μ⁺→e⁺γ探索実験用 液体 Xe Photon Detector 開発

―
電総研における大型プロトタイプの性能評価 ―

Kenji Ozone (ICEPP, University of Tokyo)

- イントロ
- 液体 Xe Photon Detector
- 検出器組み立て作業
- 今後の予定

日本物理学会第56回年次大会@中央大学多摩キャンパス 27/Mar/2

Collaboration (Japan)

● 東大素粒子センター

小曽根健嗣, 浅井祥仁, 大谷航, 佐伯学行, 西口創, 真下哲郎, 三原智, 森俊則, 山下了 • 東大理学部

折戸周治

● 早大理工総研

岡田宏之, 菊池順, 澤田龍, 鈴木聡, 寺沢和洋, 道家忠義, 山下雅樹, 吉村剛史

● KEK 素核研

杉本康博,春山富義,真木晶弘,八島純,山本明,吉村浩司

● 名大理学部

増田公明

● 阪大理学部

久野良孝

日本物理学会 第56回年次大会@中央大学多摩キャンパス

Collaboration

日本物理学会 第56回年次大会@中央大学多摩キャンパス

Physics Motivation

Recent topics put spurs to $\mu \rightarrow \sigma \gamma$ search.

SK result confirms LFV for neutral lepton.

• ν mixing is expected to enhance the rate of LFV process In SUSY.

Anomalous Muon (g-2)

日本物理学会 第56回年次大会@中央大学多摩キャンパス

Signal and Backgrounds

- μ beam stopped on the target; 10⁸/sec
 - $E_e = 52.8 \text{ MeV}, E_{\gamma} = 52.8 \text{ MeV}$
 - $\theta_{\gamma e^+} = 180^{\circ}$ Back to back, in time
- Main background sources

 Radiative µ⁺ decay
 Accidental overlap
 Accidental overlap

 NOT back to back

 And NOT in time
 Reduced down to 10⁻¹⁵ level

 検出器に要求される分解能
 E_e: 0.3%, E_γ: 0.6%,
 - $\theta_{e\gamma}$: 5.1 mrad, $t_{e\gamma}$: 64 psec

日本物理学会 第56回年次大会@中央大学多摩キャンパス

<u>μ</u>+→e⁺γ探索実験用検出器

日本物理学会 第56回年次大会@中央大学多摩キャンパス

液体Xe Photon Detector

日本物理学会 第56回年次大会@中央大学多摩キャンパス

PMT (R6041Q)

Small Prototype

日本物理学会 第56回年次大会@中央大学多摩キャンパス

Large Prototype

• 228 PMTs

- · 68.6 liter LXe
- ·40 MeV での性能評価

日本物理学会 第56回年次大会@中央大学多摩キャンパス

日本物理学会 第56回年次大会@中央大学多摩キャンパス 27/Mar/2001 K. Ozone

性能評価方法

入射させる γ 線 ● electron による tag はしない。 ● エネルギーは選べない。(右下図参照) ● 直径1mm のコリメータにより全エネルギーを入射させる。

[●]位置・時間分解能については、検出器を二分し、 それぞれで得られる位置・タイミングの差を分解能とする。

日本物理学会 第56回年次大会@中央大学多摩キャンパス

GEANT3 によるM.C. simulation

- Signal is distributed over many PMTs in most cases
- Weighted mean of PMTs on the front face
 → δx ~ 4mm FWHM
- Broadness of distribution $\rightarrow \delta z \sim 16 \text{mm FWHM}$
- Timing resolution $\rightarrow \delta t \sim 100 \text{ps FWHM}$
- Energy resolution
 ~ 1.4% FWHM
 depends on light
 attenuation in LXe

日本物理学会 第56回年次大会@中央大学多摩キャンパス

作業風景

日本物理学会 第56回年次大会@中央大学多摩キャンパス

γ入射面 (PMT ホルダー)

日本物理学会 第56回年次大会@中央大学多摩キャンパス

γ入射面(真空 chamber)

日本物理学会 第56回年次大会@中央大学多摩キャンパス

側面

側面からはγを入射させないのでフレームにはアルミを採用

日本物理学会 第56回年次大会@中央大学多摩キャンパス 27/Mar/2001 K. Ozone

組み立て

日本物理学会 第56回年次大会@中央大学多摩キャンパス 27/Ma

Mini-Kamiokande

↓ Large Prototype

日本物理学会 第56回年次大会@中央大学多摩キャンパス

日本物理学会 第56回年次大会@中央大学多摩キャンパス 27/2

今後の予定

電総研スケジュール 真空系にトラブル発生→解決 ・バルブ破損 ・injection line のトラブル 現在、枯らし運転により真空度を高めるConditioning Run。 月末に、NaI によるbeam line のチェック Large Prototype のスケジュール ・真空引き ・その合間に液化テスト(2回目) ・GW 明けに性能評価テスト開始

HP URL

http://meg.icepp.s.u-tokyo.ac.jp http://meg.pi.infn.it http://meg.psi.ch

日本物理学会 第56回年次大会@中央大学多摩キャンパス