

Development of Photon Pair Spectrometer for Next Generation $\mu^+ \to e^+ \gamma$ Experiment - Performance Evaluation by Electron beam -

池田史^A

潘晟^B, Lukas Gerritzen^B, 岩本敏幸^B, 松下彩華^A, 松岡広大^D,

森俊則^B, 西口創^D, 越智敦彦^C, 大谷航^B, 大矢淳史^B, <u>榊原澪^{A*}</u>, 内山雄祐^D, 山本健介^A, 横田凛太郎 ^A東大理, ^B東大素セ, ^C神戸大理, ^D高工研

2025年3月18日 日本物理学会春季大会

Series talk

Detector R&D (This talk)

$\mu^+ \to e^+ \gamma \, \text{search}$

- Charged Lepton flavour violation decay
 - Br($\mu^+ \rightarrow e^+ \gamma$) ~ $O(10^{-53})$ in SM + ν oscillation
 - Br($\mu^+ \rightarrow e^+\gamma$) ~ $O(10^{-11} \sim 10^{-15})$ predicted in BSM (e.g. SUSY)

<u>Experiments</u>

- MEG (2008 2013) & MEG II experiment (2021 2026 (planned)) @ PSI
 - Current UL $: Br(\mu^+ \to e^+\gamma) < 3.1 \times 10^{-13} (90 \% \text{ C. L.})$
 - Target sensitivity : 6×10^{-14}
- Future $\mu^+ \rightarrow e^+ \gamma$ experiment
 - Planning with the target sensitivity of $O(10^{-15})$

Future experiment for $\mu^+ \to e^+ \gamma$ search

- Motivation
 - Further search for $\mu^+ \to e^+ \gamma\,$ (if not found in MEG II)
 - Precise measurement of $\mu^+ \rightarrow e^+ \gamma$ after discovery for BSM model selection
- Muon beam increase at PSI (HIMB project)
 - ×100 muon beam rate ($R_{\mu} \sim O(10^{10})$) available from 2027—2028
- Main background of $\mu^+ \to e^+ \gamma$: accidental background

 $N_{\rm acc} \propto R_{\mu}^2 \cdot \Delta E_{\gamma}^2 \cdot \Delta p_{\rm e} \cdot \Delta \theta_{\rm e\gamma}^2 \cdot \Delta t_{\rm e\gamma} \cdot T$

Detector resolution (especially γ) is important

to benefit from increased $\boldsymbol{\mu}$ beam

Detector concept

- μ^+ stopping target ... Active & split
- e⁺ measurement ... Silicon sensor (HV-MAPS)
- This talk!

γ measurement ... Pair-spectrometer –

Pair spectrometer with active converter

Problem with conventional pair spectrometer

- Non-negligible energy loss inside the converter layer
- Too thin converter is not unacceptable... degradation of conversion efficiency

Solution: energy measurement by converter itself (active converter)

6

Active converter prototype by LYSO

- Primary candidate & material for active converter : LYSO
- Made prototypes for one cell

Comparison of readout SiPMs

$6 \times 6 \text{ mm}^2$ 50 µm pitch Hamamatsu MPPC

 100 % coverage of LYSO cross section $3~\times 3~mm^2~50~\mu m$ pixel pitch Hamamatsu MPPC

- Connected in series
- Small inactive area (gap between MPPCs)

$4\times4~mm^2~35~\mu m$ pixel pitch Onsemi SiPM

LYSO

 Unique feature of having "fast output"

Overview of electron beam test of active converter

Simplified schematics of the WaveDREAM board

Time resolution with half thickness LYSO

- Also tested with LYSO of half thickness (1.5 mm)
- Sufficient time resolution with thin converter + slanting incident beam

Light yield analysis

Conversion from charge $Q \rightarrow Photoelectron N_{p.e.}$

Light yield results

- Result with 3 mm MPPC : $N_{p.e.} = 5000 7000$ over all crystal region (perpendicular injection)
- Requirement for future experiment ($N_{p.e.} > 500$) has been achieved

... change in the run condition (e.g. temperature) may be relevant

Summary

- R&D for a photon pair-spectrometer with active converter for the future $\mu^+ \rightarrow e^+ \gamma$ search experiment is underway.
- Prototypes of the active converter made of LYSO with SiPM readout were tested with an electron test beam
- Excellent time resolution of 25–35 ps and light yield of 5000–7000 photoelectrons were confirmed. Meet the resolution requirements for the future $\mu^+ \rightarrow e^+\gamma$ experiment
- Active converter with LYSO + SiPM readout is a strong candidate for the conversion layer.

Prospect

- Improvement of the analysis
 - Unexpected behavior of the waveform was observed in some datasets ... still under investigation
 - Further investigation of the position dependence of the light yield

- Validation of the measurement principle of a pair spectrometer
 - Develop a prototype of superlayer (converter + tracker)
 - Test beam campaign with gamma ray

backup

Update from the last beam test

Electron beam test in 2023 reported in JPS 2024 autumn , 16aWB106-01

...Mainly focused on the time resolution

- Demonstrated time resolution of 30-35 ps & $O(10^3 \text{ p. e.})$ light yield
- However, several rooms for improvements
 - The signal was recorded only with high (or low) gain
 - Time walk correction by TOT \rightarrow Remaining effect of time walk was observed
 - Other details (out-sourcing readout board etc)

Electron beam test in 2024 This talk

- 1. Simultaneous DAQ with high & low gain
 - For better time walk correction
 - Towards the actual experiment (Both timing and energy must be measured)
- 2. Trial with different types of SiPMs
- 3. Introduction of the VETO counter

Requirements for the future experiment

Energy resolution : 0.4% at signal energy (52.8 MeV)

•
$$\frac{\Delta E}{E_{\text{signal}} = 52.8 \text{ MeV}} = 0.4 \%$$
 $\blacktriangleright \Delta E = 200 \text{ keV required}$
• $\frac{\Delta E = 200 \text{ keV}}{2 \times E_{\text{deposit}} \simeq 7 \text{ MeV}} = 3 \% > \frac{1}{\sqrt{N_{\text{p.e.}}}}$ $\blacktriangleright N_{\text{p.e.}} > 500 \text{ required per MIP}$
The fluctuation of energy includes (at least)

the fluctuation of light yield governed by Poisson statistics

Time resolution : 30 ps for one gamma)• $t_{\gamma} = (t_{e^+} + t_{e^-})/2$ • $\Delta t_{\gamma} < 30 \text{ ps}$ • $\Delta t_{\varphi^{\pm}} < 30 \text{ ps} \times \sqrt{2} = 40 \text{ ps}$ Energy deposit• $\Delta t_{\varphi^{\pm}} < 30 \text{ ps} \times \sqrt{2} = 40 \text{ ps}$

LYSO Properties

JTC's Scintillation Product Information			
Properties	Ce:FTRL	Ce:LYSO	YSO
Coincident Time Resolution(ps) 2mm cube	96	125	
LO (Ph/MeV)	30000±10%	36000±10%	27000
Decay Time (ns)	31	40	70
Energy Resolution	8-10%	8-10%	11%
Hygroscopic	No	No	No
Wavelength of Max Emission (nm)	420	420	420
Refractive Index	1.81	1.81	1.8
Density (g/cm3)	7.2	7.2	4.5

Onsemi SiPM fast-output

https://www.onsemi.com/pub/Collateral/AND9782-D.PDF

Energy deposit by MC

• 3 GeV electron injected to 3 mm LYSO

