

MEG 実験用 LXe Scintillation detector の $\pi^{-}p \rightarrow \pi^{0}n$ を用いたビームテスト: I

西口 創 @ 東京大学

東大素粒子センター 早大理工総研^A 高工研^B BINP-Budker^C INFN-Pisa^D PSI^E 岩本敏幸,大谷航,小曽根健嗣,笠見勝祐^B,菊池順^A,澤田龍,鈴木聡^A,寺沢和洋^A,道家忠義^A,春山富義^B, 久松康子,真木晶弘^B,三原智,森俊則,山下了,山田秀衛,吉村剛史^A, A.Baldini^D, F.Cei^D, M.Grassi^D, P.-R.Kettle^E, D.Nicolo^D, A.Papa^D, S.Ritt^E, G.Signorelli^D, Y.Yuri^C

Contents

R&D status

- Beam test @ PSI
 - $\blacksquare \pi^- p \rightarrow \pi^0 n \text{ process}$
 - beam line & detector setup
 - beam test overview
- Plans in 2004

PS meeting, '04 Spring, @ Kyushu Univ., Hakozaki campus

R&D status on the Large Prototype Liquid Xenon detector

2001

construction, cooling & liquefaction test @ KEK

2002

R&D on a xenon purification system

60 MeV electron beam test @ KSR

2003

Beam test @ TERAS (Laser Compton gamma)

- shipping from KEK to PSI
 - beam test @ PSI,

using γ from the $\pi 0$ decay

Beam test @ PSI

Snapshot

PS meeting, '04 Spring, @ Kyushu Univ., Hakozaki campus

Hydrogen Target

Nal detector

- 8x8 Nal crystals array
- 6.3cm x 6.3cm x 40.6cm
- Located 110cm from the target
 - HV calibration by cosmic ray
 - **Energy resolution**
 - 7.0%(55MeV), 6.5%(83MeV), 6.1% (129MeV)
- **Position resolution**
 - 2.7cm (x), 1.6cm (y)

Timing counter

- 2 counters with lead
- 5cm x 5cm x 1cm : BC404
- Hamamatsu R5505
- 6mm^t lead plate (γ converter)
- Efficiency
 - ~40% (for 83MeV γ)
 - Timing resolution
 - 60 psec (sigma)
- pion stopping distribution in the target must be considered in subtraction

Schedule of the beam test

Typical event (online display)

Front

Xenon : 55MeV Nal : 83 MeV

Xenon : 83 MeV Nal : 55 MeV

π^0 events example

Nal ADC

LXe ADC

PS meeting, '04 Spring, @ Kyushu Univ., Hakozaki campus

Energy spectrum example

PS meeting, 'O4 Spring, @ Kyushu Univ., Hakozaki campus

Neutron background

Most probably caused by beamrelated neutrons

- Corresponding to 1.5E6 p.e./sec
- Not due to bleeder current shortage but due to photocathode saturation because we observed the same effect even with lower PMT gain

Thermal neutron in Xe

- Absorption length ~ 3 cm
- Capture close to
- calorimeter walls
- Multi γ, ΣΕ(γ) = 9.3 MeV

Analysis and Results

NEXT PRESENTATION

Plans in 2004

- Liquid phase purification test
- Neutron background measurement
 - Magnetic field effect check
- Final detector construction
- cryostat design renewal
- Refrigerator will be assembled and delivered soon

Appendix

Additional transparencies

MEG experiment

- Search experiment for $\mu \rightarrow e\gamma$
 - " μ →evv" ~ 100% (Normal μ decay in SM)
 - " $\mu \rightarrow e\gamma$ " violates Lepton Flavor Conservation
 - SUSY-GUT models predict higher branching Br($\mu \rightarrow e\gamma$) = 10⁻¹¹~10⁻¹⁵
 - Sensitive to physics beyond the SM !!

New experiment with a sensitivity of Br : 10⁻¹³~10⁻¹⁴ planned at Paul Scherrer Institut (PSI)

Features

- The most intense DC muon beam @ PSI
- Liquid Xenon photon detector
- Positron spectrometer with gradient magnet field
- Thin superconducting magnet
- Thin drift chamber and timing counter for positron tracking
- Engineering run will start in 2004,5
- Physics run will start in early 2006

MEG Experiment Collaboration 4 countries 10 institutions

ICEPP, University of Tokyo KEK

Waseda University

INFN & Genova University INFN & Lecce University INFN & Pavia University INFN & Pisa University

Budker Institute

Liquid Xenon Photon detector

- Features
- High light yield (75% of Nal)
 - Good resolutions
- Fast signal (4.2nsec decay time)
 - Reduce pileups
- Liquid (good uniformity)
 - No need segmentation
 - Design
- Active volume of LXe ~ 800L
 - 800 PMTs immersed in LXe

Large Prototype LXe detector

70 Litter active volume (120 L LXe in use) 228 PMTs Total system check in a realistic operation Purification system for Xenon Performance test

Nal detector calibration

- High voltage value for each PMT is adjusted by using cosmic ray events
- Pedestal subtraction and gain correction are done in the offline analysis
- Energy and vertex reconstruction are performed by using corrected charge information

Nal energy estimation

- Search for the Nal crystal with maximum charge
- Charge sum in the surrounding Nal's
- The calibration parameter is determined by using 129 MeV gamma data (and MIP peak)

Nal vertex reconstruction

- Search for the Nal crystal with maximum charge
- Fit the charge distribution of the raw or column (8 Nals in each) that include Nal with maximum charge using Gaussian

