

MEG II実験に向けたDLC-RPCの 長期動作における放電への対策

鈴木 大夢(神戸大理)

神戸大理,東大素セ^A,東大理^B

潘 晟^A 山本 健介^B 李 維遠^B, 他MEG IIコラボレーション

2025年3月18日

日本物理学会2025年春季大会

18aT2-2

P

March 18. 2025

Outline

18aT2-2

Introduction

- DLC-RPC in the MEG II experiment
- Performances for a high-intensity muon beam
- Investigation of the operation with high-rate β -rays
- Possible scenarios of discharges
- Strategy to investigate the gap size
- Long-term operation
 - Setup
 - Result
- Measures

0 2025

Summary & Prospects

DLC-RPC in the MEG II experiment

DLC-RPC: Resistive Plate Chamber with Diamond-Like Carbon-based electrodes

Requirements for the DLC-RPC ____

- 1. Material budget: < 0.1 % X_0
- 2. Rate capability: 3 MHz/cm²
- Radiation hardness: ∼100 C/cm² in 20 weeks operation
- 4. Detection efficiency: > 90 % for MIP
- 5. Timing resolution: < 1 ns
- 6. Detector size: 16 cm Φ

18.2025

Surface resistivity: $6 - 15 M\Omega/sq$.

18aT2-2

Performances for a high-intensity muon beam

Detection efficiency vs applied voltage

18aT2-2

• Target voltage. A voltage (eniciency. 45 %) + (

March 18, 2025 / 日本物理学会2025年春季大会

Investigation of the operation with high-rate β-rays

Cover width	Surface resistivity		Distance of	D	D	Populto	_											
	Anode	Cathode	conductors	Anode	^A cathode	Results	μA											Ξ
0.2 mm	11.8 MΩ/sq	$11 \mathrm{M}\Omega/\mathrm{sq}$	12.5 mm	0.02 MΩ	4.6 MΩ	Not reached	ut[Opera	ation			N.A. (
0.2 mm	11.8 MΩ/sq	$14 \mathrm{M}\Omega/\mathrm{sq}$	14 mm	0.02 MΩ	6.5 MΩ	Not reached	ILLE					and a statement of the	and a special distribution of the second		and a substance of the second se	Jahrungendeli		
0.3 mm	13.5 MΩ/sq	11 MΩ/sq	12.5 mm	<u>0.05 MΩ</u>	4.5 MΩ	Not reached	Cu								0	<u>per</u>	<u>atiq</u> r	ΠĒ
0.4 mm	14.5 MΩ/sq	$14 \mathrm{M}\Omega/\mathrm{sq}$	14 mm	0.07 MΩ	6.5 MΩ	\checkmark		0.1	_		ľ			<u> </u>				
0.6 mm	11.0 MΩ/sq	14 MΩ/sq	14 mm	0.09 MΩ	6.4 MΩ	\checkmark			/10.12.00	12/10	15.00	- 12/	10.17.00	= 12/10	10.00		12/10.2	1.00
1.0 mm	10.0 MΩ/sq	11 MΩ/sq	14.5 mm	$0.15\mathrm{M}\Omega$	5.2 MΩ	\checkmark		12	19 13:00	12/19			1917:00	12/19	19:00	1:	12/19 21	1:00
Result of quenching capability						Current history of an operation												

in the previous talk

- ♦ A certain cover width size is required to operate at the target voltage (previous talk).
- β -rays with the rate of 1 10 MHz/cm² were used.
- The operation lasted for 1 2 hours level.
- Discharges ended up terminating it.
- By lowering the voltage by 50 V, the operation could be prolonged.

It may be difficult to operate in a high-intensity muon beam.

18aT2-2

March 18, 2025; 日本物理学会2025年春季大会

Possible scenarios of discharges

Where discharges happen

Protective covers

March 18, 2025

Possibilities

- A strong electric field induces large avalanches.
- ◆ Large avalanche energy causes damage accumulation.→Discharges
- Investigate the electric field and gas gap for long-term stability
 - Difficult to fabricate detectors with various gap sizes

18aT2-2

Strategy to investigate the gap size

efficiency vs electric field

- The tested DLC-RPC gap size: 365 μm
- Figure out the electric field and estimate the required gap size for long-term stability

18aT2-2

March 18, 2025 日本物理学会2025年春季大会

Setup

18aT2-2

March 18, 2025 / 日本物理学会2025年春季大会

•

Result of the operation with lower voltages

18aT2-2

March 18, 2025 / 日本物理学会2025年春季大

Reproducibility and resistivity

18aT2-2

P

March 18, 2025 / 日本物理学会2025年春季大会

Measures

- Discharges leading to critical damage were not observed at 2540 V (Efficiency: 48 %).
- The voltage with efficiency of 48 % could realize stable operation, the target voltage (Efficiency: about 55%) is required though.

Electric field for long-term stability

The electric field is calculated from the result,

E = V/d = 2.54 kV/0.365 mm = 7.0 kV/mm.

18aT2-2

P

- To reach 2620 V with the stable electric field, the gap size of 376 µm will be required.
- A pillar consists of 5 layers 75 µm-t resist and thickness is adjusted by adding another layer discretely.→One layer will be added to increase the gas gap.
- Originally, the size was designed to 375 μm. (Shrunk)
- The gap size will be adjusted to 450 μ m to exceed 376 μ m.

March 18, 2025 / 日本物理学会2025年春季大会

Summary & Prospects

<u>Summary</u>

- DLC-RPC requires to operate for 20 weeks in the MEG II experiment
 - Breakdowns by discharge must not happen.
- Operation with high-rate β -rays
 - Difficult to operate at high voltages, making an electric field strong.

<u>18aT2-2</u>

P

- Investigation in terms of operating voltages and electric fields
 - ♦ A strong electric field may be excessive for stable operation.
 - Inducing large avalanches
 - Damage accumulation
 - ◆ The stable operation was realized at 2540 V.
- Measures

0 2025

Adjust the gap size from 365 μm to 450 μm

Summary & Prospects

Prospects

- Fabrication of the full-scale prototype module in 2025
 - Consideration of the gap size will be included.
 - Gap size: 365 μ m \rightarrow 450 μ m
 - Adjustment of parameters
 - Resistivity

10 2025

- Investigated in the range of 6 - 15 MΩ/sq., planning to increase it to about 20 MΩ/sq. to suppress discharges

18aT2-2

P

Performance evaluation with a high-intensity muon beam at PSI

Backup

18aT2-2

0

14

Rate dependency and charging-up

- Avalanches can cause electrons to accumulate on insulators, such as pillars and protective covers.
- As a more integrated charge was obtained with the low-rate β-rays compared to the high-rate ones, no dependence of the charge.
- Charging-up is eliminated from the possible scenario.

Measures

- Discharges leading to critical damage were not observed at 2540 V (Efficiency: 48 %).
- The voltage with efficiency of 48 % could realize stable operation, the target voltage (Efficiency: about 55%) is required though.

Electric field for long-term stability

18 2025

- The electric field is calculated from the result, E = V/d = 2.54 kV/0.365 mm = 7.0 kV/mm.
- To reach 2620 V with the stable electric field, the gap size of 376 µm will be required.
- To realize stable operation, the gap size will be adjusted from 365 μm to 376 μm.
- Because a pillar consists of 5 layers 75 μm-t resist

Side view of a pillar

18aT2-2

Determination of operating voltage

18aT2-2

- Voltage drop is calculated with the pitch of conductors and resistivities.
- Target voltage: voltage with 45 % efficiency
 + the voltage drop = 2600 V 2630 V.

March 18, 2025; 日本物理学会2025年春季大会

Current status

Requirements	Goal	Current status	🖌 or 🗙		
Material budget	< 0.1 % <i>X</i> ₀	~0.095 % <i>X</i> ₀ (4 layers)	~		
Rate Capability	3 MHz/cm ²	1 MHz/cm ²	×		
Radiation hardness	~100 C/cm ² in 20 weeks operation	~54 C/ cm ²	×		
Detection efficiency	> 90 %	85 % (4 layers)	(🖌)		
Timing resolution	<1 ns	160 ps	~		
Detector size	16 cm Φ	3 cm × 3cm	×		

季大会

18aT2-2

18

1

日本物理学会2025年

March 18, 2025 /

Long-term operation

Motivation

- A strong electric field induces large avalanches inducing breakdowns
 - Assess how strong E-field does not induce those
 - Apply several voltages under the target one.
 - Determine the criterion for long-term stability

Procedure

- Apply voltages in three steps
 - 1. A voltage with efficiency of 45 %
 - 2. A middle voltage with efficiency of 50 %
 - 3. The target voltage with efficiency of 55 %
- Measure whether the operation lasts for 3 days at each voltage

Previous long-term operation test

18aT2-2

20

March 18, 2025 日本物理学会2025年春季大会

Possible scenarios

Where discharges happen

18aT2-2

Protective covers

Possibilities

- Accumulated damage
 - Discharges can occur when a certain amount of damage is stored.
- High-intensity radiation
 - Such radiation induces large gas amplification potentially leading to fatal damage.
- Unstable structure
 - Positions where discharges happen easily
 - High operating voltage
 - A strong electric field also strengthens avalanche and causes breakdowns.

March 18, 2025 / 日本物理学会2025年春季大会

Possible scenarios of discharges

Quenching large current and protecting HV supply by the cover

- A protection cover is mounted over the conductive strip
- The wider the cover becomes, the more it suppresses the current.

18aT2-2

• Determining the cover width *w*

一窗見

MBa Feet bill 8 a 12/02/52/5

Performance

18aT2-2

Voltage [kV]

+ the expected voltage drop = 2600 V - 2630 V depending on the atmospheric pressure

March 18, 2025

The structure

Measures

- An electric field was so strong that discharges could cause breakdowns.
- Long-term stability can be realized with weak E-fields
- To weaken the electric field, enlarge the gas gap
- Balancing weak electric fields and efficiencies

8.2025

- The gap size of the tested DLC-RPC: 365 μm
- The electric field at 2540 V: 7.1 kV/mm
- The gap size needs to be more than 500 μ m.

efficiency vs electric field

Oya. A, Master's thesis, The University of Tokyo, 2020

26

18aT2-2

Rata capability & scalability

• Avalanches from muon beam \rightarrow Current \rightarrow Voltage drop δV by flowing current

- Voltage drop δV reduces the applied $V \rightarrow Gas$ gain reduction \leftarrow Need to suppress
- Segmented HV supplies to suppress voltage drops at a small pitch
 - δV depending on the distance and the rate
 - Enlargement of the detector
 - Aiming $\delta V \sim 100$ V in a high-rate muon beam \rightarrow Higher voltage should be applied.

18aT2-2

March 18, 2025 日本物理学会2025年春季大会

18aT2-2

28

P

March 18, 2025; 日本物理学会2025年春季大会

Determination of the operating voltage as a compromise

- Discharges leading to critical damage were not observed at 2540 V.
- ◆ 2540 V (Target voltage 80 V) could realize stable operation.
- Discharges happened on the protection cover, as shown below after the operation at 2570 V (Target voltage - 100 V).
- It implies that large avalanches occurred at a weak point.

Discharge marks

2025

18aT2-