

MEG II実験に向けたDLC-RPCの レート耐性向上のための電極構造の最適化

神戸大理 高橋 真斗

大谷航^A, 大矢淳史^A, 越智敦彦^B, 鈴木大夢^B, 潘晟^A, 山本健介^C, 李維遠^C, 他 MEG IIコラボレーション (東大素セ^A, 神戸大理^B, 東大理^C)

日本物理学会2025年春季大会 @ Online 2025年3月18日 18aT2-1

Outline

Introduction

- MEG II experiment
- DLC-RPC for background suppression in MEG II
- Conductive strip for high-rate capability
- Previous studies

Quenching capability of strip structure

- Motivation of this test
- Test setups
- Result of measurements
- Discussions on parameters
- Summary and prospects

MEG II experiment

- \succ Searches for μ^+ → $e^+\gamma$ decay at Paul Scherrer Institute (PSI)
 - $\mu^+ \rightarrow e^+ \gamma$ is a charged lepton flavor violating channel

Identification of background γ-rays

2025年3月18日

DLC-RPC for upstream RDC

Resistive Plate Chamber with Diamond-Like Carbon electrodes

Consists of thin-film materials **DLC-RPC** structure Aluminized polyimide for substrate Prototype electrodes in 2024 \geq -HV $365 \pm 5 \,\mu\text{m}$ thickness of spacer Diamond-Like Carbon $6 - 15 M\Omega/sq$ surface resistivity of DLC Freon-base gas **Conductive strip structure** +HV(0.2 – 1.0 mm width of protection cover) Prototype electrode Diagonal view of spacer Protection cover (75 μm) Spacers in 2.5 mm pitch Copper Conductive strip structure Chromium DLC **Protection cover** (0.3 mm width in this photo) Ø 0.6 mm Polyimide (50 µm) 365 <u>±</u> 5 μm $3 \times 3 \text{ cm}^2$ active region **Conductive strip** - DLC (0.1 mm width)on polyimide

2025年3月18日

Conductive strip for high-rate capability

Rate capability is determined by the magnitude of the voltage drop

- Large current on the resistive electrode at a high-rate environment
 - → Voltage drop δV reduces effective applied HV V_{eff} → <u>Gas gain reduction</u>

- Q_{mean} : Average avalanche charge for μ^+ beam at effective applied HV
- *f* : Hit rate
- ρ_s : Surface resistivity of DLC

Acceptable voltage drop

MEGII

The DLC-RPC for MEG II will consist of 4 active layers

- The material budget requirement limits the active layer
- Detection efficiency of each layer needs to be more than 45 %
 - $\epsilon_n = 1 (1 \epsilon_1)^n$, ϵ_n : *n*-layer efficiency (> 90 %)

• distance of conductor: 1 cm

Previous studies

- Reported at the JPS meeting in autumn 2024 (18aWA203-6, 18aWA203-7)
 - Investigation of the discharge quenching capability with different protection cover widths
 - Adequate voltage could be applied with minimum width (0.2 mm)

- Measured stabilities in long-term operations
 - Discharges occurred during long-term operations and prevented operations

Today's topics

- Need further investigation of strip structure and long-term operations
- Discharge quenching capability under higher intensity irradiation (This talk, 高橋真斗 18aT2-1)
 - A higher intensity of β -rays was used
 - Intensity is locally equivalent to $1 10 \text{ MHz/cm}^2$ (previous: 10 kHz/cm^2)
 - To validate the effective resistance dependency, increased cover width variation

2. <u>What are the causes and measures for discharges in long-term operation?</u> (鈴木大夢 18aT2-2)

- Investigation of causes for discharge problems
- Investigation of operating parameters for stable operations

Outline

Introduction

- MEG II experiment
- DLC-RPC for background suppression in MEG II
- Conductive strip for high-rate capability
- Previous studies

Quenching capability of strip structure

- Motivation of this test
- Test setups
- Result of measurements
- Discussions on parameters
- Summary and prospects

How wide does the protection cover need to be to apply a voltage that

will obtain adequate detection efficiency?

- Short distance to conductors makes strip construction prone to electrical discharges
 - Reduces a maximum operating voltage \rightarrow
- In addition, voltage drop δV by the μ^+ beam will also reduce an effective voltage

→ <u>The efficiency requirement must be met with this voltage reduction</u>

Test setups: electrode configuration

- **FREG**II
- Different widths of protection cover were used (0.2 mm 1.0 mm)
- Strip structures were installed on the anode and cathode side alternately

Test setup: measurement setup

Performance for high-intensity β -rays

Measured pulse heights and detection efficiencies for triggered events

Performance was consistent across measurements at two different hit rates

Applied voltages were converted by the relationship between electric field and pressure (E/p)

Result of measurements

Measured whether a target voltage has been reached with different widths

- <u>Target voltage</u>: a voltage exceeding the required efficiency even after considering voltage drops by the μ^+ beam
- <u>Voltage drop</u>: calculated by configurations (resistivities and distance of conductors)

Cover width	Surface resistivity		Distance of	D	D	Poculto
	Anode	Cathode	conductors	Λ _{anode}	^A cathode	Results
0.2 mm	$11.8 \text{ M}\Omega/\text{sq}$	$11 \text{ M}\Omega/\text{sq}$	12.5 mm	0.02 MΩ	4.6 ΜΩ	Not reached
0.2 mm	$11.8 \text{ M}\Omega/\text{sq}$	$14 \text{ M}\Omega/\text{sq}$	14 mm	0.02 MΩ	6.5 MΩ	Not reached
0.3 mm	$13.5 \mathrm{M}\Omega/\mathrm{s}q$	$11 \text{ M}\Omega/\text{sq}$	12.5 mm	<u>0.05 MΩ</u>	4.5 MΩ	Not reached
0.4 mm	$14.5 \mathrm{M}\Omega/\mathrm{s}q$	$14 \text{ M}\Omega/\text{sq}$	14 mm	0.07 MΩ	6.5 MΩ	\checkmark
0.6 mm	$11.0 \text{ M}\Omega/\text{sq}$	$14 \text{ M}\Omega/\text{sq}$	14 mm	0.09 MΩ	6.4 MΩ	\checkmark
1.0 mm	$10.0 \mathrm{M}\Omega/\mathrm{s}q$	$11 \mathrm{M}\Omega/\mathrm{sq}$	14.5 mm	$0.15\mathrm{M}\Omega$	5.2 MΩ	\checkmark

- $R_{anode} > 0.07 M\Omega$ is needed for quenching discharges
- \succ $R_{cathode}$ did not seem to be effective for quenching
 - This asymmetric quenching capability might be related to mobility of charges at each electrode (Ions/electrons)

Discussions on parameters

Parameter optimization

- Example of parameter settings
 - Conditions
 - $3 \text{ cm} \times 3 \text{ cm}$ of active region
 - Strip pitch: 10 mm
 - Cover width: 0.4 mm

- Resistivity: 20 MΩ/sq
 - $\delta V \sim 110 \text{ V}$
 - $R_{\text{anode}} \sim 0.1 \text{ M}\Omega$

Parameters will be optimized, and a full-scale design will be finalized soon

Summary and prospects

- MEGII
- DLC-RPC is being developed for background suppression in MEG II
 - Consists of thin-film materials due to a high-intensity and low-momentum μ^+ beam
 - Needs to detect low-energy e^+ in the μ^+ beam
- Measured the discharge quenching capability at strip structure under high-intensity β-rays
 - Local intensity of β -rays was equivalent to $1 10 \text{ MHz/cm}^2$
 - For the discharge phenomena around the strip structure,
 - anode-side effective resistance R_{anode} needed to be more than 0.07 M Ω
 - cathode-side effective resistance R_{cathode} did not contribute so much
- Optimize the resistivity and cover width in an actual design to meet this resistance value in the future
 - Including a <u>safety factor</u>
 - Minimum requirement is $R_{\text{anode}} > 0.07 \text{ M}\Omega \rightarrow \text{Considering safety factor } 3: > 0.2 \text{ M}\Omega$
- ➤ Investigation of the problems and measures in long-term operation
 → See next talk (鈴木大夢, 18aT2-1)

Backup

2025年3月18日

DLC-RPC

-HV

+HV

- Discharges can be suppressed by voltage drops of high resistivity electrode
- Fast time response and good time resolution by no drift region and thin avalanche gap
- High detection efficiency can be achieved by stacking active gas gaps
 - $\epsilon_n = 1 (1 \epsilon_1)^n$

Diamond-Like Carbon (DLC) is used as a resistive electrode

Structure of the DLC-RPC

Aluminized polyimide for substrate

Ultra-low mass design

Diamond-Like Carbon

- Aluminized polyimide is used as substrates of detector
- DLC is sputtered onto thin polyimide film

Conventional RPC and DLC-RPC

➢ Differences between conventional RPCs (glass RPC) and DLC-RPC (surface RPC)

Discharges around the strip

2025年3月18日

e^+ and μ^+ distributions

> MC simulation

DLC-RPC for MEG II

- > Up to 4 active layers
 - Limited by material budget

Material	Material budget		
Polyimide 50 µm	0.0175 % X ₀		
Aluminum 30 nm	0.0034 % X ₀		
Gas 2 mm	$\sim 0.001 \% X_0$		
DLC ~100 nm	negligible		

Voltage drop calculation

Requirements and current status

- → DLC-RPC needs to detect low-energy e^+ in a high-intensity and low-momentum μ^+ beam
 - Signal : e^+ with 1 5 MeV
 - Background : μ^+ with 28 MeV/*c* at 7 × 10⁷ μ^+/s

Contents	Requirements	Reached specs		
Material budget	$< 0.1 \% X_0$	0.095 % X_0 with 4 active layers (in design)		
Rate capability	Up to 3 MHz/cm ²	1 MHz/cm ²		
Radiation hardness	$\sim 100 \text{ C/cm}^2$	Investigated up to $\sim 54 \text{ C/cm}^2$		
Detection efficiency	> 90 % for MIP	50 % with single-layer		
Time resolution	< 1 ns	180 ps		
Detector size	φ 16 cm	$2 \times 2 \text{ cm}^2$ of active region		

- Performances were measured using prototype electrodes
 - Used the DLC-RPC electrode with ~ 40 MΩ/sq and 2 cm × 2 cm of active region Ref) K. Ieki NIM A 1064 (2024) 169375, M. Takahashi, NIM A 1066 (2024) 169509

Photolithographic technology

Space charge effect

Streamer

Sputtering process

