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Introduction

The purpose of this thesis is to develop the algorithms of time and z coordinate
calibration for the MEGII drift chamber. The MEGII experiment, placed in Switzer-
land, is the upgrade of the MEG experiment, which purpose is the search for the
µ → eγ. A completely new drift chamber has been built for the upgrade. The
MEGII drift chamber is a unique volume low-mass detector and it is composed by
1920 drift cells. The signal from the wires are amplified at each end and digitized
by a custom board, the WaveDREAM, based on the DRS chip. The waveforms
are then analyzed and its associated time and charge are extracted. From the time
and charge at the two wire ends, the time and the longitudinal coordinate along
the wire of the positron hit are determined. A calibration to correct for possible
differences among the different electronic channels is necessary. The precision of the
used algorithms needs to be verified in order not to affect the used methods.
The analysis here presented can be divided in three parts: the study of different
algorithms for the time calibration constants, the charge calibration and a test of
the time calibration on cosmic muon data taken with the MEGII gas monitoring
chamber.
In the first part, two different algorithms are investigated for the determination of
the time calibration constants: a template fit method and a constant fraction method
are studied using Monte Carlo simulated events. In the end, the constant fraction
method is chosen, and the data acquisition time necessary to collect a statistic to
obtain the required precision on the calibration constant is determined.
In the second part, the study of the charge division method for the measure of the
hit position along the wires is performed with Monte Carlo simulated events. In
the third part, a cosmic muons data sample collected with the gas monitoring drift
chamber of the MEGII experiment is used to test the constant fraction method.
The time distribution of the different channels of the monitoring drift chamber are
aligned.
In the first chapter, the theoretical background and the history of the search for
µ → eγ are explained and compared with other cLFV researches. In the second
chapter, all the MEGII detectors and the front-end electronics are presented paying
particular attention to the new drift chamber. In the third chapter, the waveform
analysis is explained focusing on the drift chamber waveform analysis. The fourth
and fifth chapters show the analysis developed respectively for the time and charge
calibration. The algorithms and the methods are explained showing the obtained
results with Monte Carlo simulated events. In the sixth chapter, the time calibration
has been tested using the cosmic muon data from the MEGII gas monitoring drift
chamber.
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Chapter 1

Physics motivation

The Standard Model (SM) of particle physics is based on a gauge theory of the
strong and electroweak interactions SU(3)⊗ SU(2)⊗U(1). Since it was established,
the SM has been successfully tested with a large number of experiments. Although
many phenomena are explained with the current model, there are many aspects
of the elementary particle physics which remain not explained, as for example the
origin of the dark matter and the neutrino mass. The presence of these not fully
understood phenomena suggests that the SM could be an approximation of a wide
and more complex theory, which explains all the fundamental interactions. There are
many Beyond Standard Model (BSM) theories that are extension of the SM. Even
if many experiments are searching for the evidence of new physics, up to now this
has not been discovered yet. The direct searches of new particles introduced by new
symmetries in BSM is limited by present collider technology but it is also possible
to realize indirect searches of new physics. One of the most powerful methods to
search for BSM is looking for charged lepton flavor violation (cLFV).
In the first part of this chapter, the theoretical background is briefly presented and,
in the second part, some of the past experiments, which were searching for cLFV
are reported with their results.
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1.1 Muon decay in the Standard Model
In the SM there are two kinds of particles: bosons and fermions. The bosons mediate
the fundamental interactions: electromagnetism, weak and strong interactions. For
each interaction, one or more gauge bosons exist: the gluon g is the carrier of the
strong interaction, the W± and the Z0 mediate the weak interaction and the photon
γ the electromagnetism. Moreover, there are fermions that are separated into two
categories: quarks and leptons. There exist six different quarks and six different

Figure 1.1. Elementary particles in the SM.

leptons. They are divided in three generations each of them containing a quark
doublet and a lepton doublet. In the lepton doublet, there is a neutrino associated
with a charged lepton. Differently from quarks, which can interact via all the three
fundamental forces, the leptons can interact only via the electromagnetic and weak
interactions. All the elementary particles are summarized in Figure 1.1.
Thanks to the gauge symmetries, it is possible to write the lagrangian of the SM
in which all the interactions are described. This lagrangian explains how fermions
and bosons interact with each other. The SM lagrangian includes different terms
from which the different interactions can be derived. A flavor quantum number
is associated with each quark and lepton that characterizes the weak interaction.
The flavor sector for the leptons in the SM arises from the Yukawa couplings of the
fermion fields with the Higgs field Φ:

− LY = (Yu)ijQLiuRjΦ̃ + (Yd)ijQLidRjΦ + (Ye)ijLLieRjΦ + h.c. (1.1)

where SU(2)L indices were omitted, i and j run over the three families and Yf
(f = u, d, e) are in general complex matrices 3× 3. The fields defined as QL are the
left-handed quark doublets, uR and dR are the right-handed quark up and down,
LL is the left-handed lepton doublets and eR the right-handed leptons.
In the original formulation of the SM, the neutrinos are exactly massless. The
Yukawa matrices, and thus the fermion mass matrices, can be diagonalized by
unitary rotations of the fields. Because of the unitarity of the transformations,
the kinetic terms and neutral current of the lagrangian are not modified. The
fermion couplings to the Higgs are proportional to the mass matrix, thus they can
be diagonalized in the same basis. This means that flavor is conserved.
On the other hand, in the charged-current interactions with the W bosons, we find:

LCC = g√
2

(uLγµ(V †uVd)dL + νLγ
µ(V †ν Ve)eL)W+

µ + h.c. (1.2)
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It can be noticed that the flavor violation in quark sector is due to the diagonalization
of the Yu and Yd that requires Vu 6= Vd. The term V †uVd represents the Cabibbo-
Kobayashi-Maskawa matrix VCKM that describes the flavor change phenomena.
In the lepton sector of the original SM with massless neutrinos, the leptonic flavor is
exactly conserved because of the term Vν which can be chosen equal to Ve. In fact,
in this configuration no other term in the Lagrangian involves the doublets.
These considerations are not correct in the case of massive neutrinos. In fact, the
observation of the neutrino oscillations [1] implies the necessity of an extension
of the original SM to include neutrino mass terms. This means that the lepton
family numbers are not conserved. In this configuration, diagonalizing the charged
lepton and neutrino mass terms, a matrix is introduced to describe the lepton flavor
violation just like the CKM matrix. This is the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix. The neutrino oscillations are due to the neutrino flavor eigenstates
and mass eigenstates, which are not the same. The flavor eigenstates are observable
in the weak interactions. For this reason, the neutrino flavor eigenstates can be
written as a linear combination of the neutrino mass eigenstates, as follow:

να =
∑
k=1,3

Uαkνk α = e, µ, τ. (1.3)

Starting from this, we can determine the neutrino oscillation probability. For
example, if we consider only two neutrinos, νe and νµ, with two mass eigenstates ν1
and ν2, the initial state of νµ is:

|νµ(t = 0)〉 = −sinθ |ν1〉+ cosθ |ν2〉 (1.4)

where θ is the mixing angle. The flavor eigenstate evolved after a time t is:

|νµ(t)〉 = −sinθe−iE1t |ν1〉+ cosθe−iE2t |ν2〉 (1.5)

It is possible to determine the probability that after a time t the initial νµ becomes
νe:

P (νµ → νe, t) = | 〈νµ(t = 0)| |νe(t)〉 |2 (1.6)

Which results:
P (νµ → νe, t) = sin2(2θ) sin2(∆m2

4E t) (1.7)

where ∆m2 = m2
2 −m2

1.
It is useful to introduce the branching ratio (BR) of decay as:

BR = Γi
Γ (1.8)

where Γi is the width of a decay mode i and Γ is the total width. The principal
muon decays is µ− → e−νµν̄e, this process has a BR(µ− → e−νµν̄e) = Γ(µ− →
e−νµν̄e)/Γtot ≈ 100% [2]. The Feynmann diagram for this decay is reported in
Figure 1.2.

This process is calledMichel Decay and it is described by the following Hamiltonian

H = −GF√
2
ū(Pνµ)γµ(1− γ5)u(Pµ)ū(Pe)γµ(1− γ5)u(Pνe) (1.9)
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Figure 1.2. Feynmann diagram of muon Michel decay.

where GF is the Fermi constant, ū(P ), u(P ) are the Dirac spinors and γµ, γ5 are the
Dirac matrices and P is the four-momentum.
It is useful to determine the matrix element Mif of the transition from the initial
state i = µ to the final f = e, ν̄e, νµ,

|Mif |2 = | 〈e, ν̄e, νµ|H |νµ〉 |2 (1.10)

The differential decay rate results as:

dΓ = 1
2mµ

1
2

∑
pol

|Mif |2(2π)4δ4(Pµ − Pνµ − Pe − Pν̄e)
dPe

(2π)3
dPνµ
(2π)3

dPν̄e
(2π)3 (1.11)

where the average over the spins of the initial state and the sum over the polarizations
of the final state have been calculated. The δ4(...) represents the conservation of the

four-momenta and the terms dPe
(2π)3

dPνµ
(2π)3

dPν̄e
(2π)3 are the infinitesimal volume in the

phase space.
To determine the rate of the Michel decay it is necessary to compute the element of
the matrix |Mif |2 and to integrate over the phase space of the final state particles
considering the conservation of the four-momenta. Using the properties of the γ
matrices and considering the energies and masses of the involved particles, the Michel
decay can be computed as a point-like decay ignoring the mass of the particles. In
this configuration, the matrix element results to be:

|Mif |2 = 128G2
F (Pµ · Pνe)(Pe · Pνµ) (1.12)

And finally the Γ(µ→ eν̄eνµ) is:

Γ(µ→ eν̄eνµ) =
m5
µG

2
F

192π3 (1.13)

with the muon massmµ = 105.66 MeV , mean life τµ = (2.1969811±0.0000022)·10−6

s [2]. Another possible muon decay mode is the Radiative Muon decay (RMD) which
is similar to the Michel decay but in the final state, together with the electron and
the two neutrinos, there is the emission of a photon

µ→ eν̄eνµγ (1.14)
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All the principal muon decay modes are reported with the corresponding BR in the
Table 1.1 together with the not yet observed cLFV decay modes.

Mode Fraction (Γi/Γ) Confidence level
Γ1 e−ν̄eνµ ≈ 100%
Γ2 e−ν̄eνµγ (1.4± 0.4)%
Γ3 e−ν̄eνµe

+e− (3.4± 0.4) · 10−5

Γ4 e−νeν̄µ < 1.2% 90%
Γ5 e−γ < 5.7 · 10−13 90%
Γ6 e−e+e− < 1.0 · 10−12 90%
Γ7 3e−2γ < 7.2 · 10−11 90%

Table 1.1. Muon decay modes in the SM with respectives BR. The last four decays are
upper limit on the lepton family number violating modes [2].

The SM Feymann diagram for µ→ eγ decay is shown in Figure 1.3.

Figure 1.3. Feynmann diagram of µ → eγ in the SM with massive neutrinos. The
four-momenta of the particle are indicated in parenthesis.

The process can happen only through the neutrino oscillation νµ → νe and the
decay amplitude is given by the matrix element:

M(µ→ eγ) = iūe(p− q)Vαuµ(p)ε∗α(q) (1.15)

where p and q are the four-momenta of the muon and of the photon, ue and uµ are
the Dirac spinors for the electron and the muon, εα the polarization vector of the
photon. Vα is the operator that describes this transition and it can be written in
terms of Lorentz-invariant amplitudes Fi:

Vα = σαβq
β(F1 + F2γ5) + γα(F3 + F4γ5) + qα(F5 + F6γ5) (1.16)
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where σαβ = i

2[γα, γβ].
Using the properties of the gamma matrices, considering me � mµ, it results:

|M |2 = m4
µ(|AR|2 + |AL|2) (1.17)

with AR,L = F1 ± F2. The resulting decay rate is:

Γ(µ→ eγ) = |M |2

16πmµ
=
m3
µ

16π (|AR|2 + |AL|2) (1.18)

Computing the two terms AR, AL, AR ∝ mµ and AL ∝ me, thus |AL|2 � |AR|2.
This means that there is no need to compute the |AL|2, whereas the other term is:

AR = g2e

128π2
mµ

M4
W

∑
k=1,3 UµkU

∗
ekm

2
νk
.

Finally the BR(µ→ eγ) obtained is:

BR(µ→ eγ) ' Γ(µ→ eγ)
Γ(µ→ eν̄e, νµ) = 3α

32π |
∑
k=1,3

UµkU
∗
ekm

2
νk

M2
W

|2 (1.19)

The BR value can be calculated and it is BR ' 10−54 which is experimentally
inaccessible.
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1.2 Research of New Physics with µ→ eγ

Even if the SM has been successfully proved and explains a wide variety of phenomena,
it is considered a low-energy approximation of a more general theory. It has been
seen how the µ→ eγ decay is an extremely low probability process in the SM. Any
observation of this process is a clear signal of new physics. Many Beyond Standard
Models (BSMs) predict that the µ → eγ decay can happen in the detectable
branching fraction. There is a large number of candidates for such theory and
supersymmetric (SUSY) models are ones of these. SUSY introduces a new gauge
symmetry called "supersymmetry" as an extension of the SM and, as a result, all the
elementary SM particles have their own supersymmetric partner called sparticles. In
the case of unbroken supersymmetry, each particle and its relative sparticle have the
same mass. Actually, these supersymmetric particles have not yet been discovered.
Another approach to the physics beyond SM is the Grand Unified Theory (GUT).
In the GUT all the SM interactions are unified at the energy scale of O(1016)
GeV . At this energy scale, all the three couplings constants of strong, weak and
electromagnetic interactions are the same.
An interesting SUSY extension is given by the SUSY-GUT models, in which all the
interactions are unified to a single SU(5) gauge coupling constant. Considering the
slepton mass matrix in the SUSY-GUT, the off-diagonal elements are given by

(m2
ēR)ij = − 3

8π2 (VR)i3(VR)∗j3|y33
u |2m2

0(3 + |A2
0|)ln(MP

MG
) (1.20)

where VR is a matrix element to diagonalize the Yukawa coupling for the lepton, MP

is the reduced Planck mass ∼ 2 · 1018 GeV , MG is the GUT scale ∼ 2 · 1016 GeV ,
m0 and A0 are respectively the universal scalar mass and the universal coupling.
The equation (1.20) predicts a source for the µ→ eγ decay and in Figure 1.4, two
possible diagrams in the SU(5) SUSY-GUT model for the µ → eγ are shown. In

Figure 1.4. Possible diagrams for the µ→ eγ in the SUSY-GUT model.

this scenario, for a different parameters of the BSM models, the decay is expected
to have a BR in the range between 10−11 − 10−15. The MEG Experiment already
reached a good sentivity and, as reported in Table 1.2, obtained the best upper limit
on the BR with a confidence level of 90%. This is useful to put constraints on the
parameters of the BSMs.
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1.3 History of the µ→ eγ search

Since muons were discovered in 1936 by Carl Anderson at Caltech studying cosmic
rays, they were considered really fascinating particles with some peculiar and
interesting properties. In fact, after its discover, the muon was considered to be the
candidate mediating the strong interaction, as predicted by Yukawa. The experiment
performed in 1945 by Conversi, Pancini and Piccioni, demonstrated that the muon
does not interact via strong force and for this, it was not the Yukawa meson.
In Figure 1.5 the three different stages of the µ→ eγ research are reported.
The first experiment on the search for the µ → eγ decay has been performed by
Hinks and Pontecorvo in 1947 [3]. They stopped cosmic ray muons using a lead
absorber and measured the coincidence between signals from two Geiger-Muller
counters. They did not observe any coincidence. For this reason, they put a limit
on the decay rate, which was essentially the inverse of the number of the observed
muons.
Until 70’s, the limit on the process has been improved by the introduction of muons
artificially produced by using stopped pion beams. Starting from the 70’s, the
pion beams have been substituted by muon beams and the sensitivity on the decay
improved also thanks to constantly improving detector technologies. The decay has
not been observed yet and the best upper limit on the BR was obtained at PSI with
MEG experiment which finished its data analysis in 2016 [4]. In Table 1.2 all the
experiments carried out from the 1977 until now are reported.

Year Experiment Beam Rate (Hz) Upper Limit 90%C.L. Ref.
1977 TRIUMF 2 · 105 3.6 · 10−9 [5]
1980 SIN 5 · 105 1 · 10−9 [6]
1982 E328 2.4 · 106 1.7 · 10−10 [7]
1988 Crystal Box 4 · 105 4.9 · 10−11 [8]
1999 MEGA 2.5 · 108 1.2 · 10−11 [9]
2013 MEG 3 · 107 4.2 · 10−13 [4]

Table 1.2. All the past experiments with their upper limit on the branching ratio of the
µ→ eγ decay are reported.

1.4 Search for other charged Lepton Flavor Violation
processes

The µ→ eγ is not the only channel used for the search of cLFV. Many experiments
are looking for decays violating the lepton flavor in others channels.
Two interesting muons flavor violating processes are: µ+ → e+e−e+, µ−N → e−N
conversion. The BR of these processes is related to that of µ → eγ in a model
dependent way. In Figure 1.5 the history of the search for this three different decays
is reported.

• µ+ → e+e−e+ decay is a three-body decay with a total energy in the final
state equal to the muon mass. The two positrons and the electron are emitted
in a common plane and each particles has a maximum momentum of about
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Figure 1.5. Limit on the branching ratio of flavor violating muon decays as a function of
the year [10].

half of muon mass. The energy distribution of each produced particle depends
on the exact dynamics of the unknown physics. The advantage of the research
for this rare decay is that no photons and neutrinos are emitted. This implies
that the only detector needed is an excellent tracker as thin as possible, which
should reconstruct tracks with a momentum from a MeV up to half of the
muon mass. The backgrounds are similar to those in µ→ eγ search. In fact,
there is a prompt background due to the muon decay µ+ → e+e−e+ν̄µνe with
the two neutrinos carrying out a very little energy. The energy spectrum of
this decay is similar to the Michel decay spectrum. The other background is
due to the accidental overlay of two or three uncorrelated muons decay. This
background can be suppressed with a precise measurement of the vertex and
timing in addition to the energy measurement. The best upper limit on the
BR up to now has been reached in 1988 by SINDRUM experiment at PSI [11].
In the 2019, the new experiment Mu3e at PSI should start its data-taking.
The aim of Mu3e [12] is to reach a sensitivity of O(10−16).

• µ−N → e−N conversion is a spontaneous decay of a muon to an electron
without the emission of neutrinos, within the Coulomb potential of an atomic
nucleus. It is possible only for the negative muons. If the conversion leaves the
nucleus at its ground state, all the muon mass get into the kinetic energy of the
electron and the recoil of the parent nucleus. The signature of this process is
the production of monochromatic electron at an energy which is essentially the
muon mass corrected for the binding energy and nuclear recoil. The principal
sources of background are: µ− decays in orbit (DIO), radiative muon capture
(RMC), cosmic rays that interact in the detector material, muon decaying in
flight that produce electrons in the kinematic signal region. Actually, the best



10 1. Physics motivation

upper limit was set by SINDRUM-II experiment at PSI [13]. Two experiments
are going to start during the next years: COMET [14] at J-PARC and Mu2e
[15] at Fermilab. The sensitivity goal for both experiments are similar, at
O(10−16).

1.4.1 τ channel

All models predicting cLFV in the muon sector imply a violation in the τ sector
too. There are other experiments that focused their research of cLFV process on
the lepton τ . Unlike the muon, the search for τ flavor violating decays presents
some experimental difficulties. In fact, the τ lepton has shorter lifetime than muon
(2.9 · 10−13 s), it cannot be copiously produced such as muons. For this, τ leptons
are obtained at proton and electron accelerators. The research for cLFV with τ
presents also many advantages. In fact, the large mass of this lepton (mτ ' 1777
MeV ) gives many flavor violating channels in comparison to the muon decay.
In Figure 1.6 all the upper limits obtained on the τ flavor violating decays are
reported. Starting from CLEO experiment, which lasted until 2008 at Cornell
Electron Storage Ring (CESR) [16], BaBar experiment (ended in 2008) at SLAC in
California [17], Belle worked until 2010 at KEK in Tsukuba [18], LHCb and ATLAS
are now in activity at CERN.

Figure 1.6. Upper limits on the tau lepton flavor violating decays [19].
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Chapter 2

The MEGII Experiment

The MEGII Experiment (Mu to Electron Gamma) is going to start its data taking
in 2019 at Paul Scherrer Institute (PSI) in Switzerland. MEGII, schematically
represented in Figure 2.1, is the upgrade of the MEG experiment that searched
for the µ→ eγ decay at PSI. The MEGII goal is to improve the sensitivity on the
µ→ eγ branching ratio, defined as the 90% upper limit that can be set if no signal is
observed, by one order of magnitude with respect to MEG, thus reaching ∼ 6 · 10−14

in three years of data taking (Figure 2.2).

Figure 2.1. Schematic representation of the MEGII Experiment.

The MEGII Experiment aims to achieve the highest possible sensitivity using
one of the world’s most intense continuous surface muon beam (up to ∼ 108µ+/s).
The muons are stopped in a target, thinner than the MEG one in order to reduce
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the interactions of the outgoing positrons. The beam intensity is two times the
value of the one used in MEG, i.e. 7 · 107 µ/s, thus allowing to keep the accidental
background at a sustainable level.
The MEGII experiment pursues the aim of the MEG Experiment renewing the
detectors. The photon detector is an upgrade of the old detector, in fact, the
calorimeter is the same C-shaped tank of 900 liters of liquid Xenon, but the 216
PMTs at the entrance face have been replaced by VUV-sensitive Multi-Pixel Photon
Counter. The 16 old drift chamber (DCH) modules, used to track the positrons,
have been replaced by a unique volume cylindrical detector with high granularity.
The new drift chamber is placed inside the superconductive magnet (COBRA) which
is the same of MEG. Inside COBRA, together with the drift chamber, there is a
completely new timing counter (TC) that measures the positron time. The 30 plastic
scintillation bars which composed the old timing counter have been substituted with
512 scintillation tiles. Finally, a Radiative Decay Counter (RDC) has been added
to the experimental apparatus. The RDC is composed by plastic scintillators and
LYSO bars and it is placed downstream of the drift chamber with respect to the
direction of the upcoming muon beam.

Figure 2.2. Expected sensitivity of MEGII as a function of data acquisition time.

In this chapter, the signature of the µ→ eγ decay is described and the different
backgrounds of MEGII are discussed. After this, all the subdetectors are described
with a particular attention to the DCH.
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2.1 Signal and background
Any experiment needs a preliminary study of the signature of the signal and it
is fundamental to know all the possible backgrounds before the realization of the
detectors. In fact, this study is necessary in order to build the detectors with specific
requirements and properties.

2.1.1 Signal

In an experiment such as MEG and MEGII, the signature of the µ→ eγ (Figure 2.3)
is a two-body-decay since the muon is stopped and decays at rest. The characteristics

Figure 2.3. A schematic of µ+ → e+γ decay with muon at rest.

of this decay are that the energy spectrum of both the particles produced is a Dirac
delta function with energy equal to the half of the muon mass:

Ee+ = Eγ = mµ

2 = 52.8MeV (2.1)

where Ee+ and Eγ are respectively the energy of the positron and photon. The two
particles are produced back-to-back and coincident in time:

θeγ = 180◦ , te+γ = 0 (2.2)

where θe+γ is the angle between the momentum of the e+ and γ while te+γ is the
difference between their time of production.
These four variables are reconstructed to discriminate the signal against the back-
ground. The number of expected signal events Nsig is related to the branching ratio
BR, to the muons stopping rate Rµ+ , the measurement time T , the solid angle Ω
subtended by the photon and positron detectors, the efficiencies of the detectors
(εe+ , εγ) and of the selection criteria εs. The relation between these variables is
reported in Eq. 2.3.

Nsig = BR(µ→ eγ)×Rµ+ × Ω× T × εe+ × εγ × εs (2.3)

It is useful to introduce the Single Event Sensitivity (SES) of an experiment, which
is defined as the branching ratio such that the experiment would see one single event.

SES = 1
Nsig

(2.4)

The goal is to obtain the lowest SES in order to be sensitive to the lowest possible
value of BR and, for this, the largest possible Rµ+ is needed. Due to the presence of
the background, it is not always convenient to increase Rµ+ as it will be discussed
in the next subsection.
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2.1.2 Background

The search for the µ→ eγ decay is complicated by two different types of background
sources. The first one is the radiative muon decay (RMD) which is a prompt
background. As already mentioned in the Section 1.1, in the RMD (Figure 2.4)
together with a positron and two neutrinos there is a photon emitted. If the two

Figure 2.4. A schematic representation of radiative muon decay with two low-energy
neutrinos.

neutrinos are produced with low-energy, the angle between the momentum of the
positron and the photon is close to 180◦ and their energy is approximately equal to
the signal one.
In fact, considering the variables x = 2Ee

mµ
, y = 2Eγ

mµ
and z = π − θeγ , the signal is

represented by the case with x = 1, y = 1 and z = 0, but since every detector has
a finite resolution there is an error δx and δy. The same thing on these quantities
happens for the z that depends on the angular resolution δz. For detectors with
good angular resolution, it can be assumed δz ≤ 2

√
δxδy.

In Figure 2.5 there is the probability that prompt background can simulate the
signal for different experimental resolutions. Once fixed the experimental resolution,
it is possible to compute the contribution of the prompt background. For the MEG
experiment, this contribution is evaluated to be lower than 10−14, while for MEGII
the prompt background contribution is expected to be lower than 10−16.
The second type of background is given by the accidental coincidence of a positron
from a Michel decay with a photon coming from a RMD, Bremsstrahlung or positron
annihilation-in-flight (AIF). Figure 2.6 shows (a) the positron energy spectrum from
an unpolarized Michel decay and (b) the gamma energy spectrum from RMD.
Integrating these two spectra it is possible to estimate the number of accidental
background events:

Nacc ∝ R2
µ ×∆E2

γ ×∆pe+ ×∆θ2
eγ ×∆te+γ × T (2.5)

where the ∆ are the resolutions on the measured quantities and T is the acquisition
time. The quadratic dependence from the photon energy derives from the integration
of the photon spectrum. The quadratic dependence from the muon stopping rate
implies that for fixed resolution it is not convenient to arbitrarily increase Rµ, but
this should be chosen keeping in consideration the detector resolutions.
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Figure 2.5. Probability that RMD simulate a signal event for different experimental
resolution.

(a) (b)

Figure 2.6. (a) Positron energy spectrum from unpolarized Michel decay. (b) Photon
energy spectrum from radiative muon decay.

2.2 Beamline

The MEGII beamline components will be essentially the same of MEG. The proton
ring cyclotron (Figure 2.7) at PSI generates a 590 MeV proton beam which frequency
is 50.6 MHz. This frequency is high enough compared to the decay time of pions
(τπ ' 26 ns) and the muon beam can be considered continuous.
For this kind of experiments, positive muons are used in order to avoid nuclear

capture by materials inside the target. The proton beam from the cyclotron interacts
with a 4 cm thick graphite target producing π+ and the pions decays producing
the muons. The muons used for the experiment are only the surface muons that
are those produced at the surface of the production target. The surface muons
arrive monochromatic to the detectors through the channel called πE5. A schematic
representation of πE5 beamline is reported in Figure 2.8. In the upstream of the
πE5, surface muons are collected and are led at the center of the COBRA magnet.
All these muons are fully polarized and have the same momentum of 28 MeV/c
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Figure 2.7. Proton ring cyclotron at PSI.

Figure 2.8. Schematic representation of the πE5 channel.

with 5− 7% of spread in FWHM (Full Width at Half Maximum). For this reason, a
high purity and high intensity muon beam can be selected. In order to separate the
positron background and adjust the muon momentum a system of two quadrupoles,
a Wien filter and a Beam Transport Solenoid (BTS) are used. At the center of the
BTS, a 300 µm thick momentum degrader is placed to reduce the muons momentum
and stop them in the target at the center of the detector.
It is important that the target has the following specific characteristics:

• a high muon stopping density

• allows reconstruction of the positron decay vertex

• minimization of multiple scattering for the outgoing positrons

• minimization of photon conversions from RMD

• minimization of positron AIF or Bremsstrahlung

In MEG the target was an elliptical 205 µm thick film of polyethylene-polyester.
Several studies were performed to optimize the MEGII target. In the end the
thickness and the angle between the target and the muon beam have been respectively
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fixed at 140 µm and 15 degrees. The optimal target material has been studied and
the polyethylene target has been chosen. In Figure 2.9 all the possibilities considered
are reported.

Figure 2.9. Candidate target parameters with the corresponding performances.

For the polyethylene target (CH2) the relative muon stopping efficiencies as a
function of the thickness is reported in Figure 2.10.

Figure 2.10. Simulation of the relative muon stopping efficiencies as a function of the
polyethylene target thickness.
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2.3 Photon Detector

The photon detector used in MEG was one of the world’s biggest detectors based on
the liquid Xenon (LXe) scintillation. The calorimeter is used to measure the energy,
arrival time and interaction point of the photon. It is a C-shaped tank filled with
900l of LXe and surrounded by 846 PMT’s (Photo Multiplier Tubes). The LXe has
a fast decay time, short radiation length, high density and high detection efficiency.
For the MEG calorimeter, the time resolution is measured to be about 67 ps, while
the energy resolution depends on the photon conversion depth: 2.7% within 8 mm
from the inner face, 2% between 8 mm and 3 cm and 1.7% for deeper conversion.
In order to reach the best performances, the LXe has to work at a temperature
around 165K and without any impurity. A high atomic number (Z = 54), combined
with a high density in liquid phase (ρLXe = 2.95 g/cm3), make the liquid Xenon an
excellent scintillator with a radiation length X0 = 2.77 cm. In the LXe about 20
eV are needed to have one scintillation photon. The photons are emitted by the
Xe∗2 excimer de-excitation with wavelength of λ = (175 ± 5) nm, in the Vacuum
UltraViolet (VUV) photons. In Figure 2.11 the principal characteristics of LXe are
reported.

Figure 2.11. Principal characteristics of liquid Xenon.

The cylindrical symmetry around the stopping target implies that the photons
produced in the muons decay at rest, after they passed through the drift chamber
and the central coil of the superconductive magnet, hit perpendicularly the inner
face. The detector extends radially for 38.5 cm corresponding to ∼ 14 X0 and fully
contains the γ−ray from a signal event. The inner radius of the detector is 67.85
cm, while the outer radius is 106.35 cm and the angular coverage is 12% of the solid
angle.
One of the principal upgrade for the photon detector in MEGII is to reduce the
areas in which photons could not be detected and to increase the read-out granu-
larity. In order to obtain this, all the PMT’s placed on the inner face have been
substituted by smaller photo-sensors (Figure 2.12). Figure 2.13 shows an example
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Figure 2.12. Picture of the LXe detector.

of scintillation light distribution read by PMTs on the entrance face on the left
and the same distribution as it would appear with the upgraded detector on the
right (from simulation). In particular, the new read-out allows a better separation

Figure 2.13. Example of scintillating light distributions PMT’s on the left and read by
photo-sensors on the right.

of pile-up photons. The photo-sensor is a Multi Pixel Photo Counter (MPPC) of
6× 6 mm2. The MPPC is a photon counting device that is part of the SiPM family
(Silicon PhotoMultiplier). There are a total of 4092 MPPC’s on the inner face.
The gain and quantum efficiencies parameter have been measured for each PMT.
The absolute gain G is measured using 12 LEDs located on the lateral faces in order
to illuminate all the PMTs. It is measured from the ratio of mean and statistical
fluctuation of the output charge of the signal of the PMTs. The other measured
parameter is the product of the quantum efficiency and collection efficiency, ε, which
is calculated from the ratio of the output of each PMT in α source events. The
Photo Detection Efficiency (PDE) for each MPPC is estimated using the same α
source and considering the ratio between the number of the detected number of
photo-electrons and the expected number of incoming scintillation photons.
Once these parameters are found, the energy calibration of the entire calorimeter is
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performed. In particular, the calibration of the LXe detector at the signal photon
energy is realized using photons from π0 decays produced by the π− charge exchange
reaction in a liquid hydrogen target π−p→ nπ0. At lower energy, the performance
of the detector is calibrating using a Cockcroft-Walton accelerating protons up to 1
MeV on a Li2B4O7 target to produce photons from nuclear reactions.

In Figure 2.14, a Monte Carlo simulation of the energy response of the LXe
calorimeter is shown. The w parameter is the reconstructed conversion depth of the
photon in the detector. The fit has been performed with a Crystal Ball function,
consisting of a gaussian core and a power-law low-end tail. The width of the gaussian
provides a estimator of the energy resolution. It can be noticed that the core
is narrower and the low energy tail is smaller in the MEGII than in the MEG
calorimeter, this is due to the improved light collection, which allows to reduce the
energy leakage.

Figure 2.14. Energy PDFs for simulated Eγ = 52.83 MeV , (a) and (c) for the MEG
experiment, (b) and (d) MEGII. The w represents the reconstructed conversion depth.
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2.4 COBRA Magnet
The COBRA (COnstant Bending RAdius) magnet is a superconducting magnet,
which surrounds all the detectors except for the LXe calorimeter. It has been
developed for the MEG experiment with some peculiar characteristics. The COBRA
generates an axial graded magnetic field with a cylindrical symmetry along the
z−axis. At the center, z = 0, the field reaches the maximum intensity of 1.27 T
and decreases while increasing |z| down to 0.49 T near to the DCH endcaps. The
graded magnetic field is necessary to sweep away the low-energy positrons. COBRA
is composed by five coils with three different radii. The central coil’s thickness is
0.197X0 and in this way, it is possible to minimize the energy loss of the photons
before they arrive to the calorimeter. Moreover, there are two gradient coils and two
end coils. In Figure 2.15 the different behaviors of a positron in COBRA magnetic
field and in uniform magnetic field are compared.

Figure 2.15. Positron tracks in the COBRA magnet field (figure (c) and (d)), compared
with those in a uniform magnetic field (figure (a) and (b)). In (a) and (c) the positron
is emitted perpendicular to the direction of the beam.

Normal conductive magnets are installed at both sides of COBRA in order to
reduce the strength of the magnetic field in the region in which it would affect the
calorimeter’s PMTs performances. In Figure 2.16 the distribution of the magnetic
field intensity around the LXe detector is represented.

2.5 Timing Counter
The timing counter is used to measure the time of flight of the positron from the
muon decay. The MEG timing counter was composed by 30 scintillator bars of
80× 4× 4 cm3. Each scintillator was read out by fine mesh PMTs at both ends. It
presented a good intrinsic time resolution but the operative time resolution was worst
because of different causes: PMT degradation performances due to the COBRA
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Figure 2.16. Magnetic field intensity distribution around the LXe detector.

magnetic field, timing alignment among the bars and electronic time jitter. For the
MEGII experiment, all the TC has been replaced with a new one. The new pixelated
Timing Counter (pTC) consists of two sets of semi-cylindrical shape scintillation
detectors similar to the MEG timing counter, but each detector is composed by many
ultra-fast plastic scintillator tiles coupled to two SiPMs (Silicon PhotoMupliers). A
total of 512 tiles constitute the pTC. Each tile is 90× 40× 5 mm3 as in Figure 2.17
where a single tile with their support is shown.

Figure 2.17. On the left side a pTC tile is shown, on the right side a schematic of the
support plate with the SiPM read-out can be seen.

The two semi-cylindrical modules are placed upstream and downstream of the
target in the COBRA. The 256 counters per module occupy the space between
the drift chamber and the COBRA magnet (Figure 2.18). There are 16 aligned
counters spaced at 5.5 cm and placed at 45 degrees with the beam direction, in order
to have the signal positron trajectories perpendicular to the single counters. The
pTC covers 23.0 < |z| < 116.7 cm along the beam axis and the angular coverage
of −165.8◦ < φ < 5.2◦ guarantees the angular acceptance of the positron when the
photons goes to the LXe detector.



2.6 Radiative Decay Counter 23

Figure 2.18. Picture of one of the pTC module.

Using a Monte Carlo simulation, the final detector configuration has been
simulated to obtain the hit distribution and hit rates in pTC. Figure 2.19 represents
a positron from a signal event with its hit pattern in the pixelated timing counter.
Every single unit counter has been tested using electrons from 90Sr source and the
whole detector has been tested in the engineering runs in 2016 and 2017 using a
muon beam. After applying the whole reconstruction analysis, the time resolution
of the TC has been estimated to reach the value of ∼ 40 ps improving by a factor of
2 that obtained in the MEG timing counter (76 ps). In Figure 2.20 the resolution as
a function of the number hits is shown.

2.6 Radiative Decay Counter

The Radiative Decay Counter (RDC) is a completely new detector, which was not
present in the MEG experiment. This detector allows to reduce the accidental
background that is the dominant background in MEGII. As explained in subsection
2.1.2, the photons of accidental background can be produced by RMD or AIF. The
photons from AIF are reduced by the use of the new drift chamber (see Section 2.7)
which has lower mass compared to the MEG drift chamber system. On the other
hand, the RMD remains unaltered. For this reason, in order to improve the rejection
of the accidental background, it has been decided to introduce a Radiative Decay
Counter. The RMDs with high energy photon produce a low energy positron, which
essentially performs a helical trajectory around the magnetic field axis. This kind of
low energy positrons are not detected by the pTC or the drift chamber but the high
energy photons interact in the LXe detector. The RDC is settled downstream of the
new cylindrical drift chamber with the purpose to detect the low energy positrons
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Figure 2.19. Hit pattern in the pTC of a positron from simulated µ+ → e+γ.

Figure 2.20. Time resolution as a function of number of hits measured in the pTC in the
pilot run during 2016. The red line is the best fit function.
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Figure 2.21. Schematic of the low energy positron detected by the new RDC.

Figure 2.22. Schematic view of the RDC on the left figure. On the right figure the LYSO
crystals are shown.

from RMD. According to the simulation, the RDC can detect ∼ 42% of the RMD
photon background with the gamma energy Eγ > 48 MeV . In Figure 2.21 there is
an example of low energy positron detected by the RDC.
The detector is composed by 12 plastic scintillator bars which measure the time
of the positrons, while 76 LYSO crystals behind constitute the calorimeter for the
energy measurement. Since the background rate is larger close to the beam axis,
the width of the plastic scintillators in the central region is 1 cm while it is 2 cm in
the outer part. The size of each LYSO crystal is 2 × 2 × 2 cm3. In Figure 2.22 a
schematic view of the RDC is shown.

The use of this new detector will improve the MEGII sensitivity by 15% ac-
cording to the simulations. All the performances of the RDC are summarized in
Figure 2.23.

Figure 2.23. RDC expected performances. The accidental probability is the probability of
observing Michel positrons.
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Figure 2.24. MEGII drift chamber structure.

2.7 Cylindrical Drift Chamber

The cylindrical Drift CHamber (DCH) constitutes the positron spectrometer of the
MEGII Experiment. The MEGII DCH is used to measure the positron energy, the
positron production angle, the production vertex in the target and together with
the timing counter, the positron time of flight. In the previous MEG Experiment,
the drift chamber system was made by 16 drift chamber modules spaced by 10.6◦
intervals and each module was filled with a mixture of helium-ethane 50 : 50. The
modules were trapezoids with base lengths of 40 cm and 104 cm respectively. Thanks
to its low-mass the average amount of material seen by a positron was ∼ 2 · 10−3

X0. This system has been completely replaced with a new one. The MEGII DCH
is a unique volume low-mass detector with a high granularity and a stereo wires
configuration. It is placed around the beam and inside the COBRA magnet. This
detector has a cylindrical symmetry along the beam axis (z axis), covers all the
azimuthal angle φ and it is divided into 12 identical sectors.
The mechanical structure, shown in Figure 2.24, is a 1.91 m long cylinder, inner
radius of 170 mm and outer radius of 290 mm. The wires are not parallel to the
chamber axis, which is coincident with the beam axis. Indeed, the wires form with
the z-direction a stereo angle that varies from 6◦ degrees in the innermost layer
to 8.5◦ degrees in the outermost one. This is used to measure the z coordinate of
the reconstructed hits along the beam axis combining the information of adjacent
planes.
The total number of wires is 13056 for an equivalent radiation length of 1.58 ·10−3X0.
The elementary unit of the drift chamber is a square shape drift cell. The single drift
cell dimensions vary: in the innermost layer the side is 6.6 mm and in the outermost
layer is 9.0 mm. Each drift cell consists of eight cathode field wires which surround
the central anode sense wire. The anode sense wires are gold-plated tungsten wires
of 20 µm diameter and are set at a positive voltage (∼ 1500− 1600 V ) in order to
generate the electric field in which the ionization electrons drift and are amplified.
In Figure 2.25 a simulation of the drift lines taking into account the effect of the
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Figure 2.25. Simulated drift lines in presence of COBRA magnetic field.

COBRA magnetic field is shown. The signal from the anode sense wires is read-out
at both the ends with the front-end electronics which are costum high-bandwidth
pre-amplifiers. The cathode field wires are silver-plated aluminum wires of 40− 50
µm diameter connected to the ground. The configuration of the drift cells at the
center of the DCH is reported in Figure 2.26. A number of 192 drift cells constitutes
each layer. The active volume of the DCH is composed by 10 layers and is closed by
a plane of guard wires set to a lower voltage than the anodes. The guard wires are
silver-plated aluminum wires of 50 µm diameter and are needed to reduce and close
the electric field lines near the edge of the active volume. The chamber with all the
wires is shown in Figure 2.27.
The DCH at both ends is closed by two 30 mm thick gold-plated aluminum wheels
with twelve radial spokes. On both the internal faces of the end plates there are four
perforated pipes which allow the flushing of the gas inside the drift chamber. The
total volume is about 380 liters of gas. The gas used to fill the drift chamber is a
mixture helium-isobutane. The helium has been chosen because of its properties, in
particular the large radiation length, X0 ∼ 5300 m at standard temperature and
pression, implies a small contribution to the multiple scattering of the positron.
Moreover, it is required a quantity of 10 − 15% of isobutane in order to avoid
self-sustained discharges. The average number of ionization clusters created in the
gas volume for He : i − C4H10 90 : 10 is ∼ 12 cm−1. While the drift velocity in
the same mixture is ∼ 3 cm

µs
. Preliminary tests have been done on prototypes in a

cosmic-ray facility and a test beam has been performed [20] showing an expected
spatial resolution of ∼ 100 µm. The MEGII drift chamber expected resolutions are:

σpe+ = 130keV, σθe+ = 5.3mrad, σΦe+ = 3.7mrad (2.6)

The expected tracking efficiency is 78%,while the matching efficiency of the drift
chamber with the timing counter reaches 90%.
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Figure 2.26. Drift cells configuration at the center of the drift chamber.

2.8 DAQ System
In the previous MEG experiment, the data acquisition was based on a fast waveform
digitization developed at PSI, called Domino Ring Sampler (DRS). In MEGII, the
total number of the channels is much bigger than in MEG. This is due to the higher
granularity of the upgraded detectors. To deal with the increased number of the
channels (more than 9000 channels in MEGII against the approximately 3000 in
MEG), the electronics is redesigned. The new electronics has been chosen with the
purpose to digitize the whole waveform. The trigger and the DAQ system of MEGII
have been integrated into the same board called WaveDREAM developed at PSI.
The WaveDREAM board (WDB) integrates the digitization, the basic trigger, DAQ
functionalities, high voltage and amplification. The WDB contains an amplifier
and a waveform shaper, a bias voltage supply for the SiPM and two Domino Ring
Sampler (DRS4) chips for the waveform digitization, which are connected to two
ADCs. The outputs of the ADCs are transmitted to a Field-Programmable Gate
Array (FPGA), which treats trigger algorithms. The entire front-end electronics has
been optimized to give an overall bandwidth of about 1 GHz. There are two gain
stages, which can be combined to increase the signal amplitude from the sense wires
and the SiPM.
Figure 2.28 shows a picture of a WaveDREAM board. The trigger system uses the
comparators implemented in each input channel of TC and LXe for the determination
of the relative time of positron and photon. Moreover, the photon energy and
direction are estimated for trigger purposes. The MEGII trigger rate is expected to
be ∼ 10 Hz comparable with those reached in MEG.
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Figure 2.27. A picture of the MEGII drift chamber after the wiring process.

Figure 2.28. A picture of the WaveDREAM board.



30 2. The MEGII Experiment

2.9 MEGII expected performances
In Table 2.1 all the expected performances of MEGII are reported. The resolutions
of the upgraded detectors are compared to those reached in MEG.

Parameter MEG MEGII expected
σ(Ee) 306 keV 130 keV
σ(θe) 9.4 mrad 5.3 mrad
σ(Φe) 8.7 mrad 3.7 mrad
σ(z) 2.4 mm 1.6 mm
σ(y) 1.2 mm 0.7 mm
σ(Eγ) 2.4% ∼ 1.7% 1.1% ∼ 1.0%
σ(G‖) 6 mm 5 mm
σ(G⊥) 5 mm 2.6 mm
σ(teγ) 122 ps 84 ps
ε(γ) 63% 69%
ε(e) 30% 70%

Table 2.1. MEG and MEGII resolutions and efficiencies are shown.

The variables (z, y) are the vertex coordinates,G‖,⊥ determine the conversion photon
position and ε represents the efficiencies.



31

Chapter 3

Event Reconstruction

In this chapter, the strategies and the algorithms for the event reconstruction are
explained. A particular attention is dedicated to the DCH hit reconstruction, which
is described in more details.

3.1 Positron Reconstruction

The four quantities associated with the positron and measured by the detectors are
the energy, time of production, the angles and the vertex at the target. In particular,
the positron momentum is measured through the drift chamber, while the positron
time is measured using both the drift chamber and the timing counter. Since these
two are completely new detectors, the analysis has to be different from that used in
MEG.
Starting from the time of flight of the positron, it is possible to determine the
positron production time in the target. The first step is to reconstruct the hits of
each event in both detectors using a waveform analysis. The hits found in the drift
chamber found are used to reconstruct the positron track. Meanwhile, a clusters
analysis is performed to reconstruct the track in the timing counter. The two tracks
found respectively in the DCH and in the pTC are them matched. In this way, the
positron time te is calculated considering the informations from both DCH and pTC,
and it results:

te =
∑n
i (tTCi − li/c)

n
− LDCH/c (3.1)

where i is runs over the hits in the TC, li is the path length from the first hit counter
in TC to the i−th hit counter, tTCi is the time measured by the i−th hit counter and
LDCH is the path length from positron vertex to the first hit in the TC reconstructed
by DCH.
Starting from the matched track in the DCH and TC, the entire positron trajectory
is then fitted considering the dynamic of a charge particle moving into a magnetic
field taking in account also the crossed materials. The track is extended up to the
positron emission point in the target, where the momentum, the vertex and the
angles of the positron at the target are determined.
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3.1.1 DCH Waveform analysis

In the DCH the algorithm developed to search for the signal uses the sum of the
waveforms which are read-out at the ends of one wire. The waveforms are digitized
at a sampling speed of 800 MHz in a 1280 ns window by the WaveDREAM. An
example of a waveform from a sense wire for a simulated signal positron is shown in
Figure 3.1. The trigger timing is such that the time window is centered around the
signal of a hit. The different ionization clusters can be observed.
The waveform analysis procedure is the following:

• in the region before the signal, the baseline (mean and RMS) is calculated, if
a pile-up hit is found in that region the expected value of 0 for the mean and
2 mV for the RMS are set

• a hit is found if the waveform goes above a pre-defined threshold (5 RMS over
the baseline)

• others hits are searched after the waveform stays at least consecutively 5
ns below the threshold or at maximum after 250 ns which is the maximum
expected hit duration

The algorithm uses a constant threshold method combined with a linear interpolation
to compute the hit time. In particular, the algorithm fixes a threshold equal to
the sum of the baseline and three times the value of RMS previously calculated. A
linear interpolation is then performed between the first bin above the threshold with
the bin before it. The time of the point of intersection of the linear interpolation
with the constant threshold is assumed as the hit time. For the determination of
time associated with a hit, the waveforms from the two different ends of the wire
are used. The final hit time reconstructed thit is computed performing a constant
threshold method in both the waveforms:

thit = thit,u + thit,d
2 − L

2v (3.2)

where thit,u is the hit time calculated at the upstream end of the wire and thit,d is
the hit time calculated at the downstream end of the same wire, L is the wire length
and v is the signal propagation velocity. The thit,u and thit,d variables contain a
calibration constant depending on the read-out chain which need to be determined.
More details of this formula are presented in Section 4.
On the other hand, the charge is determined by integrating the sum of waveforms in
the hit region. Moreover, starting from the charge asymmetry at the two ends it is
possible to determine the position of the hit along the z direction:

z = A× Leff (3.3)

where A is the charge asymmetry and Leff is the effective length of the wire (see
Section 5). The waveform analysis needs to take into account the pile-up i.e. hits
coming from the overlapping positrons in the acquisition window. The presence
of the pile-up affects the hit reconstruction generating wrong reconstructions of
the signal and inefficiencies in the reconstruction, but the algorithms have been
optimized to reduce these effects.
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Figure 3.1. An example of a waveform from a DCH sense wire from a simulated signal
positron.

The pile-up contribution can be evaluated as follow:

Np = I ×∆t× α (3.4)

where Np is the number of pile-up events, I is the intensity of the MEGII muons
beam, ∆t is the time window and α is the geometric acceptance. A high fraction of
the waveforms are affected by at least one pile-up event. In Figure 3.2 a waveform
with a hit of signal more a pile-up hit is shown.

Figure 3.2. A simulated waveform from a DCH sense wire from a signal positron more
pile-up. The pile-up hit is clearly shown and precedes the hit of signal.
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3.2 Photon Reconstruction
A photon with an energy of ∼ 52 MeV , interacts with LXe especially via pair
production process producing an electromagnetic shower. The position, the energy
and the timing of the photons are reconstructed from the waveforms from each PMT
and MPPC digitized by the WaveDREAM board. The main uncertainty in the
reconstruction process derives from the event-by-event fluctuations in the shower
development.
Inside the LXe calorimeter, a special coordinate system (u, v, w) is used in the
photon reconstruction: u coincides with the z−axis along the beam direction, v is
directed along the negative φ−direction at the radius of the inner face, and w is the
reconstructed conversion depth.

3.2.1 Waveform analysis

The reconstruction starts with a waveform analysis that extracts charge and time for
each PMT and MPPC waveform. Algorithms have been developed to identify and
eliminate events with two overlapping photons (pile-up). In order to maximize the
signal-to-noise ratio for the charge determination, a digital high-pass filter is applied
to the raw waveforms. The time is determined as the time when the pulse reaches a
defined fraction (20%) of the maximum pulse height. The charge is computed by
integrating the filtered pulse and the number of photo electrons, Npe,i detected by
the i−th detector is:

Npe,i = Qi/(e ·Gi(t)) (3.5)

where Qi is the charge measured and Gi is the gain of the i−th PMT or MPPC.
Then, it is possible to compute the total number of scintillation photons:

Nnpho,i = Npe,i/(εi(t)) (3.6)

where εi is the product of the quantum efficiency with the collection efficiency of the
i−th PMT or MPPC. The gain and the efficiency are continuously monitored and
calibrated using LED and α sources respectively, positioned inside the detector.

3.2.2 Photon position reconstruction

The position of the photon interaction vertex is determined by minimizing a
χ2−function:

χ2
position =

PMT/MPPC∑
i

Npho,i − c× Ωi(u, v, w)
σpho,i(Npho,i)

(3.7)

where c is a free parameter, Ωi is the solid angle subtended by the photon detector
and σpho,i(Npho,i) is the uncertainty of the number of photons detected from the
i−th PMT or MPPC. The χ2 function is minimized with respect to the photon
conversion coordinates (u, v, w). The initial estimate of the position is calculated as
the amplitude weighted mean position around the photon counter with the maximum
signal. To reduce the effect of the shower fluctuations, only detectors inside a radius
of 3.5 times the counter spacing are used in the fit for the initial estimate of the
position of the interaction vertex.
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3.2.3 Photon timing reconstruction

After the reconstruction of the photon interaction vertex in the calorimeter, the
time of the first interaction vertex is calculated from each photon counter time, thit,i.
The photon conversion time tcγ in the LXe is obtained by minimizing:

χ2
time =

PMT/MPPC∑
i

thit,i − tcγ
σt,i(Npe)2 (3.8)

where σt,i(Npe) is the time resolution of each photon counter which depends on the
number of the photoelectrons. Starting from the time of the first interaction of the
photon, it is possible to calculate the photon production time in the target. In fact,
knowing that the photon follows a linear path from its production point in the target
to the conversion point in the calorimeter, its production time tγ results to be

tγ = tcγ + l/c (3.9)

where l is the linear path from the reconstructed positron vertex to the calorimeter.

3.2.4 Photon energy reconstruction

The photon energy reconstruction is based on the sum of the scintillation photons
collected by all PMTs and MPPCs. The energy is obtained by the equation:

Eγ = F (u, v, w)× S(u, v, w)× T (t)× C ×
∑
i

(Npho,i ×Wi) (3.10)

where F (u, v, w) is a non uniformity correction factor, S(u, v, w) is a solid angle
correction factor, T (t) is a correction factor relative to the light yield changing in
time, C is a conversion factor to convert from the number of photons to the energy,
Wi is a constant weight. These factors are determined from data or simulations.
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Chapter 4

Drift Chamber Time
Calibration

The drift chamber is composed of 1920 sense wires, which generate the electric field
and collect the signal from the drifting electrons. Due to the geometric acceptance
of the TC, the four upper sectors of the DCH are not instrumented and the signal
is read-out only from 1280 sense wires. The signal is transmitted to the two ends
of each sense wire where is pre-amplified and read-out by the WaveDREAM board.
The whole read-out chain needs a time calibration in order to equalizer the response
of the various electronics channels. In fact, a time offset can be present between the
two different electronic lines of the same wire and between the wires.
In Figure 4.1 a schematic representation of a hit on a wire of the DCH is shown:

Figure 4.1. Schematic representation of a hit on a wire of the DCH. DS and US are
respectively the downstream and upstream read-out channel.

L is the wire length, z is the hit coordinate along the wire, DS represents the
downstream read-out channel and US is the upstream read-out channel. The hit
time for calibrated detector can be calculated as:

tuhit = thit + L/2− z
v

(4.1)

tdhit = thit + L/2 + z

v
(4.2)
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where v is the signal propagation speed. Solving for thit:

tuhit + tdhit
2 = thit + L/2− z

v
+ L/2 + z

v
(4.3)

thus:
thit = tuhit + tdhit

2 − L

2v (4.4)

Taking into account the calibration constants, the two variables tuhit, tdhit are

tuhit = turaw + c1 , tdhit = tdraw + c2 (4.5)

where traw represents the true hit time read at each wire end, c1, c2 are the calibration
constants to be determined.
In the first part of this chapter, the two different algorithms studied for the deter-
mination of the time calibration constants are explained. In the second part, the
results of each method on Monte Carlo simulation are shown and an evaluation
of the number of signal events necessary to reach a precision on the calibration
constants comparable with the one in MEG (500 ps) is done.

4.1 Time Calibration methods
The purpose of this analysis is to develop and to study an algorithm to determine
the calibration constants for each DCH read-out channel. In this section, the Monte
Carlo simulation and the two algorithms are presented: a template fit method and a
constant fraction method have been considered.

4.1.1 Monte Carlo simulation

The events used in this analysis have been generated using the MEG-II software,
which is constituted by:

• gem4 a Monte Carlo simulation based on the GEANT4 [21] toolkit for the
simulation of the passage of particles through matter

• bartender the code that allows DAQ electronics simulation and pile-up simu-
lation

• analyzer the code for the event reconstruction

The MEG-II software is based on C++ programming language. The output of the
whole simulation chain is analyzed using the ROOT package [22].
Figure 4.2 shows an example of the reconstructed hit time distribution from a
signal positron of DCH wire (layer 0 DS read-out, 104 signal events): the signal
positron represents a positron form the µ+ → e+γ decay, therefore with a 52.8 MeV
momentum and crossing most of the detectors. The positron during its trajectory in
the DCH crosses the drift cells and the drifting electrons are collected by the sense
wire, which transmits the signal at the two ends. The drift time of the electrons in a
DCH cell depends on the distance between the positron trajectory and the sense
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wire: considering the drift velocity equal to ∼ 3 cm/µs and an average dimension of
the drift cells equal to ∼ 8 mm, the drift time for a track, which hits the border of
the cell is expected to be ∼ 190 ns. The distribution of the reconstructed hit time is
related to the drift time distribution and its shape is related to the geometry of the
drift cells. The peak is due to the trajectories, which cross the cells closest to the
position of the sense wires. The end point represents the hits at the border of the
drift cells. The distribution time length is related to the width of the DCH cell.
In the Monte Carlo production, the rise time in which the reconstructed hit time
distribution starts is the same for each read-out channel. In real data, the read-
out chain can introduce differencies in the rise times, which are the calibration
constants to be determined. The distribution in Figure 4.2 is not realistic: the

Figure 4.2. Simulated distribution of the DCH reconstructed hit time (all wires, layer 0
DS, 104 signal events).

presence of the pile-up hits needs to be considered in the simulation. Figure 4.3
shows the distribution realized by mixing 103 signal events with the expected pile-up
fraction. The initial peak is due to the pile-up hits accumulated in the end of the
previous acquisition time window. Since a large statistic is necessary to evaluate
the calibration constants and the simulation of the mixed events is highly time
consuming, it has been decided to develop the algorithms using only signal events
distributions from full simulated signal events and to include the pile-up, a flat
background has been randomly generated in the correct proportion between signal
and pile-up. The obtained distribution is shown in Figure 4.4. Several Monte Carlo
samples have been generated for a total of 6 · 105 signal events. Two algorithms will
be illustrated in the following sections: template fit method and constant fraction
method.

The development of the algorithm and the study have been performed in two
steps. In the first step, the algorithm stability as a function of the size of the fitted
sample has been studied. The sample sizes used for this study are: 103, 5 · 103,
104,2.5 · 104, 5 · 104 and 105 signal events.
In the second step, the fit parameters have been studied separately for each read-out
channel. A number of 4 · 105 signal events more have been generated and the total
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Figure 4.3. Simulated distribution of the DCH reconstructed hit time (all wires, layer 0
DS, 103 signal events plus pile-up). The peak presents at low times is due to the pile-up
hits accumulated in the previous aquisition window.

sample have been subdivided in: 20 samples of 104 signal events, 10 samples of
2.5 · 104 and 10 samples of 5 · 104 signal events.

The constant fraction method has been first studied with 20 samples of 104, 10
samples of 2.5 · 104 and 10 samples of 5 · 105 for a total of 5 · 105 simulated signal
events without pile-up hits. Then, it has been tested using 103 signal events more
pile-up.

4.1.2 Template fit

The template fit method consists in comparing the measured time distribution with
a reference distribution called template distribution. The template distribution is
an high statistic distribution from Monte Carlo simulation or from data. In this
analysis, the template is realized using the Monte Carlo simulated events. The
template histogram is superimposed to the measured histogram and two parameters
are fitted: a scale factor, which takes into account the different size of the template
and events histograms, and a time offset between the two distributions. In fact, the
template fit is performed using a χ2 function:

χ2 =
nbins∑
i

(Ai − a× T(i−b))2

σ2
i

(4.6)

where Ai is the background subtracted content of the i−th bin of the measured
event histogram, Ti is the interpolated content of the i − bth bin of the template
histogram, σi is the error associated with the i−th bin, a is a scale factor and b is
the offset parameter. The flat background is evaluated with a linear fit in the region
of the histogram without the time distribution. The index i runs over an optimized
bin range. The template bin amplitude Ti−b is obtained by linear interpolation of



4.1 Time Calibration methods 41

Figure 4.4. Simulated distribution of the DCH reconstructed hit time (all wires, layer 0
DS, 104 signal events plus simulated pile-up).

two near bins Ti, Ti+1 as follow:

T (t) = (T (tj+1)− T (tj))
tj+1 − tj

(t− tj) + T (tj) = T (tj+1) t− tj
tj+1 − tj

+ T (tj)(1−
t− tj

tj+1 − tj
)

(4.7)
where j = i − b and T (tj) is the amplitude of the j−th template bin, while
tj < t < tj+1 and T (t) is the interpolated bin amplitude.
By minimizing the χ2 function (4.6) with respect to a and b, the template results to
be aligned to the event distribution and a time offset parameter can be determined
with its error.

4.1.3 Constant fraction method

The constant fraction method consists in defining a threshold value, which is equal
to a fraction of the maximum peak in the reconstructed hit time distribution. The
time rise of the distribution is defined as the time of the intersection point between
the threshold and the linear interpolation of the first bin above the threshold and
its preceding. In Figure 4.5, a reconstructed hit time distribution is shown with a
fraction fixed to the 15% of the maximum peak and the linear interpolation is also
represented.
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Figure 4.5. An example of the constant threshold method applied to the simulated
distribution obtained from the DS read-out of the layer 0.

4.2 Monte Carlo events analysis

The study of the algorithms are reported here and the acquisition time necessary to
obtain a precision of 500 ps over the calibration constants is calculated.

4.2.1 Template fit Monte Carlo events

A total number of 105 signal events have been simulated in order to realize the
template histograms. The two steps of the template fit study are reported here with
the obtained results.

Template fit stability
For the first part of the analysis, in order to test the stability of the template fit,
the following samples has been used: 103, 5 · 103, 104,2.5 · 104, 5 · 104 and 105 signal
events. The fit has been performed in the whole range of the hit time distribution
i.e. [−1.28, 0] · 10−6 s. In the Monte Carlo, all the calibration constants are equally
generated for all the ends and all the layers. The parameters are fitted separately
for each end putting together the wires of the same layer. In Figure 4.6 the two
fitted parameters, the time offset and the scale factor, are reported as a function
of the number of the end: the ends from 0 to 9 represent the US end for layer 0-9
and those from 10 to 19 represent the DS end for layer 0-9. In both figures, the
black line represents the expected value, which is that used for the Monte Carlo
production. The expected value of the offset parameter is 0 ns, in fact, in the
Monte Carlo simulation all the reconstructed hit time distributions are aligned. The
expected scale factor is the ratio of the size of the data and the template samples

which is ∼ 104

105 = 0.1. With few exceptions, the fitted values of the scale factor are
compatible with the expected value within the errors; this is not the case of the
fitted offset. The same features are observed with the samples of 2 · 104 and 5 · 104

simulated signal events (see Appendix A).
In order to test the algorithm also with a time shift different from zero, the template



4.2 Monte Carlo events analysis 43

(a) (b)

Figure 4.6. Fitted parameters from the template fit method as a function of the end:
(a) offset parameter, (b) scale factor. 0-9 are the US read-out of the respective layer
and 10-19 represent the DS read-out of the same layer. The black line represents the
expected value. The fit has been performed on a sample of 104 simulated signal events.

histograms have been shifted by 100 ns. In Figure 4.7 the obtained fit parameters
with the same sample size as before are reported. In this case, the scale factors are

(a) (b)

Figure 4.7. Fit parameters as a function of the end for a shifted template: in (a) offset
parameters and in (b) the scale factor are reported. 0-9 are the US read-out of the
respective layer and 10-19 represent the DS read-out of the same layer. The black line
represents the expected value. The fit has been performed on a sample of 104 simulated
signal events.

still compatible with the expected value, while the offset parameters are not fitted
well. The fitted values obtained in this configuration are shown in Figure 4.7: the
offset parameters in (a) and the scale factors in (b) are shown as a function of the end.

Analysis for each end
In order to investigate the fit behavior, several samples for each end are fitted: 20
samples of 104 simulated signal events, 10 samples of 2.5 · 104 and 5 · 104 simu-
lated signal events. All the wires of the same layer are regrouped together. The
distributions obtained with the samples of 104 are here reported. In Figure 4.8 the
distributions of the offset parameter in (a) and the scale factor in (b) obtained from
the template fit of the layer 0 read-out DS are shown. A more detailed study of
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(a)

(b)

Figure 4.8. Layer 0 DS end, fitted parameters (104 simulated signal events): offset
distribution in figure (a) and scale factor distribution in (b). A gaussian fit has been
performed.

these distributions has been performed realizing the pull distributions defined as

pull = xfit − xtrue
σ(xfit)

(4.8)

where xfit is the value obtained from the fit, σ(xfit) its uncertanty and xtrue is
the expected value. In the case of unbiased fit, the expected pull distribution is a
gaussian distribution centered in zero with standard deviation equal to one.
In Figure 4.9 the pull distributions of the layer 0 DS are shown. The mean of the pull
of the offset parameter is not compatible with zero. This implies the presence of a
bias. Moreover, the σ of the pull of the offset parameter is higher than the expected
value of one: a miscalculation of the fitted offset error needs to be considered. To
better understand this problem a scan of the χ2 function has been realized showing
a large number of local minima. The range of the offset parameter in the fit has
then been limited in a time window of [−50, 50] ns minimizing the number of local
minima considered in the minimization. Moreover, the fit range has been restricted
to [−0.9,−0.7] · 10−6 s (Figure 4.10). It has been also increased the uncertainty of
each bin:

σ(i) = f × 1√
Ni

(4.9)
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(a)

(b)

Figure 4.9. Layer 0 DS pull distributions (104 signal events): offset distribution in figure
(a) and scale factor distribution in (b).

Figure 4.10. Limited range used for the template fit.

where i is the number of the bin and Ni its content. The factor f is chosen as that
number which allows to obtain a standard deviation equal to one in the pull of the
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offset parameter. In the case of a template fit with a events distribution of 104 signal
events, the f is equal to 3. The distribution of the offset parameter and scale factor
for DS read-out are shown in Appendix B.

All the fitted values for each end are reported in Table 4.1. It results clear that
almost all the scale factors are compatible with the expected value of 0.1. Most of
the offset parameters are compatible with the expected value of 0 ns. The template
fit results instable and an adequate study could be performed to better understand
the shape of the χ2 used in this fit.

Layer DS offset [ns] σoffset [ns] scale factor σscale
0 0.31± 0.31 0.94± 0.39 0.0992± 0.0003 0.0013± 0.0003
1 −0.26± 0.07 0.28± 0.08 0.0997± 0.0004 0.0014± 0.0004
2 0.39± 0.16 0.69± 0.01 0.0994± 0.0003 0.0011± 0.0002
3 −0.11± 0.09 0.33± 0.09 0.0996± 0.0003 0.0014± 0.0003
4 0.28± 0.20 0.83± 0.25 0.1000± 0.0005 0.0016± 0.0004
5 −0.18± 0.08 0.30± 0.08 0.0998± 0.0002 0.0010± 0.0003
6 0.54± 0.28 0.88± 0.29 0.0986± 0.0007 0.0021± 0.0007
7 −0.06± 0.04 0.19± 0.03 0.0996± 0.0003 0.0013± 0.0004
8 0.54± 0.28 0.88± 0.29 0.0987± 0.0004 0.0017± 0.0003
9 −0.06± 0.04 0.19± 0.03 0.0992± 0.0004 0.0013± 0.0003

Layer US
0 −0.36± 0.20 0.63± 0.22 0.0993± 0.0007 0.0019± 0.0007
1 0.37± 0.40 1.72± 0.28 0.0978± 0.0009 0.0022± 0.0011
2 2.23± 0.55 2.26± 0.39 0.1008± 0.0042 0.0063± 0.0082
3 −0.28± 0.83 1.37± 0.94 0.0989± 0.0006 0.0015± 0.0010
4 0.10± 0.32 1.45± 0.23 0.0997± 0.0004 0.0016± 0.0003
5 0.22± 0.33 1.47± 0.23 0.0997± 0.0006 0.0018± 0.0008
6 0.30± 0.29 0.89± 0.42 0.1002± 0.0010 0.0024± 0.0017
7 0.69± 0.97 1.46± 1.18 0.1002± 0.0004 0.0014± 0.0004
8 0.83± 0.51 2.22± 0.36 0.1009± 0.0009 0.0021± 0.0015
9 −0.04± 0.20 0.87± 0.14 0.1001± 0.0007 0.0017± 0.0009

Table 4.1. Template fit results performed with 20 samples of 104 simulated signal events:
the mean and the sigma of each fit parameter obtained through a gaussian fit are here
reported.
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4.2.2 Constant fraction method Monte Carlo events

The constant fraction method has been developed using mainly the 20 samples of
104 signal events and then the statistical behaviour of the parameters have been
tested with the 10 samples of 2.5 · 104 and 5 · 104 signal events and 103 Michel events
more pile-up. With this method, the time associated with the intersection point
between the threshold and the linear interpolation is studied. This is called edge
time.
The first part of this analysis has been performed considering all the ends in the
same distribution. The threshold has been varied in the interval [5; 30]% of the
maximum peak and then the value has been fixed to 15%. In Figure 4.11, the
distributions of the fitted edge time are shown. A gaussian fit is performed to
evaluate the mean width of these distributions, which are the variable of interest of
this analysis. The obtained χ2 values are compatible with the expectation. Starting
from these distributions, the statistical behavior of the error has been studied. The
σi of the distribution is expected to vary with the number of the events N :

σt(N) ∝ 1√
N

(4.10)

In Figure 4.12 the σi of the edge time distribution is reported as a function of the
number of events. The red line represents a fit function with two parameters a and b

f(N) = a√
N − b

(4.11)

where N is the number of events. As expected the fit is good as confirmed
by the χ2 value. The analysis has been then focused on the 20 samples with
104. The ten layer has been separated in order to find the width of the distribu-
tion of the rise time. In Appendix C all the obtained distributions are reported.

Considering the same time calibration constant for all the wire of the same layer, it
is possible to evaluate the number of events necessary to obtain a sensitivity for each
wire of 500 ps. To compute the number of events for the calibration is necessary
to introduce the occupancy per layer. The histogram of the occupancy is shown in
Figure 4.13: the number of hits as a function of the number of the wire is reported.
The histogram is realized using one sample of 104 signal events. The firsts 192 wires
belong to the layer 0 and the lasts 192 to the layer 9. Considering the equation 4.10,
it results as follow:

σt(104 events) = σt(Nx)√
104/Nx

(4.12)

where σt(104events) is the error fit with 104 events. The number of events Nx

necessary to reach the sensitivity σt(Nx) = 500 ps for each wire is computed:

Nx = (σt(104)
500 ps )2 · 104 (4.13)

All the results are reported in the Table 4.2. The Nevents represents the number
of events necessary to the calibration of a wire of each layer with at least 100 hits
in the sample of 104 signal events. Using this approximation, only the boundary
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(a) 104 signal events

(b) 2.5 · 104 signal events

(c) 5 · 104 signal events

Figure 4.11. Distribution of the edge time with 104, 2.5 · 104 and 5 · 104 signal events.

wires for each layer are not calibrated. The acquisition time has been evaluated
considering the MEG trigger rate of 10 Hz.
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Figure 4.12. The width of the edge time distribution as a function of the number of events.

Figure 4.13. Occupancy histogram obtained with a sample of 104 signal events.

layer σt(104 events) [ps] Nevents DAQ Time [h]
0 146.2 3472158 96
1 103.7 147084 41
2 212.8 5705691 158
3 192.8 414589 115
4 258.2 699150 194
5 190.5 350078 97
6 157.4 228978 63
7 158.8 218971 61
8 213.1 379514 105
9 223.8 403821 112

Table 4.2. Results for each layer with samples of 104 signal events.
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Pile-up events analysis

A test of the constant fraction method has been performed using 103 signal events
with simulated pile-up. Figure 4.14 shows the histogram of the signal events more

Figure 4.14. 103 signal events mixed with 16 · 103 events. The red line represents a fit to
estimate the background for the threshold calculation.

pile-up: the initial peak due to the pile-up hits accumulated in the end of the
previous window acquisition has been cut in order to optimize the search of the peak
of the signal distribution. A fit with a polynomial function has been performed in
order to evaluate the background due to the pile-up. The initial peak due to the
pile-up hits has been cut in order to optimize the constant fraction method. Different
thresholds have been tested with the pile-up events and a 30% of the maximum
peak threshold has been used. The distribution of the edge time for all the read-out
together is shown in Figure 4.15. The width of the distribution results compatible
with the previous study of the error with only signal events. A larger number of
samples should be produced in order to separate the different read-out.

Figure 4.15. Edge time distribution of 103 signal events with pile-up for the all the
read-out.
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Chapter 5

Drift Chamber z Calibration

The z coordinate along the wire can be measured in two different ways: through the
time difference at the two ends of a wire and with a charge division method. The z
calculation with the time difference method is:

z = (tup − tdown)
2 · v (5.1)

where tup is the upstream end time and tdown is the downstream end time, while v
is the signal propagation speed. This method is automatically calibrated once the
time calibration is performed.
Using the information of the charge at the two ends of a wire, the z coordinate
results to be:

z = A× Leff (5.2)

where A is the charge asymmetry Qu −Qd
Qu +Qd

, while Leff is the effective length of the
wire. Equation 5.2 can be obtained considering Figure 5.1.

Figure 5.1. Schematic representation of a hit on a wire with the relative position used for
the calculation of z with the charge division method.

Defining L as the wire length, US and DS represent the upstream and downstream
read-out end, the relation between z and the distance x from DS is:

z = L− (L2 + x) = L

2 − x→ x = L/2− z (5.3)
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The ratio between the charges calculated by DS, Qd and US, Qu results from the
division charge method [23]:

Qd
Qu

= βx/L

β + 1− x/L (5.4)

with β = R

ρL
where R is the input impedance of the read-out pre-amplifier circuit

and ρL is the wire length multiplied for the resistivity of the wire; the entire product
represents the wire resistance. The charge fraction at US is:

Qu
Qd +Qu

= (Qd
Qu

+ 1)−1 = ( 2β + 1
β + 1− x/L)−1 (5.5)

Expanding the equation and using the expressions of β and x:

Qu
Qd +Qu

= β + 1− x/L
2β + 1 = R/ρL+ 1− x/L

2R/ρL+ 1 = R+ ρ(L− x)
2R+ ρL

= R+ ρ(L/2 + z)
2R+ ρL

(5.6)
while the charge fraction at DS results to be:

Qd
Qd +Qu

= 1− Qu
Qd +Qu

= 1− R+ ρ(L− x)
2R+ ρL

= R+ ρx

2R+ ρL
= R+ ρ(L/2− z)

2R+ ρL
(5.7)

The charge asymmetry can be computed as

A = Qu −Qd
Qu +Qd

= R+ ρ(L/2 + z)
2R+ ρL

− R+ ρ(L/2− z)
2R+ ρL

= 2ρ
2R+ ρL

· z (5.8)

and the z position along the wire as a function of the charge asymmetry results

z = A · 2R+ ρL

2ρ (5.9)

where the nominal value of R is 360 Ω and ρ = 175 Ω/m. The term 2R+ ρL

2ρ is the
effective length of the wire Leff and its value depends on the layer because wires
belonging to different layers have different length.
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5.1 Method
The aim of this analysis is to calibrate the parameters which relate the z position
along the wire and the charge ratio read-out in the two ends. Equation 5.9 can be
written as:

z = Leff

G
Qd
Qu
− 1

G
Qd
Qu

+ 1
(5.10)

where G takes into account a possible difference of the gain of the two read-out
electronic channels. Also the effective length Leff has to be determined on data.
This calibration has to be performed for each wire.
In order to determine the calibration constants an independent measurement of the
z coordinate is necessary. In what follows the z coordinate calculated from the fit to
the track is used (in the local coordinate system) where the wire under consideration
has been removed.
The charge ratio has been expressed as a function of the ztrk:

Qd
Qu

= Leff + ztrk
G(Leff − ztrk)

(5.11)

The parameters G and Leff have been obtained by fitting the histogram of the
charge ratio Qd/Qu as a function of the ztrk shown in Figure 5.2 with the function
5.11.

Figure 5.2. Qd/Qu as a function of the ztrk obtained considering all the wires together for
a sample of 104 signal events.

In the Monte Carlo production the parameter G is generated equal to one, in
fact each channel provides the same gain in the whole drift chamber. The Leff
parameter is different for each layer, because it depends on the stereo geometry. In
a first step, 20 samples of 104 signal events have been considered and the wires with
higher occupancy of the outer layer 0 (wire number in the range 40− 80, all of which
have the same Leff ) have been fitted separately. This corresponds to a total number
of 820 samples with identical G and Leff . To validate the procedure on a single
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wire, a detailed study of the wire number 52 of the layer 0 has been performed.
In order to perform the fit, the profile histogram of the distribution Qd/Qu vs ztrk
has been realized. In the profile, the mean value of the variable Qd/Qu and its
error are reported for each ztrk bin. In order to reduce the effect of the tails of the
distribution, a cut has been applied before the fit. The events have been selected
using the fitting function itself and imposing the following condition:

Leff + ztrk − 10
G(Leff − ztrk + 10) ≤

Qd
Qu
≤ Leff + ztrk + 10
G(Leff − ztrk − 10) (5.12)

This cut corresponds to select the events in the band reported in Figure 5.3.

Figure 5.3. Distribution of Qd/Qu vs ztrk for the wire 52 with 104 signal events. The two
red lines define the cut band for the event selection described in the text.

In Figure 5.4 the profile histogram (blue crosses) is shown with its fit (red line)
and the charge ratio distribution (black dots) is reported in the case of wire 52 with
104 signal events.
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Figure 5.4. Qd/Qu vs ztrk distribution in black for the wire 52 with 104 signal events: the
blue crosses define the profile and the red line represents the fit of the profile histogram.

5.2 Monte Carlo analysis

A study of the parameters G and Leff have been realized in the 20 samples of 104

signal events by applying the fit procedure on the wires from the 40th to the 80th of
the layer 0. Figure 5.5 shows the two distributions of the obtained fit parameters:
in (a) the effective length is shown, while in (b) the gain distribution is reported.
The Monte Carlo parameters, which are used for the simulation of the signal events
corresponding to the layer 0 are:

G = 1 Leff = 285.155 cm (5.13)

Both the means of the two distributions in Figure 5.5 are compared with the Monte
Carlo values in the pull distributions reported in Figure 5.6. The pull distributions
are expected to be centered in zero: the mean value of the G pull distribution and
Leff pull distribution are respectively (−0.376 ± 0.050) and (1.379 ± 0.064). A
bias is clear in both distributions, in fact the mean value of the G pull distribution
is ∼ 7.6σG far from the zero and the mean value of the Leff pull distribution is
∼ 21.6σLeff far from the zero. Both the widths of the two distributions are expected
to be equal to one, instead the obtained values result higher and are 1.593± 0.053
for the Leff pull and 1.218± 0.040 for the G pull.
To investigate the causes of this bias and to improve the comprehension of the Monte
Carlo characteristics, a more detailed analysis has been performed increasing the
statistic. One sample of 2 · 104 and one of 5 · 104 signal events without pile-up have
been generated. For each of these samples, the following distributions have been
studied:

• ztrk − ztrue: ztrk represents the z position along the wire calculated with the
positron reconstructed track, ztrue is the true position of the hit on the wire.

• zmeas− ztrue: zmeas is the hit measured position along the wire computed with
the charge division method using the true value of G and Leff
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(a) Leff

(b) G

Figure 5.5. Distribution of the fitted Leff in (a) and G in (b). The two distributions have
been obtained with 20 samples of 104 signal events fitting the wires from 40th to 80th of
the layer 0.

• zmeas − zfit: zfit is the z position reconstructed computed with the charge
division method using the fitted values of G and Leff

All these z variables are local i.e. represent the z positions in the coordinate system
of the wire. While the ztrk − ztrue distribution provides an estimation of the track
resolution, the zmeas − ztrue distribution is useful to evaluate the resolution of
the charge division method in the limit of perfect calibration. The distribution
zmeas − zfit represents the contribution of the resolution due to the calibration.
The distributions obtained with the sample of 104 signal events for the wire 52 are
reported in Figure 5.7 . A gaussian fit has been performed to these distributions
and the following values of the resolutions have been obtained:

• ztrk − ztrue σ = (0.431± 0.012) mm

• ztrue − zmeas σ = (1.003± 0.047) mm
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(a) pull Leff

(b) pull G

Figure 5.6. Pull distributions of the fitted Leff in (a) and G in (b) for the wires 40 to 80
of the layer 0 with 20 samples of 104 signal events.

In Figure 5.8 the zmeas − zfit distribution is shown.
The error introduced by the fit is equal to 0.145 mm. The results obtained with
the samples of 2 · 104 and 5 · 104 signal events are reported in the Table 5.1. It
is clear that the main source of uncertainty is the Monte Carlo resolution of the
charge division method in all the cases. The contribution of the resolution due to the
calibration scale as expected for the sample of 2 · 104 signal events. The resolution of
the calibration method in the case of the sample of 5 · 104 signal events is currently
under investigation.

sample σ(ztrk − ztrue) [mm] σ(ztrue − zmeas) [mm] σ(zmeas − zfit) [mm]
104 0.431± 0.012 1.003± 0.047 0.145± 0.005

2 · 104 0.422± 0.001 1.093± 0.036 0.102± 0.003
5 · 104 0.419± 0.006 1.194± 0.023 0.393± 0.006

Table 5.1. Distribution widths for 104, 2 · 104 and 5 · 104 signal events.

In Figure 5.9 the σ(zmeas − ztrk) as a function of ztrk is shown. The red line
is the error introduced with the bias on the Leff distribution σ(zsys). This error,
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(a) Track resolution

(b) Charge division method resolution

Figure 5.7. In (a) ztrk − ztrue distribution and in (b) zmeas − ztrue distributions. The two
resolutions are obtained for the wire 52 with a sample of 104 signal events.

σ(zsys), is the contribution to the resolution due to the only bias from Leff and it
is calculated through the uncertainties propagation:

σ(zsys) = |∆L
L
· z| (5.14)

where ∆L is the difference between the Leff fitted value which is 284.711 cm and
the true value equal to 285.155 cm. The only error propagated is the one of the Leff ,
meanwhile the G parameter is fixed to one. This choice is reasonable, in fact the
G is fitted better than the Leff and the bias of the effective length is much bigger.
This implies that for a hit in z = 100 cm the uncertainty is equal to σ(zsys) ' 0.156
cm.
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Figure 5.8. Contribution of the calibration to the resolution: the distribution of (zmeas −
zfit) is obtained for the wire 52 with a sample of 104 signal events.

Figure 5.9. σ(zmeas− ztrk) vs ztrk distribution. The red line represents σ(zsys). The error
σ(zsys) introduced with the bias on the Leff is less than the others.

Thus, the method developed to calibrate the charge division, with a statistics
of ∼ 1300 hits on a wire is adequate to make the contribution of the calibration
negligible with respect to the intrinsic resolution of the charge division method,
despite the bias on the fitted parameters. However, this bias is currently under
investigation.
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Chapter 6

Data Analysis

The time calibration method developed in 4.1.3 has been tested on data from cosmic
rays taken by a small monitoring drift chamber which is currently installed in the
MEGII gas system to monitor the quality of the helium-isobutane (He : i− C4H10)
mixture. The properties of this chamber have been studied in laboratory using
different sources, in particular cosmic muons. In this chapter, the monitoring drift
chamber is briefly presented, the collected data and the method used for the analysis
are shown with the obtained results.

6.1 Monitoring Drift Chamber

The monitoring drift chamber is composed by two layers of 16 Mylar tubes of 1 cm
diameter (staggering 0.5 cm) and 37 µm thick. Each tube has a cylindrical shape
and a gold-plated tungsten wire of 20 µm is placed on its axis. The detector is filled
with a gas mixture of 85 : 15 He : i−C4H10. The drift chamber operates at ∼ 1600
V . The signal from the sense wires is amplified by custom pre-amplifiers and then
is collected and digitized by two 4−channel Domino Ring Sampler (DRS) boards
and an oscilloscope. A picture of the drift chamber is reported in Figure 6.1. The

Figure 6.1. Picture of the opened drift chamber.

position of the tubes and the number associated with them in the read-out scheme
is shown in Figure 6.2. The signal is read-out on only one side of the chamber. One
of the channel has been used to produce a trigger signal for the others.
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Figure 6.2. Schematic picture of the sense wires in the drift chamber.

6.2 Method
The number of muon events used for this analysis is 36949. The coincidence of two
plastic scintillators have been used to provide a trigger for the cosmic muons data
taking: the first was placed under the drift chamber and the second on top of the
drift chamber. The constant fraction method has been applied to calibrate the times
of the different wires. A time distribution has been realized for each tube. In Figure

(a) tube 15 (b) tube 16

Figure 6.3. Reconstructed hit time distribution for the tubes 15 and 16 of the monitoring
drift chamber obtained with cosmic muons.

6.3 the distributions of the hit time obtained from the tubes 16 and 15 are shown.
The time distributions from the other tubes are reported in Appendix D.
The threshold method has been used to determine the edge time. The edge time
represents the offset between the electronic channel and the trigger channel. The
threshold used is equal to the 15% of the maximum peak.
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Figure 6.4. Sketch of an atmospheric muon crossing the tubes of the gas monitoring drift
chamber. t1, t2, t3 represent the time of the signals read-out in each tube.

6.3 Results

In Table 6.1 the time calibration constants are reported.

tube Edge time [ns]
1 113.587
2 84.135
3 13.250
4 81.303
5 113.542
6 82.764
7 84.433
8 83.613
9 84.283
10 39.861
11 85.052
12 88.181
13 50.250
14 109.552
15 113.475
16 113.431

Table 6.1. Time calibration constants for each tube.

Two typical values can be noticed: one is ∼ 110 ns and the other is ∼ 84 ns.
These values regroup the two different read-out electronics used, in fact ∼ 110 ns is
associated with the oscilloscope, meanwhile ∼ 84 ns is that for the DRS digitizer.
The distributions of the tubes 3, 10 and 13 are not well defined and this reason
the offset constants result incompatible with the others. This is caused by the low
number of the hits in these tubes.
A procedure to check the validity of the calibration constants determined has been
implemented. In fact, considering four tubes placed as in Figure 6.4, the three
variables t1, t2 and t3 represent the times in which the signal is read-out in each
tube. If the drift velocity is considered constant in the whole tube, the following
distribution is constant too

t1 + t3
2 + t2 = constant = v

d
(6.1)
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where v is the drift velocity and d represents the vertical distance between the track
and the sense wire.
The same distribution can be realized using the central upper tube in the same figure.
It is expected that the two distribution overlap. The two following distributions
have been realized

T1 = t1 + t3
2 + t2; T2 = t1 + t3

2 + t4 (6.2)

where t4 is the time in the upper tube. The tubes 7, 14, 15 and 16 have been chosen
for this analysis. The events with a hit in the triplet (14, 15, 16) or in the triplet
(14, 7, 16) have been selected, obtaining the distributions in Figure 6.5. The two

Figure 6.5. Time distributions T1 and T2 before the time calibration. The black line
distribution is obtained with the triplet (14, 15, 16), while the red the distribution with
the triplet (14, 7, 16).

distribution are clearly separated, in fact the distance between the two peaks is
around 20 ns. This clear separation in time of the peaks is caused by the different
read-out electronics of the channels, in fact, the channel 7 is read-out by a DRS,
meanwhile the channel 15 is read-out with the oscilloscope.
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After the calculation of the calibrations with the constant threshold method,
the time constants have been subtracted to the data and a new plot of these two
distributions has been obtained in Figure 6.6. After the calibration the two peaks
coincide, a difference of ∼ 4 ns remains.

Figure 6.6. Time distribution after the calibration: in black T1 and in red T2.
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Chapter 7

Conclusions

In this thesis, the time and charge calibration of the MEGII drift chamber have
been studied. The MEGII DCH is a unique volume low-mass detector with a high
granularity and a stereo wires configuration. A high precision in the measurement
of the positron momentum, production time and angle is required. Moreover, the
time calibration algorithm has been tested using cosmic muons data.
The first part of the analysis, two different methods have been studied: the template
fit method and the constant fraction method. For both of them, a stability test has
been performed using different statistics. The template fit method has emerged as
being unstable and the obtained results were not satisfying. Instead, the constant
fraction method resulted to be efficient and a good error on the time calibration
constant has been obtained for different sizes of the simulated data. Considering a
trigger acquisition rate of 10 Hz, it has been evaluated the DAQ time necessary for
a precision of 500 ps in the measurement of the calibration constants. It is possible
to reach the above-mentioned precision for the calibration constants for each wire
with a data taking time between 41 hours up to 158 depending on the wire position.
The second part of the analysis has been focused on the study of the z position
reconstructed with the charge division method. The distribution of the charge ratio
as a function of the z position reconstructed with the track has been fitted with
the function of the charge division method. The fit has been performed on Monte
Carlo simulated events on the wires with the highest occupancy. The precision of
the charge division has been studied and its contribution to the resolution has been
compared to the intrinsic resolution. It has been found an uncertainty introduced
by the fit that is (0.145± 0.005 mm) lower than the uncertainty due to the Monte
Carlo risolution (1.003± 0.047 mm).
In the third part of the thesis, the constants fraction method has been tested on
cosmic muons data collected with the gas monitoring drift chamber of the MEGII
experiment. The monitoring drift chamber is composed by 16 drift tubes and two
different tools has been used for the read-out of the signal from the sense wires: an
oscilloscope and a DRS waveform sampler. The time calibration constants have been
determined for each channel. The time distributions with the tracks traversing three
adjacent tubes has been realized and aligned. The distance between the peaks of
each distribution has been reduced from a starting value of ∼ 20 ns to a final value
of 4 ns.
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The studied algorithms resulted all valid and a more detailed analysis would be
interesting in order to better understand the issues found with the template fit
method or to examine in depth the charge division method using higher simulated
data size. The MEGII drift chamber is going to be operative and it will be soon
possible to test the studied algorithms comparing the Monte Carlo simulated events
analysis with the data analysis.
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Appendix A

Template fit parameters:
samples of 2.5 · 104 and 5 · 104

signal events.

The figures reported here are the fitted offset parameter and the scale factor as a
function of the end obtained with the samples of 2.5 · 104 and 5 · 104 signal events.

(a) Offset (2.5 · 104) (b) Offset (5 · 104)

(c) Scale factor (2.5 · 104) (d) Scale factor (5 · 104)

Figure A.1. Offset parameter and scale factor as a function of the end: in (a) and in (c)
are fitted with the sample of 2.5 · 104 simulated events, while in (b) and in (d) with the
sample of 5 · 104 simulated events. The black line represents the expected value of the
fitted parameters.
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Appendix B

Template fit parameters
distributions

The following figures illustrate the fitted offset parameter and scale factor distribu-
tions obtained with the template fit for each layer from the DS end on a sample of
104 simulated signal events.

layer 0 DS

layer 1 DS

layer 2 DS

layer 3 DS
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layer 4 DS

layer 5 DS

layer 6 DS

layer 7 DS

layer 8 DS

layer 9 DS

Figure B.1. Fitted offset parameter distribution for DS read-out of each layer for 104

signal events. A gaussian fit is performed.
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layer 0 DS

layer 1 DS

layer 2 DS

layer 3 DS

layer 4 DS

layer 5 DS

layer 6 DS

layer 7 DS

layer 8 DS

layer 9 DS

Figure B.2. Fitted scale factor distribution for DS read-out of each layer for 104 signal
events. A gaussian fit is superimposed.
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Appendix C

Constant fraction method
parameters distributions

The following histograms show the edge time distributions obtained for each layer
with the constant fraction method. These distributions are obtained with the samples
of 104 signal events.

layer 0

layer 1

layer 2

layer 3
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layer 4

layer 5

layer 6

layer 7

layer 8

layer 9

Figure C.1. Edge time distribution obtained from the constant fraction method per layer
for 104 signal events. A gaussian fit is superimposed.
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Appendix D

Drift time distribution from the
gas monitoring drift chamber.

The drift time distribution for each tube of the monitoring drift chamber obtained
with the cosmic muons data are reported here.

tube 1

tube 2

tube 3

tube 4
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tube 5

tube 6

tube 7

tube 8

tube 9

tube 10

tube 11

tube 12

tube 13

tube 14

Figure D.1. Drift time distribution for each tubes of the monitoring drift chamber obtained
with cosmic muons data.
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