic resolutions.

6.8 CDCH SPX Alignment

6.8.1 Motivation

This alignment is required to optimize the path length of the positrons measured in the drift

chamber to the timing counter. This requires the relative position of the drift chamber, the

target, and the timing counter. A relative translation of the two detectors would result in
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an incorrect path length. This is true for all positron tracks (except higher order effects e.g.

dependence on track angle). At first order, the relative position of the CDCH and the SPX

(tiles on one end) creates an offset in teγ; this is completely removed by using the teγ RMD

peak (separately for each SPX side of 256 tiles). e.g. the upstream SPX is offset with respect

to its nominal position by 5 mm in ZMEG; this would result in a movement of the RMD

peak by 15 ps, which can be corrected for. Further, this extremely large offset in distance

would produce a negligible effect on the timing even if uncorrected.

6.8.2 Description

This is most easily determined via fitted positron tracks. The positron track position at the

SPX tile is estimated using the CDCH track information. For each SPX cluster, independent

of the CDCH, there exists a ”fitted” SPX hit position (using all the hits in a cluster) at each

SPX tile in the cluster. For a given positron track at the first intersected SPX tile, we have a

SPX-based hit position, and a CDCH-based hit position (propagating the track to the tile)

that can be compared. However, one point is that this this error tile-by-tile can be corrected

by two unique translations. One parallel to the tile surface and one perpendicular to the

tile surface. In the current state of the analysis, these contributed a negligible effect to the

timing resolution and thus a choice was made arbitrarily.

6.9 CDCH Target Alignment

6.9.1 Description

The target position relative to the CDCH is monitored using a technique known as the

’hole analysis’. This analysis images holes cut in the target surface by using the positron
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vertex distribution at the target; the physical holes create a deficit in positron target vertex

distribution. This checks the relative alignment of the CDCH and the target from the optical

survey and the camera analysis. The critical point is to measure the position normal to the

target surface. This is estimated using the correlation between ϕe at the target and the

apparent ye hole position on the target. This measurement is described in[11] and was

performed by Atsushi Oya.

6.10 CDCH LXe Alignment

As mentioned above, the CDCH is aligned with respect to the target via the hole analysis.

Second, the CDCH is aligned with respect to the SPX by comparing the track position at

the SPX with the SPX hit positions. Therefore, the positron tracks measured in the CDCH

can be used to align the CDCH-SPX-target components of the experiment. Therefore, the

CDCH-LXe relative alignment completes the relative CDCH-SPX-LXe-target alignment.

The primary measurement of the relative alignment uses the internal alignments mentioned

above, which yield the position of the CDCH wires/ LXe MPPCs in the MEG coordinate

system. However, some of the relative CDCH-LXe alignment can be checked using cosmic

rays.

6.10.1 Motivation

It is critical to know the relative position of the CDCH to the LXe in order to have pre-

cise measurements of the relative positron and photon angles. We motivate the precision

requirements below.
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6.10.2 XMEG Mis-Alignment

First, we investigate the effect of a global misalignment of the LXe in the XMEG direction.

Here, we know the location of the signal teγ from the RMD teγ peak, therefore a uniform shift

in teγ caused by a misalignment of CDCH-LXe in XMEG is irrelevant as it can be calibrated

away.

In addition, a dXMEG error produces a negligible position dependent effect on ϕγ/θγ for a

similar reason. e.g. 1 YMEG = 500mm,dXMEG = 1mm, ZMEG = 0mm, e.g. 2 YMEG =

0mm,dXMEG = 1mm, ZMEG = 0mm. In both examples, assume the positron target vertex

is at (0,0,0). The photon momentum vector in the second example doesn’t change, but the

first example results in an angle change of 0.8 mrad. Therefore, we expect a mean angle

change of ϕγ ∼ 0.4 mrad varying with YLXe. This is even less relevant for the θγ as ZMEG

only extends to ∼ ±25cm. For the reasons mentioned, a global shift in dXMEG of less than

1 mm shouldn’t have a significant effect on teγ or ϕγ/θγ with a maximum error in ϕγ at the

LXe edges in YMEG resulting in a systematic error of 0.8 mrad.

6.10.3 YMEG/ZMEG Mis-Alignment

Next, we discuss global errors in either YMEG/ZMEG. Assume there is a global shift of the

LXe by 1 mm in YMEG i.e. to yield the photon direction, we add in quadrature (600, +1),

(600, 500+1) at the center and the edge of the calorimeter respectively. In both cases, the

effect on the timing is less than 2 ps. As for the effect on ϕγ, the effect is more significant. At

the edge of the calorimeter, this produces a 0.98 mrad error, but at YMEG = 0, this produces

a 1.7 mrad error.

The identical situation is true for a shift in ZMEG, we produce a negligible effect on the

photon timing, but we make a 1.7 mrad θeγ error at the center of the calorimeter. To be
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clear, this is more relevant for ϕeγ (and therefore YMEG shifts of the LXe) as the MEG II

ϕeγ resolution is better than its θeγ resolution. A similar effect is true for a rotation about

XMEG i.e. a mixing of YMEG/ZMEG.

In summary, a precision in the relative position and orientation of the CDCH/LXe of <

500µm would result in < 1 mrad biases in θeγ/ϕeγ.

6.10.4 CDCH LXe Cosmic Alignment

In the 2021 dataset, cosmic rays were used to measure the relative Z coordinate of the

CDCH/LXe. No rotations have been estimated; as discussed above this is also relevant.

This is described in these two slides:Antoine Slides 1, Atsushi Slides 2. Details are also

described in Shinji Ogawa’s thesis page 91: Shinji Thesis

The cosmic ray alignment contained several issues. First, the cosmic rays must enter both the

CDCH and the LXe and therefore only contains a very particular section of both detectors.

Only cosmic ray tracks with vγ < 0 were used in this analysis due to analysis complications.

Therefore the analysis is not very sensitive to rotations.

The data is taken without a magnetic field and therefore the cosmic ray tracks in the CDCH

have a small amount of hits, and therefore the quality is significantly degraded with respect

to standard CDCH tracks. The track fitting/finding procedure has been investigated and

improved, but not yet achieving resolutions of the standard analysis.

In addition, the LXe position reconstruction of cosmic rays relies on an assumption that

the photon originated from the target. This is clearly not the case for the cosmic ray.

Corrections are applied in order to attempt to suppress this bias. Different cosmic rays may

create different shower lengths, etc., and thus the correction will likely vary with the energy,
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particle, etc., which is not known.

In the 2021 cosmic ray alignment, a ZMEG shift of 1.0 mm with respect to the previous align-

ment (independent LXe, CDCH alignments described above) was found. A single Gaussian

fit resulted in an uncertainty of ∼ 0.8 mm, but of course this does not include systematic

errors that could effect the relative alignment. Therefore, this alignment technique is con-

sistent with the previous alignment from the optical survey and internal CDCH and LXe

detectors. This is shown in Figure 6.7.
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Figure 6.7: The relative CDCH-LXe alignment from cosmic rays (Figure made by Antoine
Venturini)
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Chapter 7

MEG II Calibrations

In this chapter we summarize the calibrations performed on the MEG II detectors. This

generally consists of channel-by-channel time offsets and gain offsets required to achieve the

optimal resolutions. The LXe detector also requires additional corrections to the energy

scale and the reconstructed timing that are also discussed here.

7.1 CDCH

7.1.1 Wire-by-Wire Time Offsets

For the CDCH, the most critical calibration is verifying that there are no time offsets wire-

by-wire; i.e. a hit arrival time on wire A and wire B with the same T0 correspond to the

same drift time. These unwanted time offsets create systematics in the distance of closest

approach resolution and therefore degrade the kinematic resolution. Time offsets wire-by-

wire are applied to remove this effect. The time offsets could be due to differences in cable

lengths, delays between the DRS4 chips, etc.
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This time offset wire-by-wire is calculated using a histogram of the drift time (hit arrival

time - T0 at the drift cell). An example is shown in Figure 7.1. As expected, the distribution

starts to rise around a drift time of ∼ 0 ns. By fitting for the position of the rising edge

for each wire, we calculate the relative offset required wire-by-wire. Note, negative drift

times can be the result of instances when a high voltage noise peak is detected as the first

ionization cluster. There are also rare instances where pileup is nearly on-top of the given

hit; this could also result in a negative drift time.
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Figure 7.1: Drift time for hits on wire 240.

This also requires an additional global offset to align the timing on the CDCH wires with the

time found in the SPX electronics. Or in other words, the rise of the drift time distribution

is calculated wire-by-wire, but it’s unclear where to set the T0 (e.g. at the 20%, 80% of the

rise of the drift time distribution). Since the relative wire time offsets have been calculated,

this CDCH-SPX offset is a single timing offset for the entire CDCH. This is calculated

by verifying that <(hit DOCA - track DOCA)> is near zero for hits with a track DOCA

∼ 2 mm (here we expect minimal bias due to ionization statistics). Effectively, this global

CDCH-SPX time offset is calculated by the ML TXY. This bias is shown in Figure 5.17.
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7.1.2 Wire-by-Wire Longitudinal Position Calibrations

In addition, the CDCH requires a calibration of the hit coordinates along the wire axis (local

z). For z from charge division and z from time difference, we require the relative gain and

time offsets end-to-end for each wire. Note, by incorporating the time offset end-to-end as

End1 → End1 + t/2, End2 → End2 − t/2, the wire-by-wire time offset mentioned in the

previous subsection is not affected. These calibrations are easily calculated by comparing

the local z from the positron track (unbiased by the hit itself) to the local z measurement of

the hit from charge division or time difference. A mean error over all hits on a wire implies

a gain or time offset between the two ends. An example is shown in Figure 7.2, clearly one

wire has a gain offset corresponding to a mean z error of ∼ 25 cm. We could simply offset

all z measurements, but instead we apply corrections to the relative time and gain of the

two wire ends. A global signal propagation speed and wire resistivity are also required to

convert the relative charge and time differences into z measurements; these are calculated by

simply setting the mean z error to zero. It was also found that hit z measurements deviate

non-linearly from the z from the positron track at large |z| (|z| ∼> 70 cm); a polynomial fit

was used to correct for this. This is a minor effect and has not been explained physically.
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Figure 7.2: Measurement of z from charge division, z from the positron track, and the differ-
ence between the two are shown for two example wires in green, red, and black respectively
in cm.
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7.1.3 Wire Quality Check

We note that in order for a hit to be associated with an eventual fitted track, several wire-

specific criteria must be met, this includes proper handling of noise and signals (or lack of

signals) on the two ends, wire-by-wire time offsets, end-to-end time and gain offsets, wire

alignment, TXY that is dependent on the cell size, etc. An issue with any of these criteria

results in a lower rate of hits on quality fitted tracks. Therefore, while optimizing wire

alignment, calibrations, etc. the number of hits on quality fitted tracks wire-by-wire is very

informative to the status of each wire. This is shown in Figure 7.3. Some wires are shown

to be completely dead (no signals), others have significant noise on a DRS4 chip, affecting 8

sequential wires and thus a lower hit rate. Here, the two sets of sequential wires (16 and 8

sequential wires in layers 3 and 8 respectively) have their high voltage disconnected and thus

have no hits. In addition, there are O(20) wires, mainly in layers 8 and 9 with shorts. The

general structure of the wire-by-wire hit rate (peaked near the central sectors) is similar to

that of the MC and is the result of the trigger requirements. Note that the wire distribution

suggests that there would be hits on wires not currently readout (e.g. plane 9 below wire

number zero). We have verified that for signal positrons in the Monte Carlo this is a smaller

effect, but nonetheless this could improve efficiency. For this reason, ∼ 30 additional wires

in the inner layers (layer 7,8,9) have been added to increase the ϕ wire coverage and thus

signal efficiency.

7.2 SPX

In the SPX detector, the main calibration is calculating and removing the tile-by-tile time

offsets. This is the relative timing of signals on the set of SiPMs on each individual tile.

This is calculated by comparing the time estimated from a single tile to the average time

measured from the cluster of intersected SPX tiles in a single positron trajectory. Ideally, the

219



0 20 40 60 80 100 120
Wire Number

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000
22000
24000

hWire1

hWire1
Entries  1474911
Mean    54.57
Std Dev     24.32

hWire1

0 20 40 60 80 100 120
Wire Number

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

hWire2

hWire2
Entries  1256301
Mean    53.91
Std Dev     25.07

hWire2

0 20 40 60 80 100 120
Wire Number

0

2000

4000

6000

8000

10000

12000

14000

16000

hWire3

hWire3
Entries  828429
Mean    54.01
Std Dev     30.08

hWire3

0 20 40 60 80 100 120
Wire Number

0

2000

4000

6000

8000

10000

12000

14000

hWire4

hWire4
Entries  1018811
Mean    53.55
Std Dev     26.92

hWire4

0 20 40 60 80 100 120
Wire Number

0

2000

4000

6000

8000

10000

12000

hWire5

hWire5
Entries  922630
Mean    54.04
Std Dev     28.31

hWire5

0 20 40 60 80 100 120
Wire Number

0

2000

4000

6000

8000

10000

12000

hWire6

hWire6
Entries  866403
Mean    53.33
Std Dev     28.66

hWire6

0 20 40 60 80 100 120
Wire Number

0

2000

4000

6000

8000

10000

hWire7

hWire7
Entries  798753
Mean    54.34
Std Dev     29.49

hWire7

0 20 40 60 80 100 120
Wire Number

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

hWire8

hWire8
Entries  631327
Mean     53.9
Std Dev     29.44

hWire8

0 20 40 60 80 100 120
Wire Number

0

1000

2000

3000

4000

5000

6000

7000

hWire9

hWire9
Entries  513624
Mean    61.03
Std Dev     30.13

hWire9

Figure 7.3: Number of hits on fitted quality tracks per wire.

SPX cluster time excludes information from the specific tile. Summing over a large amount

of tiles, the relative timing offsets can be measured very precisely, contributing a negligible

contribution to the timing resolution.

Note that this calibration is easy for nearby tiles, but a relative timing calibration for all tiles

in the upstream/downstream modules (256 tiles each) also requires mixing of information

on the edges of the timing counter modules. This requires higher order mixing as they will

not be hit by the same positron track. A laser-based calibration is also used to aid in this

process. In short, a fiber optic is connected to the individual timing counter tiles; by firing a

laser into the fiber optic of many timing counter tiles, the signal time and thus the relative

time offsets between the tiles can be estimated.
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7.3 LXe

The LXe detector is the most difficult detector to calibrate and requires a large number of

calibrations. These are summarized briefly in this section. In general, the experiment relies

on a few main calibration techniques, most of which are used to monitor the energy scale,

resolution, and the timing in the LXe.

The LXe detector requires calibrations to achieve the optimal performance. The main Eγ, tγ

calibration technique uses an alternate beam of π− with an alternate liquid hydrogen target;

some interact through the π−p→ π0n; π0 → γγ channel. This calibration technique was also

used in MEG I and is known as the charge exchange (CEX). The kinetic energy of the π0

(β ∼ 0.2) is the result of the π0/π− energy difference. By identifying back-to-back γ pairs,

a set of quasi monochromatic γ enter the LXe detector: Eγ = 0.5 · mπ0γ(1 ± βcos(θrest));

θrest ∼ 0, Eγ = 55/83 MeV. Typically, the lower energy photon (Eγ = 55 MeV) is selected

in the LXe detector to be closer to the signal γ energy (52.83 MeV).

The other photon enters a separate detector that consists of a 4 × 4 array of bismuth

germanium oxide (BGO) crystals and a pre-shower counter for the photon timing (tps). By

moving the BGO detector to be back-to-back with different LXe sections, we calibrate tLXe

and ELXe as a function of position in the LXe detector.

The CEX calibration is performed infrequently and therefore cannot calibrate the time de-

pendence of the detector’s energy scale. This is estimated using a Cockcroft–Walton (CW)

accelerator. The CW protons intersect an alternate Li2B4O7 target. The process results in

photons with 17.6 MeV. In contrast with the CEX, this is performed on a weekly basis, but

is farther away from the signal energy. In addition, LED lights are used to illuminate the

MPPCs to calculate the gain of each MPPC. Finally, an α source is used to estimate the

quantum efficiency of the MPPCs.
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7.3.1 Channel Time Offsets

The relative timing of all MPPCs and PMTs instrumented in the LXe detector is critical to

achieve a precise LXe timing measurement.

This can be estimated using effectively any data by comparing the average photon time in

the calorimeter (or the average signal time) to a given channel. This calibration involves

estimating time walk effects and time offsets channel-by-channel, this was done using the

CEX 55 MeV data[39].

7.3.2 Global Time Corrections

After the channel-by-channel time corrections were taken into account, the experiment ob-

served offsets in the mean value of the photon time at the LXe when compared to that of the

CEX pre-shower timing counter as a function of position in the calorimeter (i.e. tLXe − tPS

vs. uγ, vγ, wγ). Of course, ideally this would be flat as a function of all measurables if the

MPPC/PMT timing offsets were correct and the timing reconstruction algorithm was per-

fect. The need for these corrects suggests an underlying issue with either the timing offsets or

the reconstruction algorithm; for the 2021 analysis, global position-dependent timing offsets

were applied. Examples are shown in Figures 7.4 and 7.5.

7.3.3 Channel Gain Offsets

The gain offsets are measured as a function of time using multiple sets of data. In the

calorimeter, the number of photons at an MPPC is equal to the number of incoming photons

times the quantum efficiency (qe) times the gain (g).

The gain of the MPPCs is estimated using the LED data. Here, the LED intensity and
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Figure 7.4: The difference in the photon time in the LXe and the CEX pre-shower counter
as a function of vLXe (Figure made by Atsushi Oya).

Figure 7.5: The difference in the photon time in the LXe and the CEX pre-shower counter
as a function of wLXe (Figure made by Atsushi Oya).

location is set such that the average number of photons reaching each MPPC is roughly

1. Therefore there are instances when 0,1,2, etc. photons (Poisson statistics) reach an

MPPC and are amplified, each results in a peak in integrated charge near 0, X, Y, etc. The

integrated charge at X directly yields the gain for each MPPC, g. This is done frequently to
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monitor the gain throughout the physics run.

The quantum efficiency is measured using the α dataset, this is done weekly. In short,

α events are simulated in the Monte Carlo; the charge is reconstructed in each MPPC in

this MC α dataset, where the MC quantum efficiency is easily estimated. The relative

reconstructed charge in the MC α and the data α datasets are used to correct the MC

estimated quantum efficiency. Additionally, there is a single light yield parameter over all

MPPCs. These gain techniques are discussed in detail in Satoru Kobayashi’s thesis[39].

7.3.4 Relative and Absolute Energy Scale

Similar to the timing in the calorimeter, after calibrating away all channel-by-channel gain

offsets, significant correlations between the average energy and the position in the calorimeter

were observed. That is, the mean energy of a line (e.g. CW at 17.6 MeV, CEX at 55 MeV,

or CEX at 83 MeV) was dependent on the position in the LXe detector.

This can of course be accounted for by simply correcting the average reconstructed energy

as a function of position, but it does not address the underlying issue of why this position

dependence exists. These corrections effectively achieve the relative energy scale at all po-

sitions in the calorimeter. This is likely the result of a miscalibration of the channel gain

offsets or an artifact of the reconstructed energy algorithm. For example, the reconstruction

could result in a higher/lower reconstructed energy near the edges of the calorimeter or in

regions where more energy reaches the PMTs or MPPCs.

Any energy line yields the absolute energy scale. e.g. CEX line is known to have a peak at 55

MeV, thus it yields the relationship between integrated charge and the energy of the photon.

This absolute energy scale can be checked by calculating the mode of the reconstructed

energy for a different line (e.g. CW at 17.6 MeV or CEX at 83 MeV, etc.) than that used in
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the calibration. Using this technique, discrepancies were found as a function of LXe position.

That is, calibrating the absolute energy scale in LXe sections using the CEX line at 55 MeV

does not result in a reconstructed energy mode at exactly 17.6 MeV in the CW line. Again,

the underlying reason for this is not clear; likely this is a consequence of the reconstruction

algorithm.

This discrepancy is shown in Figure 7.6; here the energy scale section-by-section is uniform

up to ∼ 0.4% in the CEX 55 MeV peak, but clearly in other datasets the energy scale

has variations of the order ±2%. Further, the CW data has the additional complication of

attempting to estimate the time-dependence on the spatial dependence of the energy scale.

This is not accessible in the CEX as it is only done once a year. It was not exactly clear how

to optimally estimate the energy scale given these discrepancies. The final 2021 calibration

involves spatial and time dependent corrections using the CW data, and spatial corrections

using the CEX data. This is described in Sataro Kobayashi’s thesis, but additional correc-

tions were made that are mentioned in recently slides shown by Kensuke Yamamoto.

Figure 7.6: The normalized photon energy as a function of position in the calorimeter for
different calibration lines (Figure made by Kensuke Yamamoto).
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Chapter 8

Physics Analysis

In this chapter, we describe the physics analysis of the 2021 dataset. As a reminder, the

MEG II search for µ → eγ compares the reconstructed positron and photon kinematics

(teγ, ϕeγ, θeγ, Eγ, Ee) at the target to distinguish between the accidental background, the

RMD background, and the signal. Here, θeγ = (π − θe)− θγ, ϕeγ = (π + ϕe)− ϕγ such that

our signal is at θeγ, ϕeγ = 0. Additionally, information from the RDC detector (tRDC , ERDC)

is used to eliminate RMD accidental events.

First, we describe the positron and photon selection criteria, the blinded kinematic region

definition, and the analysis region definition. We then discuss the probability density func-

tions (PDFs) for accidental background (ACC), RMD background (RMD), and signal (SIG)

events. We then discuss two approaches to the physics analysis: a cut and count analysis

(CCA) and a maximum likelihood analysis (MLA). The CCA yields a higher limit with re-

spect to that of the MLA, but the model has the advantage of being more understandable

and clear. The MLA is described in significantly more detail here [11]. After outlining the

analysis techniques, we discuss the normalization of the dataset. We then discuss the physics

analysis results in the kinematic side band regions (discussed later), toy MC studies, and
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the signal region.

The CCA and MLA implement a blind approach to the physics analysis. This has been be-

come the standard for rare decay physics analyses since its implementation in a KL → µ±e∓

search at Brookhaven in the 1990s[57][58]. Several examples of how previous expectations

biased physics results are discussed here [59].

8.1 Selection Criteria

In this section we list the particle selection criteria in the physics analysis.

8.1.1 Positron Selection

The positron selection was already described in Section 5.6. The selection criteria remove

low quality positron tracks without a significant degradation in the signal efficiency.

8.1.2 Photon Selection

The reconstructed photon position in the calorimeter is restricted to the following region:

• |uγ| < 23.9 cm

• |vγ| < 67.9 cm

• 0 < wγ < 42 cm

Reconstructed photons are then selected based the pileup detection procedure. Below we

list the pileup categories and whether or not they are included in the final analysis.

• No Pileup - Included
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• Pileup detected, but properly deconvolved - Included

• Time coincidence pileup - Excluded

• Event reconstruction failed to converge - Excluded

The reconstructed photons then must pass a time reconstruction algorithm χ2/DOF cut

(χ2
t/DOF < 1.8) and a PMT selection criteria at the waveform analysis level (χ2

WF,PMT/DOF <

8). Finally, the reconstructed photon must pass cosmic ray selection criteria that is imple-

mented to avoid cosmic rays contaminating the dataset. In short, this cosmic ray rejection

makes a 2D cut on wγ and the ratio of the charge collected on the MPPCs and the PMTs.

8.1.3 Pair Selection

All implemented physics analyses use one positron/photon pair per event, but the event re-

construction may result in many reconstructed positrons; we select the ”best” reconstructed

track.

As a reminder, there may be several reconstructed positron tracks that correspond to the

same physical positron track (ghost track). The ”best” ghost track is selected using ranking

from the machine learning output, the number of turns, and whether or not the track is

from the ML hit finding reprocessing. This is explained in detail at the end of Section 5.6.

Further, there may be several physical positron tracks that exist in a single event. To be

considered, first the positrons must satisfy the following:

• |teγ| < 3 ns

• 45 < Ee < 56 MeV

• Θeγ < −0.95 (solid angle)

After these selection, only ∼ 0.24% events have multiple pairs at this stage[11]. The pair

with the largest opening angle is selected (back-to-back with the photon).
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8.2 Signal Kinematic Region

The following defines the signal kinematic region:

• |teγ| < 0.5 ns

• 52.2 < Ee < 53.5 MeV

• 48 < Eγ < 58 MeV

• |θeγ| < 40 mrad

• |ϕeγ| < 40 mrad

The teγ region is defined (σteγ ∼ 100 ps) such that all signal events should enter the analysis

except events where the first positron turn is lost (teγ ∼ 2 ns). A wider region containing

|teγ| < 1.0 ns is blinded. As will be discussed, the momentum resolution is well fit to a

core/tail resolution of 90/300 keV respectively, therefore the positron momentum analysis

window size only removes the end of tail resolution. The photon energy window size is

asymmetric towards low energy to maintain signal efficiency when several MeV is lost in

material or significant scintillation light escapes through the inner-face. Finally the angular

analysis window size is narrow in order to suppress accidental background (accidentals are

roughly flat as a function of ϕeγ, θeγ); this choice also improves the positron energy resolution;

the positron energy resolution tails are significantly narrower given |θeγ|, |ϕeγ| < 40 mrad. A

few percent of signal efficiency is lost due to the narrow angular region choice.

8.3 Additional Physics Analysis Tools

In this section we briefly describe tools used to aid in the physics analysis. These are mainly

used to study background events expected in the blinded region.
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8.3.1 Time Sideband Analysis

Analysis in ”sideband” kinematic regions is an extremely useful tool for physics analyses. In

the MEG II physics analysis, the time side bands (all kinematics equal to the blinded region

except teγ is offset from 0) eliminates the possibility for events to be from true RMD events

or signal and therefore can be used to study the accidental time-coincidences, which is our

main source of background. We use these sidebands to estimate the number of accidentals

in the signal region and build the probability density functions of accidental events (i.e.

Eγ, pe, θeγ, ϕeγ, teγ). This is discussed in the next several sections. As an example, the photon

energy in the time sideband is shown in Figure 8.1. The photon energy for accidentals in the

time sidebands should be equivalent to that in the signal region and therefore the photon

energy in the time sideband is used to model the photon energy distribution for accidentals

in the signal region.
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Figure 8.1: The distribution of events in the time sidebands.

Note, the signal signature is at the maximum allowed energy for an RMD photon or a

Michel positron (52.83 MeV). For this reason, positrons and photons reconstructed above

the signal energy in the time sideband are carefully inspected for systematic effects. Ideally
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we identify features of these events, and eliminate them as they would otherwise contaminate

the signal region. We found that photons in the sideband region had a significantly higher

position χ2/DOF in the calorimeter than that of a typical event (χ2/DOF > 15 with a

typical χ2/DOF ∼ 1.5). In addition, the events with a high χ2/DOF were focused in a few

regions of the calorimeter, this is shown in Figure 8.2. These regions corresponded to three

miscablings (< 10 channels) that were fixed in the final analysis. Note, events with a large

position χ2/DOF due to pileup discrimination code failures still persist in the time sideband

after the final selection. The photon energy PDF was still properly estimated using the time

sideband, but ideally this will be resolved for future MEG II physics analyses.
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Figure 8.2: The distribution of events in uγ, vγ with a large position χ2/DOF in the photon
reconstruction.

8.3.2 Energy Sideband Analysis

The energy side bands (all kinematics equal to the blinded region except 45 MeV< Eγ < 48

MeV) contain significantly more RMD events than the signal region and thus is used to

estimate the number of RMD events in the signal region. Using this technique and the known

kinematics of RMD events (more RMD events with lower photon energy), it is estimated

that NRMD = 1.2 ± 0.2 in the signal region. Therefore, we expect a negligible amount of
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NRMD near the signal (in particular in the cut and count analysis where the analysis region

is significantly narrower). As will be mentioned in the next section, we also use this sideband

to estimate the timing resolution using the width of the RMD teγ peak.

8.3.3 Toy MC Simulations

The probability density functions described below are used to generate toy MC simulations

containing signal and accidental events in the blinded signal region. The first set of sim-

ulations contains randomly generated accidental events in the signal region based on the

distribution of accidental events observed in the sidebands. We generate 1000 of these toy

MC simulations. We apply the physics analysis software to the simulations to estimate the

expected distribution in the upper-limit on the number of signal events in the absence of

signal. In addition, using signal PDFs we generate signal toy MC simulations. This is used

estimate signal efficiency i.e. the percentage of signal events that are inside the signal region.

8.4 Timing PDF

In this section we discuss the teγ probability density functions (PDFs) for signal, RMD, and

accidental events. As a reminder, the key upgrade in the timing resolution with respect

to MEG I is the higher hit multiplicity of the pixelated timing counter (SPX). The reso-

lution dependence on the number of hits in the timing counter (σte/
√
NSPX) is included

event-by-event. The timing resolution is best estimated using the teγ peak due to RMD

positron/photon pairs reconstructed in the magnetic spectrometer and the calorimeter re-

spectively.
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8.4.1 RMD Timing

The RMD timing PDF is estimated by fitting teγ peak due to the true RMD e, γ pairs. This

is done using data in the energy sideband to maximize the number of RMD events. We

assume that the RMD timing has a resolution term from the positron and the photon timing

where the positron timing takes the form, σte/
√
NSPX , and the photon timing is assumed to

be a single gaussian: σtγ .

The positron timing, σte , is estimated using an even/odd analysis; that is, comparing the

independently measured positron time from the even ordered tiles to the odd ordered tiles.

This even/odd analysis results in a positron timing resolution of σte =
112√
NSPX

ps. Therefore,

at the mean number of hits in the timing counter for signal, the positron timing resolution

is 37.3 ps. In Figure 8.3, the width of the RMD peak as a function of the number of hits

in the timing counter cluster is shown. Fitting this distribution to the mentioned RMD teγ

form, we measure σtγ = 71± 3 ps where σte is fixed from the even/odd analysis.

This timing resolution is verified by the CEX analysis; the CEX was described in Chapter

7. Fitting the CEX relative timing distribution (tLXe − tPS) results in an LXe timing core

resolution of 68± 6 ps. Thus, this is consistent with the RMD peak fit result.

8.4.2 Signal Timing

The signal timing PDF is nearly identical to the result from the RMD timing fit. The signal

PDF additionally includes a very minor correlation between the relative teγ timing and the

positron momentum due to the difference in the propagation length from the pixelated timing

counter to the target. This correlation evaluated in the MC has a slope of 18± 0.5 ps/MeV.

For any well-measured positron track, this effect is negligible (3σEe,core ∼ 300 keV; correction

of 5 ps).
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Figure 8.3: The relative positron photon time at the target as a function of the number of
hits in the pixelated timing counter[11].

8.4.3 Accidental Timing

The accidental PDF is roughly flat (no value of teγ is preferred for accidental events) and is

extracted from the time sideband. The accidental timing PDF contains non-flatness due to

trigger effects; i.e. a linear relationship between the number of entries and teγ. The number

of entries was found to be correlated with the depth in the calorimeter; this dependence was

also included.
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8.5 Positron Energy PDF

The positron momentum resolution is best estimated using the Michel positron momentum

distribution. No physical Michel positron can have a momentum larger than half the muon

rest mass (52.83 MeV); this results in a sharp edge in the momentum distribution. In short,

a more narrow momentum edge implies better the resolution. This fit also yields the energy

scale, which could be offset from the true edge (52.83 MeV) due to an incorrect magnetic

field map, misalignment of the CDCH and the magnetic field map, etc.

8.5.1 Accidental Energy

The reconstructed positron energy distribution in the time sideband exactly characterizes the

momentum distribution for accidental events. The distribution is fit to the known Michel

energy distribution, an acceptance function, and a resolution function. The acceptance

function is required as lower momentum positrons have a lower efficiency. The resolution

function is assumed to take the form of a sum of three gaussians. The first is a core of ∼ 90

keV and the second is a tail of ∼ 300 keV, the third is a very wide tail ∼ 1−2 MeV, which is

required to avoid poor fit results due to the fit attempting to accommodate wide tail entries.

This is consistent with the double turn results described in Section 5.7.

To take into account the event-by-event information, the data is binned in ∼ 7 bins of

momentum uncertainty from the Kalman. This procedure has been verified to achieve the

correct resolution in MC Michel data samples. An example fit to the momentum distribution

is shown in Figure 8.4.
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Figure 8.4: The Michel edge on a log and linear scale. The final subplot is the acceptance
function.

8.5.2 Signal Energy

The signal momentum PDF is the resolution function described above around the signal

energy (mµ/2). We apply small corrections based on the difference in resolution between

the signal MC and Michel MC positron samples. The main difference is due to the fact that

signal positron in the signal region must have |ϕeγ|, |θeγ| < 40 mrad.

8.5.3 RMD Energy

The positron RMD energy PDF is estimated using the known kinematic distributions for

RMD positrons smeared with the resolution and acceptance from the Michel edge fit.
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8.6 Angular PDF

The positron angular kinematics are estimated using ϕe, θe estimates from the Kalman fil-

ter. The photon angular kinematics, ϕγ, θγ, are built by propagating the photon from its

reconstructed position in calorimeter (uγ, vγ, wγ) back to the positron vertex at the target

(ye, ze). The angles are then be compared.

The positron vertex and angular kinematic resolutions are estimated from the double turn

analysis. The photon position resolution is estimated using CW data described below.

8.6.1 Accidental Angular

The accidental angular PDF is extracted again using the time sideband data. The rate of

accidentals is roughly uniform about θeγ, ϕeγ. We observe that the number of accidentals is

dependent on θeγ, ϕeγ and ϕeγ as a function of vγ; this was taken into account in the PDF.

We assume that these dependencies are due to trigger biases.

8.6.2 Signal Angular

The signal angular PDF requires the kinematic resolutions and the correlations between the

relevant kinematic variables. On the positron side, this was mentioned in detail in Section 5.7.

In short, the double turn analysis results in a measurement of the resolution for ze, ye, ϕe, θe;

these are corrected using the double turn technique in Michel MC data, and measurements

of the true MC resolutions (comparison with the MC) for Michel and signal positrons in the

MC. The event-by-event Kalman covariance matrix is incorporated by estimating the pull

in the kinematic comparison ((X2 −X1)/
√
σ12 + σ2

2, (XREC −XMC)/σREC , instead of the

resolutions. Most of the correlations between the positron kinematic variables are extracted

237



from the double turn analysis, but some (e.g. δze : δθe, rely on the MC.

On the photon side, the position resolution of the photon at the calorimeter is estimated

using CW data with a collimator at inner face of the calorimeter; this is described in detail

in Satoru Kobayashi’s thesis[39]. A careful treatment of how to convert these correlations

into the eventual θeγ, ϕeγ PDFs is described here[11].

8.6.3 RMD Angular

Similar to the RMD positron energy PDF, the RMD angular PDFs are formed using the

expected kinematic distributions for RMD events smeared based on the expected resolutions

and acceptance.

8.7 Photon Energy PDF

The photon energy resolution and scale is evaluated using a variety of calibrations and tools

that were described in detail in Chapter 7.

8.7.1 Signal Photon Energy

The photon energy resolution for signal is estimated from the CEX 55 MeV peak as a function

of depth; this is shown in Figure 8.5. This distribution is fit to an ”expgauss”, i.e. the left

side is an exponential and the right side is a gaussian (described in more detail in [11]). For

the signal, the LXe energy resolution is estimated in sections of the calorimeter as shown in

Figure 8.6.
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Figure 8.5: The LXe measured 55 MeV CEX peak at varying depth (w).
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Figure 8.6: Sections of the calorimeter in the signal photon energy PDF.
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8.7.2 RMD Photon Energy

The RMD photon energy distribution is calculated using a similar method to other RMD

PDFs. The expected RMD photon energy distribution is smeared with the estimated reso-

lution and acceptance, this is done section-by-section through the calorimeter.

8.7.3 Accidental Photon Energy

The accidental photon energy distribution is obtained from the photon energy distribution

in the time sideband. For the accidental PDF, the LXe energy is separated into sections

as shown in Figure 8.8. The photon energy distribution is fit to the Monte Carlo expected

photon distribution (RMD and AIF photons) smeared by a resolution function, adjusted

by the trigger, and offset by a energy scale term. There is also a cosmic ray component,

estimated using cosmic ray data without beam. An example fit is shown in Figure 8.7.
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8.8 RDC PDF

In this section we briefly discuss how the RDC PDFs are built. For more details, see [11].

8.8.1 RDC Signal and RMD

For the signal, the RDC PDF is effectively a uniform distribution in tLXe−RDC i.e. there is

some chance of intersecting the RDC at any time while there is a signal event in the LXe-

CDCH-SPX detectors. This is identical in the RMD PDF case. To be clear, the RMD PDF

contains events where an RMD photon intersects the LXe and a RMD positron intersects

the CDCH (not the RDC). The expected energy (ERDC) and time (tRDC−LXe) distributions

can be estimated using random triggers.
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8.8.2 RDC Accidental

The timing, tRDC−LXe, is estimated simply from the observed peak in MEG triggers. The

energy, ERDC , is correlated with the photon energy Eγ as we expect lower energy positrons

with higher energy photons.

8.9 PDF Summary

The average probability density functions for signal and accidentals are shown in Figure 8.9.
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Figure 8.9: The average probability density functions for signal and accidentals.

8.10 Normalization

The Cut and Count Analysis (CCA) results in the number of events in the signal region and

in the absence of a discovery, an upper-limit on the number of signal events. The Maximum

Likelihood Analysis (MLA) results in the best fit number of signal events and an upper-limit
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on the number of signal events. To convert the upper limit on the number of signal events

into an upper limit on the branching fraction of µ+ → e+γ, we require a normalization.

We can write the branching fraction of µ+ → e+γ as Beγ = Neγ

Nµ
; we can then set Neγ = 1, this

is known as the single event sensitivity (SES), which is defined as the signal branching fraction

such that we expect to observe one signal event in the full dataset. The normalization Nµ is

equal to 1/SES. In MEG II, the normalization is calculated using the same two techniques

used in MEG I; in short, the normalization estimates rely on the measured number of Michel

positrons intersecting the timing counter and the measured number of e+, γ RMD pairs.

Both techniques require several correction factors estimated from a variety of techniques to

convert these measurements into normalization estimates.

8.10.1 Michel Normalization

In this subsection, we describe the normalization measurement using the number of Michel

decays in an independent trigger, triggering on single pixelated timing counter hits (no

calorimeter information). Using these events, we measure the number of positrons with a

momentum greater than 50 MeV. This number is then scaled by the trigger prescale factor

over the full dataset. This normalization is estimated using two terms.

The first, Neνν is the number of detected positrons in the single pixelated timing counter

trigger that pass our selection criteria (114739). This is equal to the number of stopped

muons, Nµ
eνν times the branching fraction for Michel positrons (Beνν) times the fraction of

Michel positrons with energy above 50 MeV (feνν,∗) divided by the prescale factor (Peνν)

times the trigger efficiency (ϵeννTRG) times the positron efficiency (ϵeννe ).
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Neνν =
Nµ

eνν

Peνν

· Beνν · feνν,∗ · Teνν · ϵeννTRG · ϵeννe (8.1)

The second, Neγ is the number of detected signal events. This is equal to the number of

stopped muons, Nµ
eγ times the branching fraction for signal positrons (Beγ) divided by the

prescale factor (Peγ) times the trigger efficiency (ϵeγTRG) times the positron efficiency (ϵeγe )

times the acceptance for photons in the calorimeter given a positron (Aγ
eγ) times the photon

reconstruction efficiency (ϵeγγ ) times the selection criteria given both a positron and a photon

are reconstructed (ϵeγSEL).

Neγ =
Nµ

eγ

Peγ

· Beγ · Teγ · ϵeγTRG · ϵeγe · Aγ
eγ · ϵeγγ · ϵeγSEL (8.2)

We then rearrange the two equations to be equal to Beνν and Beγ respectively and then divide

the two equations: Beγ/Beνν . Note, Teνν/Teγ = 1 and Nµ
eγ/N

µ
eνν = 1 as the triggers are taken

over the same time period with the same beam rate. In addition, the signal prescale (Peγ) is

equal to one for a vast majority of the 2021 run; we set it equal to one in the below equation.

Beγ

Beνν

=
Neγ

Neνν

· feνν,∗
Peνν

· ϵ
eνν
TRG

ϵeγTRG

· ϵ
eνν
e

ϵeγe
· 1

Aγ
eγ

· 1

ϵeγγ
· 1

ϵeγSEL

(8.3)

As mentioned in Chapter 1, Beνν ∼ 1, including this change and setting Neγ = 1 recovers

the single event sensitivity (SES):
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SES =
1

Neνν

· feνν,∗
Peνν

· ϵ
eνν
TRG

ϵeγTRG

· ϵ
eνν
e

ϵeγe
· 1

Aγ
eγ

· 1

ϵeγγ
· 1

ϵeγSEL

(8.4)

or

Nµ = Neνν ·
Peνν

feνν,∗
· ϵ

eγ
TRG

ϵeννTRG

· ϵ
eγ
e

ϵeννe

· Aγ
eγ · ϵeγγ · ϵeγSEL (8.5)

Here, Neνν , the number of detected positrons that pass our selection criteria (114739), feνν,∗ is

the branching fraction for Michel positrons in this kinematic range (0.101), Peνν is the trigger

prescale factor (2−7·106), the ϵeγTRG

ϵeννTRG
numerator includes the inefficiencies in the physics trigger

such as spatial match failures, energy reconstructed online at too low of energy, etc. (∼ 0.78

[13][43]) and the denominator includes trigger inefficiencies due to dead time in the single

timing counter trigger, which was negligible. The term ϵeγe
ϵeννe

∼ 1.09 is the relative positron

tracking efficiency for signal and Michel positrons (in the selected momentum region), which

is calculated using the acceptance function from the Michel edge fit. The term Aγ
eγ ∼ 0.97

is the signal acceptance given the positron is already in the spectrometer (optimized in the

design of the experiment), ϵeγγ is the photon analysis efficiency due to photons intersecting

the COBRA magnet and other material prior to reaching the LXe (∼ 0.67[39]) and another

contribution from pileup (∼ 0.93) that is taken from the MC, finally ϵeγSEL ∼ 0.93 is the

percentage of signal positron/photon pairs that are detected but outside of the analysis

window (e.g. missing first turn and thus the relative positron photon timing is out of the

analysis region or cuts due to the narrow θeγ, ϕeγ region).

The uncertainty here is dominated by a few of the efficiency terms that are more difficult

to estimate. For example, ϵeγSEL, ϵ
eγ
γ is taken from the Monte Carlo, we assign each of them
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∼ 3% uncertainty. Combined with other effects, we assign a total uncertainty of ∼ 4.5%.

This results in a normalization estimate of Nµ = 2.55± 0.13 · 1012.

8.10.2 RMD Normalization

In this calculation we follow a similar procedure, but instead use the number of RMD decays

in the physics trigger dataset to measure the normalization.

Nµ =
Neννγ

Beννγ,∗
· ϵ

eγ
TRG

ϵeννγTRG

· ϵeγe
ϵeννγe

·
ϵeγγ

ϵeννγγ

· ϵ
eγ
SEL

ϵeννγSEL

(8.6)

Below we show the equation used to estimate the number of effective muon stops where

Beννγ,∗ is the branching fraction of RMD events in the energy sideband region. The relative

positron efficiency ( ϵeγe
ϵeννγe

) factor is due to the differences in momentum and is estimated using

the Michel edge fitted acceptance. The relative photon efficiency (
ϵeγγ

ϵeννγγ
) is evaluated using

the expected RMD photon spectrum smeared by the resolution; this is a minor effect. For

the relative selection efficiency (
ϵeγSEL

ϵeννγSEL

), both RMD and signal events share most inefficiencies

due to selection, but RMD positrons have a significantly wider distribution in θeγ, ϕeγ and

therefore are not as effected by the narrow angular analysis region. Finally, the relative

trigger efficiency (
ϵeγTRG

ϵeννγTRG

) is estimated using the time sidebands, where the difference in the

efficiency as a function of θeγ, ϕeγ are the result of the spatial match in the physics trigger that

is optimized for µ→ eγ events. This calculation results in a normalization of 3.1± 0.3 · 1012

where the uncertainty is dominated by the estimate of
ϵeγγ

ϵeννγγ
.
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8.10.3 Combined Normalization

The two normalization estimates are combined using their weighted uncertainty; the com-

bined normalization is equal to 2.64± 0.1 · 1012. This is the normalization for the MLA, the

CCA normalization is slightly lower due to a lower signal efficiency. The MLA SES is equal

to 3.79 · 10−13, which is the signal branching fraction such that we’d expect to see one signal

event in the 2021 dataset.

The CCA results in a number of events in the signal region and the MLA results in a best

fit number of signal events, N∗
eγ. In the absence of many events (not enough to claim a

discovery), we estimate the upper-limit on the number of signal events. Dividing this by the

normalization yields the upper-limit on the branching fraction of µ→ eγ.

In the likelihood analysis, it is standard to quote the upper limit on the number of signal

events at the 90% confidence level which is defined as N∗
eγ +1.645σ. The ±1.645σ is selected

as this is the half width that 90% of the normal distribution.

8.11 Cut and Count analysis

8.11.1 Overview

Traditionally, physics analysis searches for rare decays were done using a blind cut and count

analysis strategy[57]. In this section, we describe a blind cut and count analysis approach

to the MEG II 2021 physics data. In this strategy, we define an analysis region around the

signal (centered at teγ = 0, ϕeγ = 0, θeγ = 0, Eγ = 52.83 MeV,Ee = 52.83 MeV) and then

simply count the number of events in the signal region.
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8.11.2 Analysis Region

Our signal region is defined as a hypersphere in teγ · ϕeγ · θeγ · pe ·Eγ space around the signal

signature with a hyperradius, rH < 3.45. The hyperradius cutoff optimization is described

below. The hyperradius is defined below:

rH =

√
(
teγ
σteγ

)2 + (
ϕeγ

σϕeγ

)2 + (
θeγ
σθeγ

)2 + (
(mµ

2
− α)− Ee

σpe
)2 + (

(mµ

2
− β)− Eγ

σEγ

)2 (8.7)

The σs represent the estimated resolution event-by-event. The σs and therefore the anal-

ysis window size is dependent on the estimated kinematic resolution from the Kalman

modified by the pull distribution as mentioned in Section 5.7. We use an average pull

of 1.17, 1.95, 1.23, 1.19 for ye, ze, ϕe, θe respectively (multiplying the covariance diagonal by

this quantity). Approximate values for the resolutions are: σye ∼ 0.7 mm,σze ∼ 2.0

mm, σθe ∼ 7.2 mrad, σϕe ∼
√
5.82 + 5.32 · tan(ϕe) mrad, σuγ = 2.5 mm, σvγ = 2.5 mm,

σteγ =
√
712 + 1122/NSPX ps, σpe = 0.1 MeV,σEγ = 1.1 MeV.

None of the γ estimates use event-dependent information, and we use a flat 0.1 MeV resolu-

tion for all positrons. The event-dependent positron momentum resolution was not incorpo-

rated. The α, β terms represent a shift with respect to the signal signature (0.05, 0.3 MeV

for the positron and the photon energy respectively). These shifts are incorporated as the

region greater than the signal energy (> 52.83 MeV) contain significantly less background

events, but still contains signal efficiency.

We implement the correlation between dθeγ/dϕeγ due to the correlation between dϕe/dze;

where dϕeγ

dθeγ
∼ −0.4. This is included by shifting the center of ϕeγ based on the value of θeγ.
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8.11.3 Expected Number of Background Events

The cut and count analysis requires an estimate on the number of background events. This is

critical for optimizing the signal region, and for determining the upper-limit on the number

of signal events in the Feldman-Cousins approach[60]. We aim for less than 1 expected

background event in the signal region such that not many events are required to claim a

signal. First, we discuss our estimates of the number of background events using the toy

MC simulations containing only accidentals. The number of expected background events per

simulation had a mean of 0.576 (576 events in 1000 toy MC simulations). The distribution

in the number of background events per simulation is shown in Figure 8.10.
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Figure 8.10: The number of background events in the signal region in 1000 toy MC simula-
tions.

In the toy MC study, ∼ 57%/32% of experiments observe 0,1 events respectively. Observing

∼ 5 event in the signal region without there being any true signal be very unlikely (∼ 0.5%
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of toy MC experiments).

The expected number of accidental background events in the signal region is also determined

using the time sideband regions. By using a large time sideband region (−7 < teγ < −1

ns and 1 < teγ < 5), with a signal region of roughly |teγ| < 3.45 · 80 ps, we can estimate

NACC with ∼ 20x more statistics than the signal region. Here, we estimate the number of

events in a hypersphere using all kinematics except teγ; we then divide the number of events

observed in the full time sideband by the relative size of the time sideband and a nominal

signal region (e.g. ±3.45 · 80 ps). This significantly overestimates the true number of events

in the signal region as this would accept events with teγ = 3.45σteγ and pe = 3.45σpe (which

would be excluded in the actual analysis hypersphere). For this reason, we use a correction

factor from the toy MC simulation to estimate the true expected number of events i.e. the

ratio of the number of events in a hypersphere using all kinematics, and the number of events

in a hypersphere including all kinematics except teγ and requiring |teγ| < 3.45 · 80 ps; this

correction factor is 0.524.

We observe 22 events in the full sideband (using a hypersphere with all kinematics except

teγ) in a time sideband size 18.12x larger than the nominal signal region ( 10 ns/± 3.45 · 80

ps). Using our correction factor, we expect NACC = 22 · 0.524/18.12 = 0.636± 0.14 events.

This is consistent with the toy MC study results of NACC = 0.576 within 1σ. In Figure 8.11,

we show NACC for a given rH in the full time sideband.

As an additional check of the sideband data, we analyzed the time sideband with the full

hypersphere (including the teγ variable), but offset the mean of teγ.

Using an offset of [−5.0,−4.5,−4.0,−3.5,−3.0,−2.5,−2.0,−1.5, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]

results in [0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 2, 1, 0, 0, 1, 0] events respectively or an average of 0.438 ac-

cidental events (±0.17), this is consistent with the previous two results.
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Figure 8.11: The number of events in the time sidebands (−7 < teγ < −1 ns and 1 < teγ < 5)
for a given hyperradius.

8.11.4 Relative Normalization

To calculate the normalization of the cut and count analysis, we simply take the normal-

ization of the maximum likelihood analysis mentioned in the previous section and multiply

it by the relative efficiency of signal in the cut and count analysis region to the maximum

likelihood analysis region: ϵCCA.

We estimate the relative efficiency using both the full MC simulation and the toy MC sim-

ulations both containing only signal. Note that the signal MC Eγ resolution is significantly

narrower than that of the true resolution estimated from the CEX data. This is reflected

in the toy MC, but not the full MC. Therefore, in the full MC we replace the Eγ resolution

with a toy MC estimate.

The relative efficiency is measured to ϵCCA = 0.724/0.777 in the full MC and toy MC

respectively. Both MC simulations have their own shortcomings. The full MC differs from

251



the data in terms of signal/noise on the waveforms, wire alignment, etc. The toy MC does

not use the true particle reconstruction software, but the resolutions contain corrections due

to the differences in the resolutions between data and MC. We choose to use the average

efficiency or ϵCCA = (0.724 + 0.777)/2 = 0.751.

8.11.5 Single Event Sensitivity

In this cut and count analysis, Nµ,CCA = ϵCCA ·2.64 ·1012 = 1.98 ·1012 or a SES of 5.04 ·10−13.

The upper-limit at the 90% confidence level in the absence of signal using Bayesian statistics

is 2.3 · SES = 11.60 · 10−13.

The Feldman Cousins approach inputs the number of expected background or NACC into

the upper-limit, here we use the average of the toy MC experiments and that of the time

sideband (NACC = 0.636 + 0.576)/2 = 0.606). We use the average as the time sideband is

limited by statistics whereas the toy MC could contain systematic deviations from the data.

We can also use Poisson statistics and the Feldman Cousins approach to calculate an estimate

of the average upper-limit we should expect. Here, the probability of seeing NOBS events is

determined by Poisson statistics (Pois(NOBS, NACC)). ForNOBS we then calculate the upper

limit using the Feldman Cousins approach (ULFC(NOBS, NACC)). Therefore the average

upper-limit we expect is given by the following equation:

< ULFC >= SES ·
4∑

i=0

Pois(NOBS, NACC) · ULFC(NOBS, NACC) (8.8)

This yields a mean upper-limit < ULFC >= 2.947 · SES = 14.86 · 10−13. We set our

hyperradius cutoff to 3.45 by minimizing this mean upper-limit. Note, this value is skewed
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by tail toy MC experiments with a large number of events in the signal region.

In the absence of any events, we achieve an upper-limit of 1.84 · SES = 9.28 · 10−13, this is

the median toy MC experiment upper-limit, which is typically called the sensitivity. Based

on the toy MC simulation results, ∼ 57% of experiments should result in the absence of

events and ∼ 32% of experiments should have one event (sum of 89%).

8.11.6 Signal Region

The blinded box analysis detected zero events inside the signal region (rH < 3.45). We

opened up the hyperradius such that we detected 10 events; this is achieved by setting

rH < 5.35. The kinematics for these events are tabulated below. The event which is closest

to the signal signature contains θeγ ∼ −3.3σθeγ and therefore it is not inside the signal region

when added in quadrature with the other values kinematics.

Run # Event # θeγ [mrad] ϕeγ [mrad] Ee [MeV] Eγ [MeV] teγ[ns] rH MLA Rank
402458 22 1.3 3.4 52.69 49.51 0.14 4.2 2
401563 1286 -27.7 -2.2 52.97 51.95 -0.11 4.2 1
403059 2406 -13.3 -1.4 52.74 52.01 -0.29 4.3 3
405800 1663 5.2 -31.1 52.67 49.63 -0.06 4.6 -
401603 2718 24.0 -22.8 52.77 49.19 -0.10 4.9 5
405442 9 -30.3 9.9 52.77 49.72 -0.04 4.9 4
401221 892 -14.7 8.7 52.74 49.27 -0.25 5.1 11
401611 2589 -13.5 -0.1 52.74 48.77 0.21 5.1 9
406530 570 9.6 19.6 52.79 49.98 0.21 5.1 13
402692 2734 32.0 -21.8 52.53 51.75 -0.11 5.3 7

This analysis results in an upper-limit on the branching fraction of µ+ → e+γ of 9.28 · 10−12

at the 90% confidence level using the Feldman Cousin’s approach. This is an upper-limit

equivalent to the median experiment in the toy MC study. The limit is roughly a factor of

two larger than the limit set of MEG I. Note that this result only used data from the short

2021 physics run (roughly 1/3 of the amount of data collected in 2022), whereas the MEG I

result used 5 years of data.
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8.12 Maximum Likelihood Analysis

8.12.1 Overview

In the cut and count analysis, one of the key shortcomings is that the analysis window

needs to be small enough such that the background is significantly suppressed; this forces

a reduction in the signal efficiency that degrades the overall sensitivity of the analysis.

Recovering this signal efficiency would improve the upper-limit of the cut and count analysis

by a factor of 1.3. This is improved in the maximum likelihood analysis. The maximum

likelihood analysis inputs the dataset and the set of probability density functions to determine

the best fit number of signal, accidental and RMD events in the signal region. The probability

density functions describe the expected density of signal, accidental, and RMD events in the

teγ, θeγ, ϕeγ, Ee, Eγ space.

Here, the analysis window is typically chosen to be significantly wider than that of a blind

box to encompass a vast majority of the signal and thus maximize the sensitivity.

8.12.2 Formalism

Over the full dataset we fit for N,NACC , NRMD, NSIG which represents the number of events,

the number of accidentals, the number of RMDs and the number of signal events respectively

with the restriction that N = NACC + NRMD + NSIG. We refer to the fit parameters as θ⃗.

The dataset consists of n measurements each with a set of measurables x⃗i. The likelihood

function is written below:

L(θ⃗) =
n∏

i=1

p(x⃗i; θ⃗) (8.9)
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The fit parameters (θ⃗) are all Poisson random variables and therefore the product can be

instead written as:

L(θ⃗) = Pois(n|N)
n∏

i=1

p(x⃗i; θ⃗) =
Nne−N

n!

n∏
i=1

p(x⃗i; θ⃗) =
e−NNn

n!

n∏
i=1

p(x⃗i; θ⃗) (8.10)

In our case, the probability density function, p(x⃗i; θ⃗), can be decomposed into three com-

ponents using the law of total probability. The decomposition consists of the probability

of being signal, accidental, or RMD (e.g. NSIG/N) multiplied by the probability density

functions of the signal, accidental, or RMD events. This can be written as shown below

where S(x⃗i), A(x⃗i), R(x⃗i) are the PDFs of the signal, accidental, and RMD events respec-

tively e.g. p(x⃗i|SIG) = S(x⃗i). More details on the breakdown of the PDFs are given in[11].

The probability for a given set of measurables is given by:

p(x⃗i; θ⃗) =
NSIG · S(x⃗i) +NACC · A(x⃗i) +NRMD ·R(x⃗i)

N
(8.11)

We can then rewrite our likelihood as:

L(x⃗i|NACC , NRMD, NSIG) =
Nne−N

n!

n∏
i=1

NSIG · S(x⃗i) +NACC · A(x⃗i) +NRMD ·R(x⃗i)
N

(8.12)

Note that the Nn terms cancel. This is the maximum likelihood function, i.e. there is a set

of parameters N,NSIG, NACC , NRMD such that this function is maximized.

In addition, we apply three nuisance parameters to the maximum likelihood fit. The first two

restrict the parameter limits based on the expected number of accidentals (< NACC >) and
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the expected number of RMD events (< NRMD >) that were observed in the sidebands. The

maximum likelihood is multiplied by a gaussian term N(< NACC >, σNACC
) such that the

maximum likelihood is lowered if the fitted value of NACC deviates from the time sideband

expectation; a similar term is added for the RMD events. Finally, the maximum likelihood

is modified to allow for a shift of the target in XMEG. The target position, XTGT , shifts the

mean value of ϕeγ as a function of ϕe. The hole analysis resulted in a final uncertainty in the

target position in XMEG of ∼ 100µm. The shift of the target is limited by adding another

gaussian term N(0, σXTGT
). This will be discussed more in the conclusions chapter, but in

short its incorporation seems unnecessary; adding the parameter implies that we would be

estimating the relative position of the target and the CDCH using a few potential signal

events.

It is standard to then the apply the negative natural log to both sides of the equation. This

is done as optimization routines typically minimize functions rather than maximize them

(e.g. minimizing a χ2). The natural log is applied as it is typically easier to work with sums

rather than products. This is shown below. Note, we can remove the ln(n!) term as it is

independent of the fit parameters.

−ln(L(x⃗i|θ⃗)) = (
< NACC > −NACC

2σNACC

)2 + (
< NRMD > −NRMD

2σNRMD

)2 + (
XTGT

2σXTGT

)2

+N + ln(n!)−
n∑

i=1

ln(NSIG · S(x⃗i) +NACC · A(x⃗i) +NRMD ·R(x⃗i))
(8.13)

Here, the measurables, x⃗i, can be split into two categories. The measurables θeγ, ϕeγ,

teγ, pe, Eγ, tRDC , ERDC , nSPX are used directly to distinguish between signal, accidental and

RMD events. We label these measurables as m⃗i. The second set of measurables are known

as ”conditional observables” i.e. vγ, wγ, cove,Kalman, ϕe, we label these as c⃗i. Our measurables

m⃗i may be a function of these conditionals, for example it was observed that the accidental
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teγ distribution was dependent on wγ. The list of conditional observables excludes θe, uγ

in order to form a BTSM model-independent likelihood analysis; this is done as different

models anticipate different polarization effects and therefore models may be dependent on

the value of the signal θe or θγ.

The probability density functions S(x⃗i), A(x⃗i), R(x⃗i) are formally written as S(m⃗i|c⃗i)p(c⃗i),

A(m⃗i|c⃗i)p(c⃗i), R(m⃗i|c⃗i)p(c⃗i) i.e. the probability of the conditionals times the probability of

the measurables given the conditionals. For the actual minimization, we can omit the p(c⃗i)

terms as these are independent of the fit parameters. Rewriting the minimization function:

−ln(L(x⃗i|θ⃗)) = (
< NACC > −NACC

2σNACC

)2 + (
< NRMD > −NRMD

2σNRMD

)2 + (
XTGT

2σXTGT

)2

N −
n∑

i=1

ln(NSIG · S(m⃗i|c⃗i) +NACC · A(m⃗i|c⃗i) +NRMD ·R(m⃗i|c⃗i))
(8.14)

We use MINUIT[61] to perform the minimization, yielding the optimal values of N , NACC ,

NRMD, NSIG, XTGT .

8.12.3 Time Sidebands

As mentioned previously, the time sidebands are used to estimate the expected number of

accidental events and the distributions for accidentals. In the full analysis region, we expect

NACC = 68 ± 3.5. In addition, time sidebands are used to estimate the best fit number of

signal events in the absence of any signal. Several time sidebands were investigated yielding

upper-limits at the 90% confidence level of NSIG < 1.91, 2.17, 3.4, 2.49, 2.61. However, one

time sideband results in a best fit NSIG = 1.22 and an upper limit of NSIG < 5.26.

In summary, in the absence of signal the typical upper-limit on the number of signal events
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in the time sidebands is close to 2, but there is a chance of a significantly higher upper-limit

due to accidentals contaminating the signal region. This is a consequence of our current

resolutions.

8.12.4 Toy MC Studies

We also use the toy MC simulations containing the expected distribution of accidentals in

the signal region to estimate the best fit number of signal events and the upper-limit on

the number of signal events in the absence of signal. The upper-limit on the number of

signal events in each toy MC is shown in Figure 8.12. This result is consistent with the

time sideband studies, the typical upper-limit is ∼ 2 with a long tail. The median toy MC

experiment results in an upper-limit on NSIG of 2.31 at the 90% confidence level or a median

upper limit on the branching fraction of µ+ → e+γ of 8.8 · 10−13 at the 90% confidence level.
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Figure 8.12: The upper-limit on the number of signal events at the 90% confidence level in
the 1000 toy MC experiments.

Finally, in Figure 8.13 we show the minimized negative log likelihood for the toy MC exper-

iments.
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Figure 8.13: The minimized negative log likelihood for each toy MC experiment.

8.12.5 Signal Region

The maximum likelihood analysis applied to the signal region resulted in an upper-limit on

the number of signal events of 1.98. This corresponds to an upper-limit on the branching

fraction of µ+ → e+γ of 7.5 · 10−13 at the 90% confidence level (NSIG < 1.98). This is very

close to the median experiment as shown in Figure 8.12.

The 1D kinematic distributions of the events in the signal region are shown in Figure 8.14.

The event distributions are overlaid with the PDF for signal and background each multiplied

by the number of fitted events. Visually, the distributions are well-fit. We note that the

minimized negative log likelihood is equal to -1100 and therefore consistent with the median

toy MC experiment.

The ranking of the events with the highest signal probability in the maximum likelihood

analysis is included in the above table (MLA Rank). Note that event 1663 in run 405800

contains an in-time RDC hit (tRDC−LXE consistent with an RMD decay); this information

is only used in the maximum likelihood analysis thus this event is only highly ranked in

the cut and count analysis. The other top 9 events show a strong agreement between the
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Figure 8.14: 1D histograms of the kinematic distributions in the signal region overlaid with
the signal and background PDFs scaled by the number of signal and background events
respectively.

two physics analyses; these top 9 events ranked based on the CCA all contain a maximum

likelihood analysis ranking less than or equal to 13.

In general, the maximum likelihood analysis is more likely to assign higher signal probability

to low energy photon events as the analysis includes the full Eγ PDF. Additional differences

can be expected as only the maximum likelihood analysis uses the photon energy PDF that

is dependent on the position in the calorimeter.
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Chapter 9

Conclusions

9.1 Target Analysis

In Chapter 4, we describe the procedure for determining the position, rotation, and shape

of the stopping target with respect to the drift chamber. This analysis relies on a camera

analysis that monitors the position, rotation, and shape of the target with respect to the

camera effectively continuously by imaging dots printed on the target surface. The camera

analysis results in a precision of ∼ 10µm normal to the target’s surface. This is significantly

better than that required to suppress potential ϕe biases. We also describe how the optical

survey of the target, optical survey of the drift chamber and a CT scan of the target were

incorporated in the target analysis. This analysis was checked by a technique that measures

the relative position of the target and the drift chamber by measuring the position of holes

cut in the target surface using the positron vertex distribution.
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9.2 Positron Analysis

The positron analysis was described in detail in Chapter 5. In summary, the analysis results

in hit distance of closest approach measurements on-par with expectations of the design

of the experiment with a core resolution of ∼ 110µm and a tail resolution of ∼ 240µm

(A2/A1 ∼ 0.59). At the kinematic level, the core resolutions at 4 · 107µ/s beam rate are

0.74, 2.00 mm for ye, ze respectively, 4.07, 7.23 mrad for ϕe, θe respectively, and 103 keV for

pe; these are the core resolutions when fit to a double gaussian where Atail/Acore ∼ 0.1.

These resolutions include correlations between the kinematic variables. Overall, these are

comparable to that of the design of the experiment where σpe is significantly improved with

respect to the design (∼ 30%) and σθe is degraded by ∼ 36% with respect to the design of

the experiment.

9.3 2021 Physics Result

The cut and count analysis (Section 8.11) resulted in a null signal and thus an upper-limit on

the branching fraction of µ+ → e+γ of 9.28·10−13 at the 90% confidence level. The maximum

likelihood analysis (Section 8.12) resulted in an improved upper-limit of 7.5·10−13 at the 90%

confidence level due to the higher signal efficiency than that of the CCA. The events with

the highest probability of being signal in the blinded region show strong agreement between

the two analyses. Both results are consistent with the sensitivity measurements from the toy

MC simulations in the absence of signal (8.8 · 10−13 and 9.28 · 10−13 for the MLA and the

CCA respectively).
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9.4 Expected Sensitivity of the Full Dataset

The effective number of muons observed in the 2021,2022,2023 physics runs are shown in

Figure 9.1. The 2021 physics run was a brief run consisting of roughly 1/7 of the data taken

in 2022,2023 and the 2023 run is still ongoing. The amount of data already taken is expected

to reach a sensitivity of ∼ 9 · 10−14 at the 90% confidence level.
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Figure 9.1: The effective number of muons observed in 2021, 2022, 2023 as of September
19th 2023.

Using the data taken in 2022 and 2023 and an estimate of the DAQ weeks for future runs,

we estimate the MEG II sensitivity over the lifespan of the experiment. This is shown in

Figure 9.2 assuming 20 DAQ weeks per year. Here, the median expected sensitivity is shown

as a black dot whereas the green and yellow bars represent the 68,90 percentile respectively.

The current likelihood analysis expects that the MEG II design goal of an upper-limit on

the branching fraction of 6 · 10−14 at the 90% confidence level could be achieved in roughly

65 DAQ weeks.
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Figure 9.2: The sensitivity of MEG II over the lifetime of the experiment.

9.5 Potential Improvements

In this section, shortcomings and potential methods for improvements are discussed when

applicable.
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9.5.1 Magnetic Field Map

In Chapter 6, we mentioned that the currently implemented magnetic field map is that

theoretically calculated using the estimated position of the coils. This map yielded the best

resolutions as seen in the double turn technique and the Michel edge fit. This map was used

despite three attempts to measure the magnetic field map. Each has their own issues, e.g.

the first magnetic field map is expected to have bowing in the translation stage in which the

hall probes were moved, the final field map requires calibrations of the hall probes.

In the attached document, a MC analysis is discussed where the MC data was analyzed

with a shifted magnetic field or a different field map (e.g. analyzed using a measured field

and generated with the field calculated using the coil positions). This resulted in ∼ 10%

degradations in the momentum resolution and small degradations in the other kinematics.

It’s unclear how optimized the current magnetic field map is, we can only state that the

mean value of the Michel edge is centered at zero as a function of θe, ϕe and that the double

turn distribution biases are suppressed.

For this reason, a more thorough investigation of the magnetic field map could yield an

improvement in the momentum resolution of the order ∼ 10%. For example, attempting to

rotate the magnetic field map with respect to the CDCH. In addition, one could attempt

to calibrate the final magnetic field map measurement. Finally, one could try applying

restrictions from Maxwell’s equations to all magnetic field maps; this was only tried with

the first magnetic field map and yielded a significant improvement with respect to the true

measured field map (still inferior to the calculated field).
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9.5.2 Track Finder

The track finder is discussed in Chapter 5.4 and is also discussed in [14]. The track finder

was not optimized on data, but based on the Monte Carlo simulation. It’s possible that

through parameter optimization, the track finding efficiency could be improved.

By opening up the track finder to significantly more hits (using the ML hit finding algorithm

developed by Yusuke Uchiyama), a significantly higher tracking efficiency can be achieved

even through it is expected that a large fraction of the CDCH hits are already reconstructed

properly. This indicates that there may be some inefficiencies of the track finder.

One could imagine training a neural network in the Monte Carlo where the inputs are the

CDCH hit arrival times and CDCH hit z (e.g. time difference on the two ends), SPX cluster

times/positions, and the network trains to cluster the hits/clusters into tracks. For example,

graph neural networks have been used to train for this purpose[62] and could be explored in

MEG II.

9.5.3 Photon Energy

Integrating the photon energy resolution over the full calorimeter (resolution is dependent

on the depth), the resolution is ∼ 1.9%. Unfortunately, this is significantly degraded with

respect to the design of the MEG II experiment (∼ 1.05%); this should result in significantly

more accidentals in the signal region than expected.

This could be due to a number of reasons such as issues with the reconstruction algorithm,

pileup discrimination, and calibration. As mentioned, even after calibrating the MPPC/PMT

gains (Chapter 7), corrections to the energy as a function of position and time had to be

applied to the photon energy reconstruction. In theory, when using a perfect reconstruc-

tion algorithm, pileup discrimination and gain calibration, these corrections should not be
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necessary.

We note that when checking the time sideband data, we observed a significant amount

of events that clearly contained pileup, but were not flagged by the pileup code. These

events remained in the final analysis although they were properly handled by the PDFs.

Alternatives to the pileup discrimination algorithm should be explored to eliminate these

events. As mentioned in the last section, graph neural networks have also been applied to

reconstruct calorimeter energy[62]. Applications like this could aid, for example, in correctly

assigning the energy to a given incoming photon (avoiding pileup).

It’s also possible that this is due to MPPCs/PMTs calibration issues. The UCI group has dis-

cussed alternative techniques to relative MPPC/PMT gain/time calibrations. This involves

finding all pairs of MPPCs that are the same distance away from shower centers; these pairs

should have the same amount of charge, deviations from this suggest a miscalibration. Using

this pair matrix, one can deduce the gain/timing calibration.

9.5.4 Target Hole Alignment

The target alignment was achieved using a variety of techniques. The relative position/rotation

of the target with respect to the CDCH is estimated by the survey and then verified by the

hole analysis. The hole analysis results in some systematics that have not been understood.

For example, the CT scan measured the relative position of the holes very precisely. The

distance between the holes was then cross-checked in the hole analysis; it was found that

these do not agree. This implies that there are significant systematics in this measurement

that are not fully understood. This measurement is difficult as it requires finding the position

of the holes in the vertex distribution on a falling slope (significantly less beam intensity on

one side of the hole than the other). Alternative methods to fit for the hole positions should

be explored.
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9.5.5 Optical Survey

The optical survey alignment of the detectors (CDCH, LXe, SPX) is quoted to < 1 mm.

This unfortunately can potentially lead to large systematic errors in θeγ, ϕeγ (∼ 1− 2 mrad).

Alternative techniques to metrology of the detectors should be explored. This was discussed

in Chapter 5.5.
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Donato Nicoló, Angela Papa, Stefan Ritt, Elmar Schmid, Giovanni Signorelli, and Bas-
tiano Vitali. The wavedaq integrated trigger and data acquisition system for the meg ii
experiment. Nuclear Instruments and Methods in Physics Research Section A: Acceler-
ators, Spectrometers, Detectors and Associated Equipment, 1045:167542, 2023.

[44] Marco Francesconi et al. The trigger system for the MEG II experiment. Nucl. Instrum.
Meth. A, 1046:167736, 2023.

[45] The Imaging Source. Dmk 33uj003 usb 3.0 monochrome industrial camera, 2020.

[46] Spectral Instruments. Rvt100 radiation/vacuum tolerant video imaging camera, 2022.

[47] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
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Appendix A

Camera Analysis Appendices

A.1 Absolute Target Position Using Spectrometer Track-

ing

Here, we describe the technique used to check the position and orientation of the target with

respect to the magnetic spectrometer independent of an optical survey. The technique is

based on imaging small holes in the target using Michel positron trajectories measured in

the magnetic spectrometer; it was first developed for MEG[5]. This is an important part of

the alignment procedure since it provides a check for potential errors in the optical survey

of both the target and the tracking chambers in the magnetic spectrometer, in the magnetic

field measurements, and in the particle tracking. The technique provides a measurement with

very limited time dependence due to limited statistics, and can only measure the position of

a limited number of holes and only near the target center where the muon stopping rate is

high. The photographic technique provides an effectively continuous monitoring of changes

in the target position and shape over the full surface of the target to allow maximum use of

the limited tracking statistics.
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The procedure is as follows. A set of small holes (∼ 6 mm diameter) will be made in the

target film (6 were used in MEG). The positions of the holes will be imaged in 3 dimensions

by detecting the deficit of positrons originating from the hole locations. The coordinate

normal to the target surface is determined by measuring the apparent position of each hole

in the target plane as a function of the angle of the positron as it intercepts the assumed

target plane. We determine the position and direction of e+ at the target by projecting the

helical trajectory measured in the spectrometer back to the plane of the target[5]. Target

deformation and translation normal to the target surface are correlated with the linear first

order dependence of each hole’s apparent yM position on tanϕ, where ϕ is the e+ angle at the

target plane. The optimal target plane position is found when the apparent hole position is

independent of angle.

The MEG experiment used this correlation to measure each hole’s position normal to the

target surface with an uncertainty σ, which varied by year, ranging from 0.3-0.5 mm. This

produced a systematic uncertainty in the signal acceptance that reduced the total sensitivity

by 13%[5]. The uncertainty was largely the result of the lack of statistics available to measure

the time dependence of the position. The photographic technique will allow time dependent

corrections to the target position and allow the full tracking statistics to produce a high

statistics check of the spectrometer-target relative alignment. This will allow full exploitation

of the improved angular resolution of MEG II.

A.2 Threshold Parameter

Here we confirm that the photographic technique is independent of the threshold parameter

(described in Section 4.4). First, we calculated the dispersion in individual dot positions in a

single image while varying the threshold parameter from 50 to 100 (out of full scale value of

255). The dispersion in the dot’s position, σ = 0.10 pixels, is comparable to the dispersion
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in sequential images taken with the same threshold parameter (σ = 0.12 pixels).

Additionally, we analyzed 20 sequential images with varying threshold parameters in the

range 50-90 and calculated the dispersion in the values of the fit parameters for each image.

The dispersion in the parameters for a given image with varying threshold parameter is

comparable to the dispersion from sequential images with a constant threshold parameter,

implying there are no systematic effects larger than the dispersion in the value of fitted

parameters from sequential images. Both dispersion measurements are shown in Table B1.

Table B1: Top: The dispersion in the value of the fitted parameters for a given image with a
varying threshold parameter (5 values ranging 50-90, out of full scale value of 255). Bottom:
The dispersion in the value of the fitted parameters from sequential images with a constant
threshold parameter is shown for reference.

ϕ[mrad] θ[mrad] ψ[mrad] xC [µm] yC [µm] zC [µm] Bow[µm]

0.02 0.01 0.03 0.96 0.76 34.03 1.86

0.02 0.01 0.03 0.71 0.61 39.13 1.00

A.3 Determination of Camera’s Effective Focal Length

Here, we discuss the determination of the camera’s effective focal length (efl), which is related

to the value of I discussed in Section 4.4.4 by the focal length approximation for an in-focus

object. The manufacturer gives a nominal value of 50 mm for our complex lens.

The efl is measured by exploiting the fact that an incorrect value for the efl creates charac-

teristic systematic residuals for the dot positions in an object with significant depth of field.

As an example, two residual plots with different fixed values of I are shown in Figure A.1.

By including I as an additional parameter in the fit, we reduce the magnitude of these

residuals. We minimized the χ2 defined in Section 4.1 (now with the additional parameter)

on 20 sequential images to calculate the average optimal I. The optimal value of I is found to

be 51.61 ± 0.05 mm, corresponding to a best fit value of efl = 49.47 mm, close to the nominal
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Figure A.1: The residuals are plotted as a function of their row and column indices. The
residuals on the top and bottom are from a minimization with a fixed I of 48 mm and 54
mm respectively.

50 mm focal length given by the manufacturer. I is fixed to this value for all analyses.

Further, we verified that using a value of I (and therefore the effective focal length) different

than the best fit value does not affect the change in measured target position, orientation,

and shape. We analyzed 20 sequential images with fixed I values ranging from 49-53 mm.

For each image in the set, the dispersion in the fit parameters as the value of I is changed

is significantly lower that of the dispersion from sequential images.

277



Appendix B

Neural Network Applications to

Improve Drift Chamber Track

Position Measurements Appendices

B.1 Positron Measurements Using The Same σDOCA

As a check, we verify that the double turn measurements are still improved in the neural

network cases when using the same Kalman filter σDOCA with all DOCA estimators. Here,

the resolution when using the conventional TXY function has effectively stayed the same,

and in some kinematics (e.g. momentum comparison) the resolution is degraded. Here, we

adjusted the track selection on the number of hits per track to achieve a comparable tracking

efficiency.
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B.2 Positron Kinematic Measurements When Suppress-

ing the Bias in the Conventional TXY function

The conventional analysis results in a ¡DOCA bias¿ of ∼ 50µm; a possible way to correct

for this is a simple correction to the drift time to remove this bias. The conventional TXY

function was modified, transforming tdrift → tdrift − 2ns. In Figure B.2, the hit resolutions

are compared again in the three cases.

In Figure B.3, we compare the positron double turn measurement resolutions with the mod-

ified conventional TXY function. We note that just suppressing this ¡DOCA bias¿ in the

conventional approach does indeed yield a slight resolution improvement; the convolutional

neural network case still results in the optimal resolution.

Finally, using the same σDOCA as the neural network approach and applying the tdrift →

tdrift − 2ns transformation also results in comparable measurements to that shown in this

appendix.
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Figure B.1: Here, we show the kinematic comparison at a common plane between two
independently fit/measured turns of a single two-turn track. In this plot, all fits use the
same Kalman filter σDOCA. The NML case represents the standard or conventional DOCA
estimation, DNN represents the dense neural network, and CNN represents the convolutional
neural network that inputs waveform voltages.
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Figure B.2: The hit level results are compared using the three DOCA estimators. In this plot,
the conventional TXY function has been modified to suppress the DOCA bias; transforming
tdrift → tdrift − 2ns. NML represents the standard or conventional DOCA estimation, DNN
represents the dense neural network, and CNN represents the convolutional neural network
that includes the waveform voltages.
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Figure B.3: Here, we show the kinematic comparison at a common plane between two inde-
pendently fit/measured turns of a single two-turn track. In this plot, the conventional TXY
function has been modified to suppress the DOCA bias; transforming tdrift → tdrift − 2ns.
The NML case represents the standard or conventional DOCA estimation, DNN represents
the dense neural network, and CNN represents the convolutional neural network that inputs
waveform voltages.
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