MEG II 実験陽電子タイミングカウンターの 2024 年ランにおける 改修後の運用結果と性能評価

<u>米本 拓, 他MEG IIコラボレーション</u>

2025年3月18日, オンライン

日本物理学会2025年春季大会 18pT3-5

Introduction

2025/3/18

MEG II experiment

□ Mu to E Gamma phase II

■ MEG final result (2016): $\mathcal{B}(\mu \rightarrow e \gamma) < 4.2 \times 10^{-13}$ (MEG, full dataset)

□ Search for the cLFV process $\mu \rightarrow e\gamma$ with one order better sensitivity: 6×10^{-14}

□ MEG II First result (2024): $\mathcal{B}(\mu \rightarrow e \gamma) < 3.1 \times 10^{-13}$ (MEG II, 2021 data)

□ Running since 2021 towards 2026

- w/ the DC anti-muon beam $3 5 \times 10^7 \,\mu^+/s$
- @ Paul Scherrer Institute (PSI).

MEG II experiment

pixelated Timing Counter

□ Improve e⁺ time resolution by multiple-pixel-hit scheme.

256 pixels on Upstream module
 256 pixels on Downstream module
 = 512 pixels

□ Mean ~ **9.3 hits** (MC, Signal e⁺)

2025/3/18

pTC geometry

- \Box 90 cm x 60 cm semi-cylinder module. (-165.8 ° < ϕ < +5.2 °)
- □ 12 cm × 5 cm (4 cm) × 5 mm plastic scintillator (BC422).
- □ Read by series connection of **6 SiPMs on both side**.
 - ♦ (AdvanSiD, ASD-NUV3S-P High-Gain, 3 x 3 mm², 50 x 50 μ m², V_{breakdown} ~ 24 V).

pTC performance so far (1)

for Michel e⁺ data in 2017, 2021, 2023

$$\sigma_{\rm pTC}(N_{\rm hit}) = \sqrt{\frac{p_0^2}{N_{\rm hit}} + p_1^2}$$

$$(p_0 \sim \sigma_t^{\text{single}}, p_1 \sim \sigma_t^{\text{system}}))$$

Period	Single pixel time resolution (p_0)	pTC Overall time resolution $\sum \sigma_{\text{pTC}}(n) \times \text{Prob}(N_{\text{hit}} = n)$	$\sigma_{\rm pTC}(N_{\rm hit}=9)$
pilot run 2017 Nov.	90.6 ps	37.3 ps	32.3 ps
2021 Oct.	106.2 ps	42.9 ps	37.1 ps
2023 Jun.	108.2 ps	44.4 ps	38.5 ps
2025/3/18	Taku Yonemoto	o, MEG II - pTC	6

pTC performance so far (2)

2025/3/18

pTC refurbishment 2024

2025/3/18

pTC refurbishment with new SiPMs

□ For a still long-term operation towards 2026, we renovated the pTC.

We produced new 94 pixels with spare scintillators & new 1128
 SiPMs with a larger sensitive area 4 × 4 mm² (ASD-NUV4S-P).

2025/3/18

pTC refurbishment – time resolutions in labtest

> Evaluated time resolution by mean time of ch1 and ch2, with reference counter ($\sigma_{ref} \sim 30 \text{ ps}$)

- > Operation voltages are set on $V_{breakdown}$ +3.5 V / SiPMs (optimized by 2 samples).
- > Regard the average value $\bar{\sigma}_t = 67.5 / 74.7 \text{ ps} (4 \text{ cm} / 5 \text{ cm}) \text{ as new pixels' time resolution.}$

pTC refurbishment – performance expectation

In 2024 maintenance period, we only could exchange 80 pixels on pTC.
 Contribution of individual pixel exchange was evaluated as:

For 1 event which the exchanged pixel included:

2025/3/18

$$\sqrt{\sum_{i=0}^{n} \left(\frac{\hat{\sigma}_{\text{single}}}{n}\right)^{2}} \rightarrow \sqrt{\frac{n-1}{n^{2}}} \hat{\sigma}_{\text{single}}^{2} + \frac{1}{n^{2}} \left(a\hat{\sigma}_{\text{single}}\right)^{2}} = \sqrt{1 - \frac{1-a^{2}}{n}} \cdot \frac{\hat{\sigma}_{\text{single}}}{\sqrt{n}}$$

***** For general:

$$\left(a = \frac{\text{time resolution of the new pixel}}{\hat{\sigma}_{\text{single}}}\right)$$

$$\hat{\sigma}_{t_{\text{pTC}}}(n) \approx \sqrt{\left(1 - \frac{1-a^{2}}{n}\right)} \cdot r_{n} + 1 \cdot (1 - r_{n}) \cdot \frac{\hat{\sigma}_{\text{single}}}{\sqrt{n}}$$

$$\left(r_{n} = \frac{\# \text{ of } n \text{ hit events with the new pixel}}{\# \text{ of all } n \text{ hit events}}\right)$$

Taku Yonemoto, MEG II - pTC

12

pTC refurbishment – geometry

□ There were some constraints:

- Exchange the ones with bad resolution > 130 ps, being suspected in a terrible aging.
- Pixel size (height = 4 or 5 cm): due to the number of spare scintillators and PCBs (40 (4 cm) + 56 (5 cm)).
- Readout electronics configuration:
 - \circ 8 pixels sharing a HV supply circuit, their HVs should be in range of +4V from V_{min}.

Performance evaluation

2024 MEG Run data samples & condition

- □ Short beam time (11 Nov. 18 Dec.)
 - Total ~16M muon events.
- □ Evaluated by **1.8M Michel positron events.**

□ pTC operation temperature was <u>at 17degC with uncontrolled humidity</u>.

- Thin PE film to cover the pTC was broken.
 - $\,\circ\,\,$ The drawback of the refurbishment work.
 - $\circ~$ Air circulation seemed not enough with a path to hole of film.
- Sometimes attempted to cool down the temperature to 10 degC.
 - $\circ~$ Failed with the warmer environment inside the experimental area, even in winter .
 - $\circ~$ Many short-circuits happened, which seemed by condensed water.
- Results in
 - \circ More dark currents by higher temperature: $\sim +1$ uA than 2023
 - Lower bias voltage: due to higher breakdown voltage, missing changes of the HV configuration

Performance evaluation scheme

Refurbishment result (Even-odd)

-> 104 ps (2024 data, -3.7%)

-> 41.8 ps (2024 data, -5.7%)

 \Box (Estimated = 101 ps, -6.5 %)

□ (Estimated = 40.9 ps, -7.7 %)

Single counter method

Refurbishment result (single counter)

□ New pixels ($\sigma \sim 60$ ps) are clearly seen.

- □ Old pixels' resolution got even worsen.
 - Higher temperature -> dark current, missed bias voltage.
 - Irradiation from 2023.
 - Outermost dead channels -> short circuit.

Refurbishment result (single counter)

□ New pixels ($\sigma \sim 60$ ps) are clearly seen.

- □ Old pixels' resolution got even worsen.
 - Higher temperature -> dark current, missed bias voltage.
 - Irradiation from 2023.
 - Outermost dead channels -> short circuit.

Refurbishment result (single counter, new counters)

Refurbishment result (single counter, new counters)

Errata

Summary & prospect

□ Major replacement work on the MEG II pixelated Timing Counter was done.

- For 80 pixels out of 512, done before 2024 run
 - Single improvement ratio / fraction of hit probabilities per nHit are combined to choose the positions.
- Pre-estimation from MEG II 2023 dataset,
 - Estimated 7.7% improvement from 2023 for pTC overall time resolution.
 - \circ c.f. 80/512 ~ 15% exchange, with 70/100 (ps/ps) ~ 30% better resolution counters = 4.5 %
- Performance in MEG II 2024 dataset,
 - Resulted in 5.7% improvement from 2023.
 - Higher operation temperature with uncontrolled humidity would affect on dark current & bias voltage.

Dataset	$\sigma_t^{ m single}$	$\sigma_t^{ m system}$	$N_{\rm hit}$ -overall time resolution
2017 commissioning	90.6 ps (100%)	11.6 ps	37.3 ps (100%)
2023 data	108.2 ps (119%)	13.4 ps	44.3 ps (119%)
2024 pre-estimation	101.0 ps (111%)	10.5 ps	40.8 ps (109%)
2024 data	104.3 ps (115%)	9.7 ps	41.8 ps (112%)

□ For 2025 and future,

- Before 2025 run, we already mounted 12 new pixels out of rest 14.
- With more air-tight PET (Mylar) film to cover the pTC, we expect full operation of cooling system in 10 degC.

2025/3/18 Taku Yonemoto, MEG II - pTC 23	2025/3/18	Taku Yonemoto, MEG II - pTC	23
--	-----------	-----------------------------	----

Back up

2025/3/18

Motivation – Mu to E Gamma

Common muon decay

□ The Mu to E Gamma: μ → eγ, is hypothetical and one of the simplest cLFVs which emits only pair of positron and gamma ray at the same time and with the monochromatic energy.
 □ The most common muon decay mode: μ → evv, accounts for ~100 % of muon decays.

pTC refurbishment – pixel selection

There were some constraints:

- Number of pixels: only 94.
- Eager to pick up the extreme bad pixels: resolution > 130 ps, for investigation (-> not reproduced in Lab.).
- Pixel size (height = 4 or 5 cm): due to the number of spare scintillators and PCBs (40 (4 cm) + 56 (5 cm)).
- Readout electronics configuration: 8 pixels on 1 readout board, their HVs should be in range of +4V from V_{min}.

Single pixel resolution with laser

*refurbished pixels in 2024 are highlighted

□ Timing resolutions with laser light (not fully reflecting the responses for e⁺) show

- for h = 5 cm pixels: 50-140 ps -> 50-70 ps
- for h = 4 cm pixels: 50-100 ps -> 50-80 ps
- Because we re-plugged the fibers (even broke some) in 2024, the samples are not exactly the same.

Single pixel resolution with laser

*refurbished pixels in 2024 are highlighted

Start point of MEG II (2021)

after HV optimization (2023)

after refurbishment (2024) (preliminary; should be calibrated)

□ The gain looks like increased more or less from 2023 to 2024.

- The operation voltages of SiPMs in 2023 were optimized by local-maximization of S/N ratio.
- The operation voltages of new SiPMs in 2024 are just +3.5 V from measured breakdownV.

after HV optimization (2023) after refurbishment (2024)

(preliminary; should be calibrated)

□ The gain looks like increased more or less from 2023 to 2024.

- The operation voltages of SiPMs in 2023 were optimized by local-maximization of S/N ratio.
- The operation voltages of new SiPMs in 2024 are just +3.5 V from measured breakdownV.

2025/3/18