<u>MEG測定器</u>

KEK測定器開発室セミナー @ KEK,筑波 24/November/2009

Yusuke UCHIYAMA On behalf of MEG collaboration

 $\mu^+ \rightarrow e^+ \gamma$ search experiment, MEG started physics data taking in 2008.

In this talk, we report the detector and measurement techniques used in MEG.

<u>Contents</u>

- Introduction
 - Subject and purpose
- Overview of MEG
- Performance of detector
- Waveform Analysis
- Conclusion

Introduction

KEKDTP seminar/Yusuke UCHIYAMA

Subject of research

- Lepton-flavor violating muon decay : $\mu \rightarrow e \gamma$
 - cLFV : Forbidden in SM

Physics Motivation

- $\mu \rightarrow e\gamma$ in the MSSMRN with the MSW large angle solution Large BR is predicted with many new Pysics
 - SUSY-GUT, SUSY-seesaw ,,,
 - Possibility from just below current limit.
 - Current exp. limit : 10⁻¹¹
 - ex)SU(5) SUSY-GUT: 10⁻¹⁵~10⁻¹³, SO(10): 10⁻¹³~10⁻¹¹, SUSY-seesaw: >10⁻¹⁴
 - Large $tan\beta \rightarrow larger BR$
- Connection to other physics
 - cLFV : μ-e Conversion, τ-LFV (τ→ $I\gamma$,etc) ...
 - g-2, EDM
 - LHC (direct search)

tanB=3,10,30

J. Hisano and D. Nomura, 1998

M, (GeV)

10-15

10-10

KEKDTP seminar/Yusuke UCHIYAMA

Position of the MEG Experiment

- Current experimental upper limit :
 - $Br(\mu \rightarrow e\gamma) < 1.2 \times 10^{-11} (1999, MEGA@LAMPF)$
- Target : down to a sensitivity of **10**⁻¹³
- ^{`5} 10 ^{تا} In 2008, started physics data taking ~2011? → MEC upgrade ?? ზ 10⁻⁷
- No other experiments (nor future program)

- u-e conversion
 - ~300 times smaller BR
 - Current U.L.~10⁻¹³(@PSI)
 - Future exp. $\sim 10^{-16}$
 - COMET[®] @J-Parc
 - mu2e @Fermilab
- τ-LFV
 - Many different modes
 - BR ~ O(10³⁻⁵)xBr(μ)
 - Current U.L.~10^{-7~-8} (B-factories)
 - Future program : superB

To conduct these experiments is important independent with MEG results

1950

10⁻¹

Ratio -3

^e 10⁻⁹

Jada 10⁻¹¹

10⁻¹³

10⁻¹⁵

To be a pioneer of coming New physics era !

1970

MEG

• Past experiments

 $\mu \rightarrow e \gamma$ search history

- Complementary with LHC
 - Possibility of SUSY particles discovery at the beginning of LHC

KEKDTP seminar/Yusuke UCHIYAMA

 $5 \sim 10$ years

ЛFG

2010

Year

(expected)

1990

<u>μ→eγ Search</u>

- Need a large number of muon
 - High rate experiment
 - Use positive muon (μ^+)
 - Prevent from forming muonic atoms
- $\mu^+ \rightarrow e^+ \gamma$ signal : a positron and a gamma
 - Clean 2 body decay
 - Both at 52.8MeV (monochromatic),
 - Back-to-back,
 - Time coincidence
- Backgrounds
 - Radiative muon decay (prompt BG)
 - Rapid decrease of phase space in signal region
 - We can control with reasonable resolutions
 - Accidental overlap of uncorrelated e^+ and γ (accidental BG)
 - Source of γ : radiative decay, e⁺ AIF, Bremsstrahlung, CR

09/11/24

Accidental Background

- Accidental BG limits the experiment
 - BG rate is proportional to the instant beam rate \rightarrow DC beam is the best

<u>Requirements for $\mu \rightarrow e\gamma$ experiment</u> <u>MUE-Gamma Collaboration</u>

- High intensity DC μ^+ beam
 - >10⁷/sec

• High rate tolerable detectors

- All of >10⁷/sec μ^+ generate e⁺
- Pileup of γs become a source of high energy BG

• High resolution detectors

- γ energy measurement is most important
- Angle and time measurements are also effective

The MEG Experiment

KEKDTP seminar/Yusuke UCHIYAMA

MEG Experiment

- World's most intense DC µ⁺ beam @PSI (Switzerland)
- MEG detectors
 - Positron spectrometer
 - Liquid xenon γ-ray detector
- Started physics data taking in autumn 2008

MEG Experiment

- World's most intense DC µ⁺ beam @PSI (Switzerland)
- MEG detectors
 - Positron spectrometer
 - Liquid xenon γ-ray detector
- Started physics data taking in autumn 2008

1.2MW proton Ring-Cyclotron at PS

<u>'Surface muon' Beam Transport SystemIEG</u>

- Surface μ : μ produced from π at rest on the surface of prod. target
 - Extract at 175° from the primary p beam
 - Low momentum(29MeV/C) with small variance $\mu^{\scriptscriptstyle +}$ beam
- Through the beam transport system
 - Separate e⁺ · degrade · tune beam profile
- **3x10⁷**μ⁺/sec stop on target
 - 10mm spot size
 - 200µm polyethylene film target , placed at 20.5°slant angle from beam-axis
 - Suppression of scatter & BG VS stopping power

MEG Detector

Liquid Xenon Detector

- 900 liter liquid xenon
 - Scintillation medium
 - High light yield (75% of Nal(Tl))
 - Fast response (τ_{decay} =45ns)
 - High stopping power (X₀=2.8cm)
 - No self-absorption
 - Uniform, no-aging
 - Challenges
 - Vacuum ultraviolet (178nm)
 - Low temperature (165K)
 - Need high purity
 - No segmentation
- Measure energy,position,time at once
- Identify pileup events
 - Light distribution
 - time distribution
 - waveform

Prototype / R&D

- Verified performance with prototype detector
 - Energy resolution @55MeV
 - $\sigma_{\mu\nu} = 1.23\%$, FWHM = 4.8%
 - Time resolution @55MeV
 - $\sigma_t = 65 \text{ ps}$

Various R&D, obtained a lot of know-how necessary of the final detector

Final detector 800 I of Xenon

850 PMTs

Prototype 100 I of Xenon 238 PMTs

160

140

120

100

80

60

40

20

09/11/24

-0.6

Prototype / R&D

- Verified performance with prototype detector
 - Energy resolution of the second second
 - σ_{up} = 1.23%
 - Time resolutio
 - $\sigma_t = 65 \text{ ps}$

Final detector

800 I of Xenon

<u>Cryostat</u>

Inner vessel

2 layers of vacuum-tight cryostat Thin window for $\boldsymbol{\gamma}$ entrance face

Entrance window with honeycomb structure 09/11/24 KEKDTP seminar/Yusuke UCHIYAMA

PMT Installation

2"PMT developed for MEG

- Quartz window for VUV
- K-Cs-Sb photocathode
- Al strips on photocathode
- Metal-channel dynode
- Zener diode at last steps of Bleeder

MUE Barr

100000

KEKDTP seminar/Yusuke UCHIYAM

09/11/24

KEKDTP seminar/Yusuke UCHIYAMA

Positron Spectrometer

- A spectrometer efficiently measure 3×10^7 high rate e⁺
- Measure e⁺ momentum · emission angle · μ^+ decay time&position with high resolution

"COBRA" Magnet

- Superconducting solenoid form highly gradient magnetic field
 - Center 1.27 T \rightarrow edge 0.49 T

(no return yoke) Low B around LXe detector

for PMT <50Gauss

Specially Gradient B-Field

solenoid

J

Drift Chamber(DCH)

- 16 modules
 - Arranged concentrically (10.5°interval)
 - 2 layers per 1 module

-

- Chamber gas
 - He:ethane(50:50)
 - Pressure control
 - Outside He atmosphere
- <u>Ultra low mas chamber</u>
 - Multiple-scattering limits the performance
 - To suppress γ BG source
 - In total along e⁺ trajectory $\sim 2.0 \times 10^{-3} X_0$

DCH Design

2 layers staggered by half cell 9 drift-cells in 1 layer

Open-frame structure Form cell only with cathode foils

12.5µm cathode foil Vernier pattern \rightarrow z reconstruction

Timing Counter

- Hit timing counter one turn after exit of DCH. Measure hit timing
- Two layers of plastic scintillater arrays
 - Outer : Scintillation bars
 - 4x4x80cm³, BC404
 - 15bars concentrically (10.5°interval)
 - Fine-mesh PMT at two ends
 - High precision time measurement
 - Inner : Scintillating fiber
 - 5x5mm²
 - 128 fibers along z-dir.
 - Readout by APD
 - Hit pattern → trigger

Not used in 2008 analysis Defects in APD readout

09/11/24

09/11/24

Data Acquisition

KEKDTP seminar/Yusuke UCHIYAMA

Trigger

- FPGA-FADC architecture
 - 100MHz FADC on VME boards
- MEG trigger
 - γ energy
 - e⁺-γ coincidence
 - e⁺-γ direction match (back-to-back)
 - Max output PMT in LXe
 - TC hit position
 - In addition, 10 trigger types are mixed in normal data taking
 - Calibration, normalization

Beam rate	3x10 ⁷ s ⁻¹
Fast LXe Q sum (>40MeV)	2x10 ³ s ⁻¹
Time coincidence	100s ⁻¹
Direction match	10s ⁻¹

09/11/24

Readout Electronics

- Record <u>waveform</u> from all sub-detectors (no ADC,TDC)
 - DRS chip (Domino Ring Sampler)
 - Up to 5GSPS, 1024cell, 8ch/chip
 - Sampling speed : 1.6GHz for LXe&TC, 500MHz for DCH

Calibration

- 55MeV high-energy γ from π^{0} decay
 - <u>Evaluation of resolutions</u> (energy, position, timing)
 - <u>Calibrate energy scale</u>
 - Use same beamline as μ^+
 - Take some time for setup (~5days)
 - Conducted at beginning & end of physics run.
 - More BG than normal μ^+ run.
- 17.6 MeV γ from Li(p, γ)Be reaction
 - Lower energy (1/3)
 - <u>Uniformity, light yield monitor</u>
 - MEG dedicated p-beamline (opposite side)
 - Easy to switch (~20min)
 - 3 times per week, regular calibration
- **μ** Michel decay
 - <u>Calibrate e</u>⁺ (DCH&TC)
- µ radiative decay
 - <u>Time calibration</u>
- LED, α source
 - PMT calibration

PMT Calibration

LED

- PMT gain calibration
- Time offset calibration
- Alpha
 - PMT Q.E. calibration
 - LXe attenuation length measurement

Variation of LXe light yield

- Lower than expected
- Recover by purification

Confirmed we can monitor light yield using several kinds of daily calibration.

Decrease by (possible) leak

We decided to continue purification during data taking (gas phase:continuously, liquid phase:intermittently(beam shutdown))

KEKDTP seminar/Yusuke UCHIYAMA

Xenon System:Liquefaction/Transfer MEG

Xenon System:Purification System

Xenon Scintillation

- De-excitation process (fast)
 - Xe + Xe^{*} \rightarrow Xe^{*} \rightarrow 2Xe + hv
- Recombination process (slow)
 - $Xe^+ + Xe \rightarrow Xe_2^+$
 - $Xe_2^+ + e^- \rightarrow Xe^{**} + Xe$
 - $Xe^{**} \rightarrow Xe^{*} + heat$
 - Xe + Xe^{*} \rightarrow Xe²* \rightarrow 2Xe + hv

Xe Scintillation Spectrum

Light yield & pulse shape

- Further purification during shut down
 - Whole volume passed gas purification system (getter).

DCH Discharge Problem

Y (cm)

Helium

(efficiency · resolution)

- DCH frequently discharged
 - Inside magnet is filled with pure-He.
 - DCH-outside is exposed in He atmosphere. (HV line)
- It happened also in 2007 engineering run.
 - Repaired in maintenance period
 - At the beginning of 2008, every chamber could be operated
 - We thought we could fix the problem grade 2400
- In 2008, after a few months
 - Gradually some chambers starts to discharge again.
- Finally, out of 32 planes
 - 18 planes were operational
 - Only 12 planes worked at nominal voltage

HV line slowly

X (cm)

permeated

-10

Solution for the Discharge problem

- Exhaustively investigated weak points for all HV connections.
- HV soldering spot on PCB and HV via on PCB are suspicious.
- Discharge was reproduced at Lab. test finally after many trial.
- Solutions
 - New design of PCB
 - Separate layers for HV and GND completely
 - $(3 \rightarrow 4 \text{ layers})$
 - Potting HV soldering spot with epoxy

After modification

- Two chambers with new HV PCB into "Aquarium" to see long term operation with He/Ethane inside and pure-He outside and nominal HV
- 16 chambers are mounted on the support structure inside the "He cabin". Signal check with nominal HV

Stable operation for ~7 months

Helium cabin

Reconstruction & Performance In 2008

<u>Gamma energy l</u>

Gamma energy II

- Recover of pileup events
 - Not discard pileup events, but use with unfolding.
 - Improve efficiency

- ID pileup \rightarrow reconstruct energy using region without pileup \rightarrow replace PMT outputs for pileup region with estimated charge \rightarrow then normal reconstruction

 $\epsilon \sim 8\%$ gain

Gamma energy II

- Recover of pileup events
 - Not discard pileup events, but use with unfolding.
 - Improve efficiency

- ID pileup \rightarrow reconstruct energy using region without pileup \rightarrow replace PMT outputs for pileup region with estimated charge \rightarrow then normal reconstruction

 $\epsilon \sim 8\%$ gain

- V (cm) **Gamma energy III** 60 π^0 55MeV 40 Number of events /(0.64 MeV) 1600 1400 20 1200 sigma = 1.54 ± 0.06 % FWHM = 4.55 ± 0.20 % 1000 800 -20 600 400 -40 200 0 20 60 40 -60 E_γ (MeV) Evaluate energy resolution as a response to 55MeV-20 Evaluate res for all over the entrance face
 - Average res (averaged over the event distri. in MEG run)

σ_{up} =2.0% for deep(>2cm), 3.0% (1~2cm), 4.2% (0~1cm) Determine energy scale

09/11/24

Gamma energy IV

- Using γ spectrum of μ decay (side-band)
 - <u>Check</u> those correction, resolution and energy scale

Positron Tracking:pattern recognition

Select hits with time and z info.

Clustering, connecting

Find track candidates

Positron Tracking:Kalman Filter

Positron momentum

Positron emission angle

- Evaluate angular resolution using 2 turn events
 - See difference of angle between reconstruction with each turn

$$\sigma_{\theta} = 18 \text{ mrad}$$

 $\sigma_{\phi} = 10 \text{ mrad}$

Muon decay vertex

- Reconstruct µdecay vertex as a point crossing e⁺ track and target plane
- Evaluate resolution with
 - Using holes on target
 - Using 2 turn events

09/11/24

KEKDTP seminar/Yusuke UCHIYAMA

 $\sigma_x = 4.5 \text{ mm}$

 $\sigma_v = 3.2 \text{ mm}$

Gamma position

- Reconstruction : Fit with solid angle
- Evaluate resolution
 - π^{0} run with Pb bricks
 - Shadow of slits gives resolution and bias
 - Results
 - $\sigma_{xy} = 4.5 \sim 5$ mm, bias(RMS)=0.7mm
 - Compared with MC:
 - Reduce systematic.
 - 1.8mm worse than MC
 - QE uncertainty
- Detailed study with MC
 - Take in the difference with data
 - Resolution variation by the relative position to PMT
 - Shape of the response
 - Double Gaussian •

 σ_{xv} ~5mm (position dependent)

v(cm)

- Not possible to reconstruct direction of gamma
 - Direction of the line b/w μ vertex and γ interaction point
- Combined resolution : $\sigma \theta_{e\gamma} = 20.6 \text{ mrad}, \sigma \phi_{e\gamma} = 13.9 \text{ mrad}$

 γ : σ_{xy}

5 mm

Gamma timing I

Reference counter

- Reconstruction
 - Subtract scinti photon propagation time from PMT hit time.
 - Combine a lot of measurement by different PMTs (~150PMTs) (χ^2 fit).
- $\pi^0 \rightarrow \gamma \gamma$
 - Time difference b/w the reference counter
 - Results
 - Gaussian
 - $\sigma_{+} = 78 \text{ps} @55 \text{MeV}, 61 \text{ps} @83 \text{MeV}$

 σ_{t} =80ps @52.8MeV (This value is not used directly.) Energy dependence

Gamma timing II

- Change of pulse shape as improvement of pugity
- Observed drift of t0

180

140

120

t_{ey} (nsec)

Time resolution

- e⁺: TC measurement, subtract ToF from track length
- γ : LXe interaction time, subtract ToF
- Observe RD peak in <u>normal data</u> <u>taking</u>
 - Correct small dependence of γ energy

$$\sigma t_{e\gamma} = 148 \pm 17 \text{ ps}$$

Gamma efficiency

- Detection efficiency
 - $\pi^{0} 2\gamma$: Nal single trigger
 - MC
 - µ data single spectrum
 - Calculate position dependent efficiency with MC
 - Multiply with e⁺ event distribution
 - In analysis region of $46 < E_{v} < 60 MeV$

• $\epsilon_{det} = 66 \%$

- Analysis efficiency
 - Inefficiency (pileup, CR cut)

• 9%

$$\epsilon_{\gamma} = (60 \pm 3) \%$$

Consistent

within 5%

Positron efficiency 0.4

- e⁺ detection efficiency
 - $\epsilon_{e+} = \epsilon_{DCH} \times A_{DCH-TC}$
 - εDCH : tracking efficiency 0
 - A_{DCH-TC}: DCH-TC matching probability. Make inefficiency if e⁺ interacts with material 0. and annihilates or changes its direction largely.
- ϵ_{e+} decreased gradually during the run
 - DCH discharge problem
- Expectation (full DCH) : $\sim 40\%$ (= 80x50)

week-# in Run2008

09/11/24

Waveform Analysis

Domino Ring Sampler

0.2-2 ns

- Switched Capacitor Arrays
 - High speed sampling
 - Low power consumption
 - Low cost
 - High channel density
 - No precise timing

09/11/24

KEKDTP seminar/Yusuke UCHIYAMA

FADC

Calibration

Non-linear response in amplitude & time

Calibrate the response

- Measure response to reference voltages
- Measure response to sine wave
 - Not constant sampling intervals (but fixed over time)
- Synchronization among chip by a reference clock
 - Trigger system distributes a global reference clock (20MHz)
 - Each chip digitizes the clock
 - Clock analysis (offline)
 - Global synchronization
 - Event-by-event time calibration

Synchronization precision $\sigma \sim 40$ psec

What is the merits?

Mu-E-Gamma Collaboration

- Pileup identification
- Particle identification (PSD)
- Noise
 - Can investigate noise (online oscilloscope)
 - Event-by-event baseline subtraction
 - Additional noise reduction
- Precise waveform analysis in offline
 - Digital filter
 - Various timing algorithms
 - Fitting waveform

09/11/24

09/11/24

Charge Integration

156 🚔

Time Extraction

- digital constant fraction
 - Eliminate time-walk effect
 - Parameter adjustable —
 - Interpolate sample points
 - Linear or cubic

mplate fitting Maximal usage of sample point **Template fitting** Robust to noise -30 -50 -600 -700-500 -400 -300

-600

KEKDTP seminar/Yusuke UCHIYAMA

Time (nsec)

Coherent noise subtraction

Estimate coherent noise using baseline region

Coherent noise subtraction

Cross talk removal

Signal from timing counter

Pulse Shape Discrimination

• PSD by

Q/A, pulse width, decay time

09/11/24

Digitizer upgrade

- DRS2 → DRS4
 - Many modifications are applied from the experience with DRS2
 - DRS2 have been used since 2004
 - Replaced all DRS2 with DRS4 in September
 - But not yet full performance
 - Eliminate temperature drift
 - Linearity improve (upto 1 V)
 - Differential input
 - Timing accuracy (?)
 - Double cell (twice sampling speed or twice window)
 - It takes longer than expected to install
 - Completely new system
 - Several problems to debug

Conclusion

- MEG実験は2008年秋、物理データ取得を開始。
 RUN2008ではMEG最初の3ヶ月分のデータをとった。
- 3 ton LXe detector の実用化に世界初成功。安定に運転している。
- SCAを用いた高速波形取得。波形解析手法を開発。
- 検出器の解析手法を確立。
 - RUN2008を一通り解析し結果を出した。
 - RUN2008のsensitivity : 1.3 x 10-11
 - 実際のデータからのupper limit : Br(µ→eγ) < 3.0 x 10-11 @90% C.L.

(preliminary)

- 今年はこの4倍の統計をためる。(11月頭から物理ラン再開)
 - これに応じてsensitivityの向上
 - sensitivityの詳細は今年の検出器の性能に依存する(現在、校正・評価中)が 性能向上も見込めるため今年も統計で制限されるだろう。

http://arxiv.org/abs/0908.2594.

09/11/24

Thank you.