# MEG II実験液体キセノン検出器の 2024年ランの運転状況 および2025年ランに向けた取り組み

馬越 隆成、他MEG IIコラボレーション 日本物理学会2025年春季大会







JPS 2025 Spring / Ryusei Umakoshi

# **MEG II Experiment**

- MEG II Experiment
  - Search for  $\mu \rightarrow e\gamma$ 
    - charged Lepton Flavor Violation
    - with  $2 5 \times 10^7 \,\mu/s$  beam rate at Paul Scherrer Institute (PSI)
    - Data taking from 2021 to 2026
  - Expected branching ratio of  $\mu \rightarrow e\gamma$  from SUSY-GUT:  $\mathcal{O}(10^{-13} 10^{-14})$
  - Prospect sensitivity: 6×10<sup>-14</sup> (in 2026)
- MEG II Detector
  - Positron
    - CDCH: Tracking of positron
    - pTC: Measure time of positron
  - Gamma-ray
    - LXe detector: Measure position, time, energy of gamma-ray
      - Today's topic





# Liquid Xenon (LXe) Detector

- LXe Detector
  - Measure position and time of interaction point, energy of gamma-ray
  - Used 900 L LXe as scintillator
    - Wavelength of scintillation light of LXe:  $\lambda = 175~\mathrm{nm}$  (Vacuum Ultraviolet (VUV) region)
  - Used PMTs and SiPMs which are sensitive to VUV light
    - 668 2-inch PMTs
    - 4092 SiPMs (SiPMs size: 15 mm<sup>2</sup>)
- LXe detector structure
  - LXe vessel
    - Filled with LXe
  - Theraml insulation layer
    - Vacuumed
  - Other parts
    - Gate valve on the top
    - etc...





#### **LXe Detector Status in 2024**



- Due to failure of LHe supplier, physics run couldn't start on schedule
  - Originally start from June
- Physics run started on 11th November 2024 with intensity  $\sim 4 \times 10^7 \,\mu/s$
- Xenon leak happend but it doesn't affect data quality by appropriate calibration
- Calibration of sensor is ongoing



### Xenon Leak



# **Detection of Xenon Leak Using PMTs and LEDs**

- The number of detected LED photons in the liquid phase is about 2-3 times higher than in the gaseous phase
  - LED located in LXe
  - Due to reflection of LED light at the liquid/gas interface
- This allows us to estimate the liquid level
  - By tracking the charge for PMT
- Xenon leak can be detected by this method





# Xenon Leak Rate

- Xenon leak rate
  - Gross leak: 5.9 kg/day
  - Small leak: 0.29 kg/day



### **Amount of Lost Xenon**

|            | Leak Rate [kg/day] | Period of Leak [day]           | Amount of Lost Xenon<br>[kg]         |
|------------|--------------------|--------------------------------|--------------------------------------|
| Gross Leak | 5.9                | 14                             | 83                                   |
| Small Leak | 0.29 (0.78)        | 133 (26)                       | 59                                   |
|            | Leak rat           | te increased during run due to | o the pressure increase of LXe vesse |

- Total amount of lost xenon in 2024: About 140 kg
- Refill xenon before 2025 run
  - To compensate lost xenon

#### **Xenon Capture**

|            | Leak Rate [kg/day] | Period of Leak w/ Xenon<br>Capture System [day] | Amount of Lost Xenon [kg] |
|------------|--------------------|-------------------------------------------------|---------------------------|
| Small Leak | 0.29 (0.78)        | 31 (26)                                         | 29                        |

- Connected a tank to the thermal insulation layer with evacuation pump
- Stored leaked xenon in the tank
  - Used LN2 for cooling of xenon
- About 30 kg xenon was collected in 2024
- Collected xenon will be reused after purification



# **Fixing Works for Xenon Leak**

- Nuts on the lateral faces of LXe vessel were loose
  - These nuts should be tightened with 140-200 Nm
  - Thermal cycle makes the LXe vessel looser

- Retightened these Nuts with 160 Nm
  - Used torque wrench



Nuts on the lateral face of LXe detecor LXe vessel



# **Leak Investigation**

- Compare the pressure decrease for LXe detector before and after retightening
  - with ~1.5 bar N2
- After retightening, the pressure decrease became smaller
  - Or possibly saw the effect of atmospheric pressure
- One evidence that leak became small



986

re [MPa]

Detector Pressu



### **Current Xenon Leak Rate**

- Xenon leak rate: 0.046 kg/day
  - with LXe in the detector
- 6 times smaller than before
- We can conduct 2025 MEG II run with negligible small xenon leak





# **Summary**

- 2024 MEG II physics run was conducted with xenon leak
  - Xenon leak doesn't affect data quality by appropriate calibration
- Xenon leak was almost solved
- Refill xenon before 2025 run to compensate lost xenon
- We're waiting coming physics run with the best detector

# **Backup**

### **Timeline towards 2025 MEG II Run**



# **LEDs inside LXe Detector**

- To take data for PMT gain calibration, there are LEDs inside the LXe detector
  - Used these LEDs for xenon leak check (explained later)



# **Gross Xenon Leak in 2024 MEG II Run**



# **Test of Accuracy**

- Before August, the amount of lost LXe is 34 L = 100 kg (liquid density of Xe: 2.95 kg/L)
  - Calculated from liquid level meter for 1000 L LXe dewar
- From PMT charge change, the amount of lost xenon is 100 kg
  - Xenon leak rate from PMT charge is 0.29 kg/day
  - 0.29 kg/day \* 57 day = 17 kg
  - Amount of lost xenon by gross leak: 83 kg
- The accuracy seems good
- Leak Rate Calculation from PMT is reliable

### **Small Leak in 2021 MEG II Run**



19

# Leak Rate from Pressure of Thermal Insulation Layer

- Pressure of insulation layer increased when evacuation of insulation layer stopped
  - Due to xenon leak from the LXe vessel
- Leak rate has positive dependence of amount of LXe in the detector



Xenon leak

#### Leak Rates of "Small Leak" (by Pressure Increase of Insulation Layer)

- Mass leak rate:  $\dot{M} = \dot{P} \frac{M_{Xe}V}{RT}$ 
  - *P*: Partial pressure increase of insulation layer
  - $M_{\rm Xe}$ : Molar mass of xenon (~131 g/mol)
  - V: Volume of insulation layer(~1000 L)
  - *R*: Molar gas constant (8.31 J · K<sup>-1</sup> · mol<sup>-1</sup>)
  - T: Temperature of insulation layer (~200 K)



$$\dot{M}$$
=84.4 Pa/h  $\cdot \frac{M_{Xe}V}{RT}$ =0.16 kg/day

# **PMT Gain Calculation**

• PMT gain is calculated from LED intensity scan data

 $\sigma_Q^2 = G \cdot e \cdot \bar{Q} + \sigma_0^2$ 

- $\sigma_Q$ : Variance of charge distribution G: PMT Gain
- e: Elementary charge
- $\bar{Q}$ : Mean of PMT charge



# **PMT Gain Calibration**

- PMT gain has larger systematics than the charge
- These gain can be calibrated by the charge
- The calibration is ongoing

