

Development of Photon Pair Spectrometer for Next Generation $\mu^+ \rightarrow e^+ \gamma$ Experiment - Performance evaluation by Simulation -

榊原澪A

潘晟^B, Lukas Gerritzen^B, 池田史^A, 岩本敏幸^B, 松下彩華^A, 松岡広大^D,

森俊則^B, 西口創^D, 越智敦彦^C, 大谷航^B, 大矢淳史^B, 内山雄祐^D, 山本健介^A, 横田凛太郎 A東大理, B東大素セ, C神戸大理, D高工研

2025年3月18日 日本物理学会春季大会

Series talk

Detector R&D (Previous talk)

Simulation study (this talk)

JPS spring meeting 2025

$\mu^+ \to e^+ \gamma \, \text{search}$

- Charged Lepton flavour violation decay
 - Br($\mu^+ \rightarrow e^+ \gamma$) ~ $O(10^{-53})$ in SM + ν oscillation
 - Br($\mu^+ \rightarrow e^+\gamma$) ~ $O(10^{-11} \sim 10^{-15})$ predicted in BSM (e.g. SUSY)

<u>Experiments</u>

- MEG (2008 2013) & MEG II experiment (2021 2026 (planned)) @ PSI
 - Current UL $: Br(\mu^+ \to e^+\gamma) < 3.1 \times 10^{-13} (90 \% \text{ C. L.})$
 - Target sensitivity : 6×10^{-14}
- Future $\mu^+ \rightarrow e^+ \gamma$ experiment
 - Planning with the target sensitivity of $O(10^{-15})$

Future experiment for $\mu^+ \to e^+ \gamma$ search

- Motivation
 - Further search for $\mu^+ \to e^+ \gamma$ (if not found in MEG II)
 - Precise measurement of $\mu^+ \rightarrow e^+ \gamma$ after discovery for BSM model selectio
- Muon beam increase at PSI (HIMB project)
 - ×100 muon beam rate ($R_{\mu} \sim O(10^{10})$) available from 2027—2028
- Main background of $\mu^+ \to e^+ \gamma$: accidental background

$$N_{\rm acc} \propto R_{\mu}^2 \cdot \Delta E_{\gamma}^2 \cdot \Delta p_{\rm e} \cdot \Delta \theta_{\rm e\gamma}^2 \cdot \Delta t_{\rm e\gamma} \cdot T$$

Detector resolution (especially γ) is important

to benefit from increased μ beam

Detector concept

Pair spectrometer with active converter

Problem with conventional pair spectrometer

- Non-negligible energy loss inside the converter layer
- Too thin converter is not unacceptable... degradation of conversion efficiency
 Solution: energy measurement by converter itself (active converter)

Simulation setup

- Only converter layer
 - No assumption for the conversion pair tracker (vacuum)
- Standard geometry:
 - Cell Size
 - width (ϕ direction) = 5 mm,
 - length (z direction) = 50 mm,
 - thickness(ρ direction) = 3 mm
- Uniform magnetic field (2T)
- 52.8 MeV gamma ray injection
 - Perpendicularly to LYSO (unless mentioned)

Event topology

Pair selection

- Multiple electron & positron tracks are found
 → Selection of converted pair is not obvious
- In this study, pair selection in the following steps:
 - 1. Selection of tracks
 - e.g. large enough p_T (> 5MeV) to track with tracker
 - 2. Selection of e^{\pm} pair from selected tracks
 - Condition: relative converter-leaving point distance smaller than cut value
 - Probability of selecting fake pair $\sim 1~\%$

Energy reconstruction

Gamma energy reconstruction :

Reconstructed signal energy spectrum

- Signal efficiency is improved by ×15 by active converter
- High energy tail
 ... Boomerang events
- Low energy tail
 ... Energy escape by bremsstrahlung, ionization

"Boomerang" events

- E_{dep} ... Energy deposit by conversion pair **until leaving the converter**
- Summing up energy deposit in the same converter cell
 → Returning to the same cell after several turns results in inefficiency
- Finer segmentation is effective to reduce them

Geometry optimization: segmentation Events/(10 keV Signal efficiency 10⁴ 2.42 % z [mm/cell] 10^{3} 125 2.4 signal efficiency 2.38 10 100 2.36 length in 2.34 75 2.32 54 56 58 60 Reconstructed E_{γ} [MeV] 48 50 52 46 2.3 Events/(10 keV) 50 2.28 **Course segmentation** 2.26 will increase boomerang events 10^{3} 25 2.24 10² 2.22 This size was tested with 2.5 7.5 5 10 12.5 length in ϕ [mm/cell] electron beam (previous talk) 46 50 52 54 56 58 60 Reconstructed *E_y* [MeV] 48

18 March 2025

Geometry optimization : thickness

- Conversion probability = 4 % / layer
- Signal efficiency saturates at certain thickness \rightarrow Increased energy escape
- Optimal thickness was found to be 3 mm

θ_{γ} dependence

- The converter is made thinner in the outer segment ...To make the effective path length independent of θ_{γ}
- So, the conversion probability roughly independent of θ_{ν}

θ_{γ} dependence of signal efficiency

- However, signal efficiency was found to be θ_{γ} dependent
- This is mainly due to the larger boomerang probability efficiency

- Finer segmentation in the Z direction
- coarser segmentation in ϕ direction

may be effective to reduce boomerangs in small θ_{γ}

Summary

• Pair spectrometer with active converter is planned as a gamma detector for the future experiment for $\mu^+ \rightarrow e^+ \gamma$ decay search.

- Various inefficiencies are expected in the experiment
 - Efficiency is up to 3 % / layer
 - Geometry has a large impact on them
- Signal efficiency was found to be dependent on photon incident angle, which can be mitigated by tuning of the segmentation

Prospects

- Improvement of the pair-spectrometer simulation
 - Incorporation of the conversion pair tracker layer
 - Incorporation of the LYSO performance based on beam test results
 - More realistic simulation with support structure

- Introduction of other components
 - Active & split muon stopping target
 - Positron measurement based on silicon sensor
 - Muon beam

Back up

Requirements for the future experiment

Energy resolution : 0.4% at signal energy (52.8 MeV)

•
$$\frac{\Delta E}{E_{\text{signal}} = 52.8 \text{ MeV}} = 0.4 \%$$
 $\Delta E = 200 \text{ keV required}$
• $\frac{\Delta E = 200 \text{ keV}}{2 \times E_{\text{deposit}} \approx 7 \text{ MeV}} = 3 \%$ $\geq \frac{1}{\sqrt{N_{\text{p.e.}}}}$ $N_{\text{p.e.}} > 500 \text{ required per MIP}$

The fluctuation of energy includes (at least) the fluctuation of light yield governed by Poisson statistics

Cut values for pair selection

Physics model

- Reference Physics Lists: QGSP_BERT
 - Electromagnetic physics is G4EmStandard Physics
 - Photons:
 - pair production : BetheHeitler model with the LPM effect at high energies
 - Compton scattering : Klein-Nishina model
 - Photo-electric effect & Rayleigh scattering : Livermore model
 - Electrons and positrons:
 - multiple coulomb scattering : Urban model (0-100 MeV), WentzelVI model(100MeV-100TeV)
 - Bremsstrahlung : eBremSB model, eBremsLPM model
 - Ionization: Moller-Bhabha formulation
 - annihilation: eplus2gg model

PIONEER based simulation framework

https://indico.psi.ch/event/15146/overview