

MEG II実験の2023年データにおけるガンマ線 解析の現状

Sei Ban (ICEPP), for the MEG II collaboration 19th Mar. 2025, JPS 2025年春季大会@online:19aT2-8

Reconstruction of gamma-ray event

Correction for non-linear response of SiPMs

Reconstruction of gamma-ray event

Correction for non-linear response of SiPMs

Charged Lepton Flavor Violation

- In quark and neutrino (neutral lepton) sector, the flavor violates in SM

- Some theories BSM predict flavor violation in the charged lepton sector
 - In the Standard Model (+v osci.), it is practically prohibited : $Br(\mu \rightarrow e\gamma)=10^{-54}$
 - In BSM, $Br(\mu \rightarrow e\gamma) \sim O(10^{-14})$ is predicted (not observed yet)

Diagram in the SM + neutrino oscillation

Possible diagram in SUSY-GUT senario

MEG II experiment

- MEG II experiment aims to search for charged lepton flavor violation : $\mu^+ \rightarrow e^+\gamma$
 - with higher sensitivity by one order of magnitude compared to the MEG
 - Using high intensity continuous muon beam at Paul Scherrer Institut (PSI)
 - Target sensitivity of $Br(\mu^+ \rightarrow e^+\gamma)$: 6×10^{-14}

Timeline of the MEG II experiment

- Physics run started since 2021
 - First result was published in 2024
 - MEG II 2021+2022 result will be published soon
 - Analysis of MEG II 2023 data is ongoing

Reconstruction of gamma-ray event

Correction for non-linear response of SiPMs

Reconstruction of Gamma-ray

- Reconstruction flow of gamma-ray
 - Energy, timing, and position are reconstructed

Reconstruction of Gamma-ray : Calibration

- Sensor calibrations were completed

Gain calibration using LEDs

- PMT gain decreased due to UVU-irradiation during beam time (known problem)
 - For MPPC, crosstalk&after-pulse probability are also calculated in addition to gain calibration

Light detection efficiency calibration using alpha-ray source

MPPC PDEs were slightly decreasing by radiation damage during beam time (known problem) -> PDEs are recovered by annealing during shutdown period

Reconstruction of Gamma-ray : Non-uniformity

- Non-uniformity correction by 55 MeV gamma-ray
 - π beam to H₂ target —(Charge EXchange with p)—> $\pi^0 \rightarrow \gamma \gamma$
 - Dedicated calibration run at the end of 2023 run
 - Tagging the back-to-back γ by BGO crystals, 55 MeV γ -rays are obtained

10

H₂ target

γ-ray BGO

LXe detector

v-rà

Further precise correction will be available using 17.6 MeV γ -ray and BG spectrum

- (In addition to these, 3D-corrections are applied)

Reconstruction of Gamma-ray : Time variation

- Time variation correction by mono-energetic gamma-ray (17.6 MeV, 55 MeV)
 - This time, only time variation of energy scale is corrected
 - Time variation of non-uniformity will also be considered

: 17.6 MeV gamma-ray

Red

Reconstruction of Gamma-ray : Energy Resolution

- Energy resolution evaluated with 55 MeV gamma-ray
 - BGO energy cut to select 55 MeV peak
 - Opening angle between two gammas (to the LXe detector and the BGO)
 - -> Correlation is corrected
- Worse energy resolution ($\sigma/E = 2.2\%$ @55MeV) than 2021 data
 - cf) $\sigma/E = 1.8\% @55 MeV^{[1]}$ for 2021 data
- To improve the energy resolution, reconstruction scheme is reviewed
 - Non-linear response of SiPMs

H₂ target

BGO

γ-ray

LXe

γ-ray

ector

Reconstruction of gamma-ray event

Correction for non-linear response of SiPMs

Improvement of #photon reconstruction

- Implementation of correction for MPPC non-linear response

[a.u.] : 551 pulses used

Reconstruction of gamma-ray event

Correction for non-linear response of SiPMs

Summary and Prospect of sensitivity

- MEG II experiment will continue by 2026
 - PSI π E5 beam line update in 2027-28
- Prospect of MEG II sensitivity
 - Sensitivity is calculated as 90% C.L. upper limit with BG only hypothesis
- 2021+2022 data : will be published soon !
 - sensitivity : 2.2 ×10⁻¹³ (preliminary)
 - see the talk: 18aT1-7 (山本)
- 2023 data :
 - Analysis is ongoing
 - Energy reconstruction : ongoing
 - + trial to improve the resolution
 - sensitivity prospect : almost reach O(10⁻¹⁴)
- -> aim to reach the final sensitivity :

(5-6)×10-14

MEG II expected sensitivity

Back up

Charged Lepton Flavor Violation

- Strong evidence of new physics once it observes
- Grand Unified Theory predicts cLFV
 - SUSY-GUT, SUSY-seesaw
 - Typical prediction :
 - Br($\mu \rightarrow e\gamma$) ~ O(10⁻¹⁴)
 - Can be observed realistically

 Γ e Standard Model, it is practically promoted . Dr($\mu \rightarrow e\gamma$) = 10 °

In BSM, Br($\mu \rightarrow e\gamma$) ~ O(10⁻¹⁴) is predicted (not observed yet)

Diagram in the SM + neutrino oscillation

Possible diagram in SUSY-GUT senario

Current status of cLFV (and other experiments)

- Most strict limit for cLFV : Br($\mu \rightarrow e\gamma$) < 3.1×10⁻¹³ (90% C.L.) by MEG II (+MEG)

- Other channels to search for cLFV
 - μ+→e+e-e+ : Mu3e
 - μ -N \rightarrow e-N : COMET, DeeMe, Mu2e
- Still under development/preparation for physics run

-0.9998-0.9996-0.9994-0.9992 -0.999

 $\cos\Theta_{e}$

MEG II experiment : signal and background

Signal : Gamma-ray and positron with 52.8 MeV ($=m_{\mu}/2$)

back-to-back on-timing

 $N_{sig} \propto R_{\mu} \times T \times \text{Efficiency}$

- Dominant background : Accidental coincidence of Michel positron and gamma

MEG II experiment : signal and background

PDE decrease

Slide from T. Iwamoto (15aA562-4)

γ detector (LXe) Issue

- MPPC PDE decrease
 - observed in 2017 under muon beam
 - · The cause to be investigated
 - Based on 2021 operation, PDE will change from 16% to 2% in ~100 days MEG II intensity
 - Annealing recovers PDE fully
- Strategy for run 2022
 - LXe MPPC can sustain
 ~ 120 days with 5×10⁷ µ/s
 - Beam intensity optimization necessary
 - Annealing for all MPPCs during accelerator winter shutdown period

Pileup rejection update in the liquid xenon detector

- Pileup search and unfolding
 - Using information of spacial clustering and #pulses in sum waveform
 - Then unfold the sum waveform by template waveform fit
 - Simultaneous fit between PMT and MPPC sum waveform is performed

