

MEGII 実験 2021・2022年データを 用いた最高感度での $\mu \rightarrow e\gamma$ 探索

ロイントロダクション □ 分岐比推定手法 ロ本解析の暫定的な探索感度

山本健介(東大理)、他MEG || コラボレーション

日本物理学会2025年春季大会 2025年3月18日(火)-21日(金)

18aT1-7

$\mu \rightarrow e\gamma$ signature and background

Precise kinematics measurement required to distinguish signal from backgrounds

Kensuke Yamamoto

JPS 2025 Spring Meeting

2

MEG II detector & event reconstruction

<u>K. Afanaciev, et al., Eur. Phys. J. C 84 (2024), 190</u>

Data collection

Data collection

Analysis strategy

- Blind analysis
 - To prevent any biases in the analysis
 - Blind box fully covers analysis window

•
$$BR(\mu \rightarrow e\gamma)$$
 converted from $N_{\rm sig}$ by

 $BR(\mu \to e\gamma) = \frac{N_{\text{sig}}}{k}$

- likelihood ordering
 - $N_{\rm sig}$ 90% C.L. upper (lower) limit normalised to BR 90% C.L. upper (lower) limit

Analysis window

- 48 MeV < E_{γ} < 58 MeV
- 52.2 MeV < E_e < 53.5 MeV
- $|t_{e\gamma}| < 0.5 \, \text{ns}$
- $|\theta_{e\gamma}| < 40 \,\mathrm{mrad}$
- $|\phi_{e\gamma}| < 40 \,\mathrm{mrad}$

/ number of effectively measured muons k

• Extended maximum likelihood analysis estimates the number of signal events $N_{
m sig}$

$$k \sim N_{\mu}^{\text{stop}} \times \Omega \times \epsilon_{\gamma} \times \epsilon_{e}$$

 Confidence interval calculated by the Feldman-Cousins approach with profile-<u>G. Feldman, R. Cousins, Phys. Rev. D 57 (1998), 3873</u>

Number of effectively measured muons k

$$k = \frac{N^{e\nu\bar{\nu}}}{BR(\mu \to e\nu\bar{\nu})} \times \epsilon_{\gamma} \times$$

7

Likelihood function to estimate N_{sig}

- Extended maximum likelihood analysis estimates
 - Number of signal events $N_{\rm sig}$

$$\mathscr{L}(N_{\text{sig}}, N_{\text{ACC}}, N_{\text{RMD}}) = C(N_{\text{ACC}}, N_{\text{RMD}}) \times \frac{e^{-N}}{N_{\text{obs}}!} \prod_{i=1}^{N_{\text{obs}}} \left[N_{\text{sig}} \cdot S(\vec{x}_i) + N_{\text{ACC}} \cdot A(\vec{x}_i) + N_{\text{RMD}} \cdot R(\vec{x}_i) \right]$$
Constraints based on side-bands $V_{\text{obs}}! \prod_{i=1}^{N_{\text{obs}}} \left[\sum_{i=1}^{N_{\text{obs}}} \sum_{i=1}^{N_{\text{obs}}} \left[\sum_{i=1}^{N_{\text{obs}}} \sum_{i=1}^{N_{o$

• Number of accidental and RMD background events, N_{ACC} and N_{RMD} (Nuisance parameters)

Count on-peak events in E_{γ} side-band and extrapolate it

 $\rightarrow N_{\rm RMD} = 10.1 \pm 1.7$

 $t_{e\gamma} (= t_{\gamma} - t_e) \text{PDFs}$

- Signal PDF built based on
 - $t_{e\gamma}$ peak originating from RMD events
 - # pTC hits (depending on E_e)

- $\sigma_{\text{const}} \oplus \frac{\sigma_{\text{single}}}{\sqrt{n_{\text{pTC}}}} \quad \bullet \quad \sigma_{\text{const}}: \text{ Dominated by } t_{\gamma} \text{ resolution (65 ps)}$ $\bullet \quad \sigma_{\text{single}}: \text{ pTC single counter resolution (110 ps)}$

• Accidental BG PDF modelled as a flat distribution

9

E_{ρ} PDFs

- with the function accounting for

$E_{\gamma} \mathsf{PDFs}$

- 55 MeV γ
 - run

in $t_{e\gamma}$ side-bands

Careful detector calibration needed

- Signal response examined with $\pi^0 \rightarrow \gamma \gamma$
- Must correct temporal variations of
 - Energy scale
 - Position dependence of the energy scale
 - Resolution

Uncertainty on the energy scale

- Temporal variation dominates the uncertainty of 0.18%
 - 0.3% in the last publication with the 2021 data

Angle PDFs

$$\theta_{e\gamma} = (\pi - \theta_e) - \theta_{\gamma}$$
$$\phi_{e\gamma} = (\pi + \phi_e) - \phi_{\gamma}$$

- Signal PDFs parametrised by the combination of
 - Positron angle & vertexing resolutions

$\sigma_{y_{e^+}}$ (mm)	$\sigma_{z_{e^+}}$ (mm)	$\sigma_{\phi_{e^+}}$ (mrad)	$\sigma_{\theta_{e^+}}$ (mrad)
0.74	2.0	4.1	7.2

Photon position resolution

- 2.5-4 mm depending on conversion depth
- $\theta_{e\gamma}$ vs $\phi_{e\gamma}$ correction taken into account
- The largest systematics: **Detector alignment**
 - Profiling approach adopted
- Accidental PDFs extracted from $t_{e\gamma}$ side-bands

Sensitivity & fitting to $t_{e\gamma}$ side-bands

- Thousands of toy samples with a null-signal hypothesis
- ➡ Median 90% C.L. upper limit on BR is defined as sensitivity

$S_{90} = 2.2 \times 10^{-13}$ (preliminary)

- MEG final: 5.3×10^{-13}
- MEG II 2021: 8.8×10^{-13}

Conclusion & prospects

- Search for $\mu \rightarrow e\gamma$ with the MEG II 2021 and 2022 data
 - With a preliminary sensitivity of 2.2×10^{-13}
 - To be published soon!
- Analysis ongoing for the 2023 and later data
 - Positron tracking (A. Oya, 18aT1-6)
 - LXe detector calibration (S. Ban, 19aT2-8)
- Higher statistics by data-taking in 2025 and 2026
- Stay tuned!

MEG II expected sensitivity Branching Ratio MEG II 2021 2022 expected 10^{-13}

5 and 2026 10^{-13} 2024 2025 projected 2026

Backup

RDC PDFs

- >48 MeV γ by tagging low-energy e
- accidental background events

- PDFs extracted from time side-bands

 - On-peak events for background PDFs

