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Introduction

The MEG (Muon to Electron Gamma) experiment aims to investigate the Lepton
Flavour Violating (LFV) decay µ → eγ with a goal sensitivity on the Branching
Ratio (BR) of 10−13, 2 order of magnitudes better than the current limit set by
the MEGA collaboration.

The µ → eγ decay is a sensitive probe for searching new physiscs beyond
the Standard Model (SM). In the SM itself, due to accidental symmetries, the
lepton flavour violating decays in the charged sector are strongly suppressed (BR
< 10−55), also taking into account the phenomenon of neutrino oscillations.

Conversely, in almost all the proposed extensions of the SM there are mecha-
nism enhancing the BR for the µ → eγ close to 10−13, making it observable with
a dedicated precision experiment.

In spite of the simple kinematics of the µ → eγ decay, whose signature is
the observation of positron and gamma emitted collinearly in time coincidence
with equal energy, the need for a high muon decay rate source poses severe back-
ground issues. In order to push the sensitivity of the µ→ eγ decay BR down to 2
order of magnitude better than the existing limit, the whole experimental appara-
tus should obtain unprecedented resolutions on the observables characterizing the
event: positron and photon energy, direction and timing.

This Ph.D. thesis deals with the development, the calibrations and the analysis
of the Timing Counter (TC), the detector mainly devoted to the high resolution
measurement of the positron timing. Moreover, the TC must provide a fast and
efficient trigger signal to the data acquisition, and also give a precise measurement
of the positron impact position on the detector itself. In order to obtain the best
performances, the detector is split in two sub-detectors (namely longitudinal TC
and transverse TC), each optimized for different complementary tasks.

The work is structured as follow: in chapter 1 a short theoretical introduction
to the SM is given. The phenomenon of neutrino oscillations and the consequent
modifications to the SM are explained. Then some new theories beyond the SM are
introduced, together with their influences on muon decay phenomenology. More-
over, a description of the µ→ eγ decay features is given, with particular attention
to background sources, from which the experimental requirements needed to obtain
the planned resolutions.

Chapter 2 fully describes each part of the MEG detector: the beam line, the
positron magnetic spectrometer, the photon detector and the trigger and DAQ
system.



x Introduction

Chapters 3 to 6 describe the TC role inside the MEG apparatus, from the basic
development process to the final performances through the basic operating princi-
ples and detailed calibration developed in the commissioning stage. In particular,
in chapter 3 the development and the basic operations of the longitudinal TC are
exposed. The choice of the devices and their characteristics are described, together
with the measurement performed in the detector R&D period in order to achieve
the target resolution.

In chapter 4 the transverse Timing Counter will be described. Also in this case
all the measurements made in the preliminary tests are reported. Moreover, some
results about the z resolution and the detector efficiency are quoted.

Chapter 5 describes the calibration methods developed for the longitudinal TC
in order to obtain the best from the detectors alone and to optimize the interfacing
with the whole MEG apparatus. The results strictly connected with the Timing
Counter performances such as timing and positioning resolutions and the detector
stability are described in chapter 6.

Finally, in chapter 7 a summary of the data analysis strategy, together with
the results achieved during the 2008 physics run will be given.
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Chapter 1

The muon decay in the Standard
Model

In this chapter the status of the knowledge about the muon decay in the context
of Standard Model (SM), the theory that actually describes elementary particles
and their interactions, will be reviewed. As we will see, events violating the lep-
tor flavour conservation law are forbidden or strongly suppressed in this context,
depending on the assumption on neutrino mass.

Anyway, currently the SM is not considered a definitive theory: although it
describes with high precision a huge category of phenomena, some questions remain
unanswered and new theories are proposed to explain this issues. Some of these
theories predict measurable branching ratio for Lepton Flavour Violating (LFV)
events like µ → e + γ. In this framework, the observation of such kind of events
will be a proof of the existence of new physics beyond the Standard Model.

1.1 The Standard Model

The Standard Model is the theory that currently explains the interactions between
elementary particles, in terms of a Lagrangian density with elementary fields as
canonical variables associated to the particles, invariant under a set of local trasfor-
mations (gauge transformations), which can be represented by a symmetry group.
The vector bosons mediating the fundamental interactions are strongly related to
the generators of the gauge group itself. The model is exhaustively represented by
the SU(3)C × SU(2)L × U(1)Y simmetry group, which describes the strong, weak
and electromagnetic interactions. This simmetry is spontaneously broken at the
energy scale of ∼ 100GeV , reducing to SU(3)C × U(1)em

1.

The model takes into account 3 generations of spin 1/2 fermions, (in each gen-
eration 2 quarks, 1 charged lepton and 1 neutral lepton), 8⊕ 3⊕ 1 vector bosons
mediating the fundamental interactions and 1 scalar boson not yet observed, but
which introduction is necessary to obtain the spontaneous simmetry breaking re-

1As a general reference for chapter 1 see [1], [2], [3], [4]
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sulting in the introduction of particle masses in a gauge invariant way.
The SU(3)C symmetry is connected with the invariance respect to rotation

in the quark color space, and the 8 gluons mediating the strong interaction are
related to the n2 − 1 generators of this group .The quarks are assigned to the
fundamental rapresentation of the group, the vector bosons to the adjoint one,
and all the particles not influenced by strong interaction are assigned to the trivial
one.

The SU(2)L symmetry descends from the invariance, exact as long as the sym-
metry broken appears, for swapping in the left and right components of particle
spinors. Three vector bosons are introduced, which couple only with the left
handed component of the fields. For this reason, a new quantum number, the
weak isospin T , is introduced. It is also more convenient to express the particles
in terms of Weyl spinors, that means spinors with defined helicity 2. The right
handed components are assigned to the trivial representation (T = 0), while to
the fundamental rapresentation of the group are then associated the left handed
components, organized in doublets (T = 1/2):

Qi
L =

(
uiL
diL

)
, LiL =

(
νiL
eiL

)
, (i = 1, 2, 3) (1.1)

where Q and L represent respectively the quark and the lepton sector, the
index L remind that only the left handed component interacts and the index i
takes into account the three generations.

Finally, the U(1)Y symmetry is associated to the invariance respect a phase
transformation of the spinor fields. Another boson vector is correlated to this
symmetry. Moreover a new quantum number, the hypercharge, defined by the
Gell-Mann-Nishijima relation, is introduced:

Q = T3 +
Y

2
, (1.2)

where Q is the electric charge, T3 the third component of the weak isospin and
Y the hypercharge.

The introduction of a mass term for the fermions via the definition of a scalar
field breaks the chiral symmetry and induces mass terms also for the vector bosons
of the SU(2) group, modifying also the characteristic of the boson correlated to
the hypercharge symmetry, and thus leading to the well known electroweak inter-
actions.

In the next section we will see this mechanism more in details.

1.1.1 The Lagrangian of the Standard Model

The Lagrangian of the Standard Model is built starting from the kinetic term for
a free fermionic field:

2The helicity is defined as the projection of the spin ~s onto the direction of momentum, ~p:
h = ~s · ~p
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Lkin = iψ̄γµ∂µψ, (1.3)

where ψ represents a spinor, ψ̄ the conjugate one, and γµ are the Dirac matrices.
In order to have eq.1.3 invariant under a gauge transformation, it is necessary to
introduce a covariant derivative, Dµ:

Dµ = ∂µ − igTaAµa , (1.4)

where Aµa is the a-th vector boson of the adjoint rapresentation of the group,
Ta is the a-th generator of the group itself and g is the coupling costant between
the boson and the spinor field.

Considering the gauge group of the SM, the whole covariant derivative is defined
as:

Dµ = ∂µ − igs
λa
2
Gµ
a − ig

τb
2
W µ
b − ig

′Y Bµ, (1.5)

where λa (a = 1 ÷ 8) are the SU(3)C generators (Gell-Mann matrices), Gµ
a

are the vector bosons associated with the adjoint rapresentation of the group, τb
(b = 1÷ 3) represents the SU(2)L generators (Pauli matrices) with W µ

b associated
vector bosons, Bµ is the boson related to the U(1) symmetry with hypercharge Y
while gs, g and g′ are respectively the coupling costant for the interactions.

Having introduced such tool, the interaction terms are automatically absorbed
in the kinetic term of the Lagrangian. Moreover, a propagation term for the free
boson has to be considered. This is a term like:

Lkin,bos = −1

4
F µν
a F a

µν , (1.6)

with F µν is defined as:

F µν
a = ∂µAνa − ∂νAµa − gfabcA

µ
bA

ν
c . (1.7)

where fabc is a set of costants (the structure costant of the group).
Before the symmetry breaking and the introduction of the bosonic and

fermionic masses, the SM Lagrangian reduces only to the kinetic terms, LSM =
Lkin.

It is now possible to classify fermions on the basis of the gauge group rapre-
sentation, as shown in tab. 1.1 where quantum numbers of elementary particles
are listed.

The Standard Model in its original formulation does not take into account a
right handed neutrino field; nevertheless, if it exist, it will be assigned to the trivial
rapresentation of each group.

The model as described so far it is still not satisfactory: in fact, it does not
include particle masses. In order to fix a mass term in a gauge invariant way, it is
necessary to introduce a new scalar field in the theory.
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Gµ Aµ Wµ QiL uiL diR liL eiR νiR H

SU(3)C 8 1 1 3 3 3 1 1 0 1

SU(2)L 1 3 1 2 1 1 2 1 0 2

U(1)Y 0 0 0 1
6

2
3
−1

3
−1

2
-1 0 1

2

Table 1.1: Quantum numbers of elementary fields in the minimal Standard
Model, also including right handed neutrino and Higgs boson. The
SU(3)C , SU(2)L and U(1)Y representations are given.

1.1.2 Spontaneous symmetry breaking

A mass term can not be introduced in a straightforward way apart from a scalar
field, i.e. a Dirac mass term with the form mψ̄ψ should not be allowed in the
theory, because of the violation of the gauge invariance.

The introduction of a scalar field with vacuum expectation value (VEV) dif-
ferent from zero non zero masses terms both for fermions and bosons, as a term
of interaction with the scalar field itself, without compromising the invariance of
the theory.

Thus a new scalar field φ (namely the Higgs boson) is assigned to the repre-
sentation (1, 2)1/2, as a doublet of weak isospin:

φ =

(
φ+

φ0

)
, (1.8)

to which it is assigned a VEV

〈0|φ|0〉 =

(
0
v√
2

)
. (1.9)

where v is a free parameter of the theory.
With the introduction of the Higgs field, we obtain two more terms in the

Lagrangian; the first one is a propagation and self-interaction term for the Higgs
boson:

LH = (Dµφ)† (Dµφ)− V (φ) , (1.10)

where the most general expression for a renormalizable potential is given by:

V (φ) = −µ2φ†φ+ λ
(
φ†φ
)2
. (1.11)

Such potential, conveniently choosen the values for µ and λ parameters, gives
the correct vacuum expectation value:
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mW = gv/2

mZ = v/2
√
g2 + g′2

mZ/mW = g/
√
g2 + g′2 =

√
1− sin2θW

mH =
√

2λv

sinθW = g′
√
g2 + g′2

e = gsinθW

Table 1.2: Electroweak bosons masses, Higgs boson masses and electric charge
expressed as a function of the SM parameters.

〈φ〉 =

√
µ2

2λ
=

1√
2
v, v =

µ√
λ
. (1.12)

The physical Higgs mass is given by mH =
√

2λv. This does not affect the
gauge invariance of the theory, but permits the existence of a set of 1-dimensional
equivalent states, no one invariant for gauge transformation. In this sense we talk
about spontaneous symmetry breaking. As a result, the gauge group of Standard
Model is broken:

SU(3)C ⊗ SU(2)L ⊗ U(1)Y ⇒ SU(3)C ⊗ U(1)em. (1.13)

The SU(3) gauge bosons, remain massless. On the other hand, the physical
boson vectors result to be linear combinations of the gauge ones:

W±
µ =

W 1
µ ∓ iW 2

µ√
2

,

Zµ = −sinθWBµ + cosθWW
3
µ ,

Aµ = cosθWBµ + sinθWW
3
µ . (1.14)

where θW is a parameter (Weimberg angle) taking into account the rotation of
the gauge fields, and it is strictly correlated with the coupling costants. While the
photon remains massless, the weak interaction bosons acquire mass. The values
of the bosons masses as a function of the theory parameters are listed in table1.2
togheter with the definition of θW and Higg mass.

The second term created by the introduction of a scalar field is a Yukawa
coupling (interaction between two fermions and a scalar field):

LY = Q̄i
Lλ

ij
u φ
†ujR + Q̄i

Lλ
ij
d φd

j
R + L̄iLλ

ij
e φe

j
R, (1.15)

where λiju,d,e are 3× 3 dimensional matrices.
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The introduction of LY generates mass terms for all the fermions, excluded the
neutrinos, because of the absence of a right handed component of the neutrino
field. Substituting in eq.1.15 the scalar field φ with its vacuum expectation value
〈φ〉 one obtains:

LY = vλiju ū
i
Lu

j
R + vλijd d̄

i
Ld

j
R + vλije ē

i
Le

j
R + h.c. (1.16)

The λ matrices that appear in the Yukawa term can be diagonalized by means
of a unitary transformation:

V †Lλu,d,eVR = λDIAGu,d,e , (1.17)

in order to obtain the explicit mass term for quarks and leptons generations.

The applied transformation involves in an obvious way the kinetic term of the
Lagrangian. The neutral charge interaction term remains invariated; viceversa, the
charged current interaction term behaves differently between adronic and leptonic
sectors. Concerning the quarks, infact, the charged current can be written as:

Jµ = d̄Lγ
µV d†

L V u
L uL, (1.18)

where the 3× 3 unitary not diagonal matrix V = V †dL V u
L (namely the Cabibbo-

Kobayashi-Maskawa matrix ) takes into account for the flavour transitions in quarks
sector.

In the leptonic sector there isn’t any an analog mixing matrix: the absence of
a neutrino mass term (correlated to the absence of a right handed neutrino term)
permits the ”rotation” of the νL field in such a way that charge current interaction
is again diagonal in the flavour space. This implies that in the original formulation
of the Standard Model transitions in leptonic sector are absolutely forbidden.

This characteristic is also more evident if we observe that the SM Lagrangian
is invariant under a set of global trasformations of the spinors like:

ψ → ψeiLθ. (1.19)

For each transformation of this kind an associated quantity is conserved
(Noether’s theorem): the SM Lagrangian is invariant under four of such transfor-
mations, which correspond to the conservation of the quantum number B (barionic
quantum number) and Li (i=1,2,3, leptonic quantum number for each family).
Such kind of symmetries, not correlated to the gauge group transformation are
called accidental symmetry.

1.1.3 The muon decay in the Standard Model

The muon interactions in the Standard Model are mediated by the Aµ, W±
µ , Z0

bosons and the H field. Referring to the Lagrangian described in the previous
section these interactions can be written as:
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L = eµ̄γµµAµ

− g√
2

(
ν̄µLγ

µµLW
+
µ + µ̄Lγ

µνµLW
−
µ

)
−

√
(g2 + g′2)

[
µ̄Lγ

µ

(
−1

2
+ sin2θW

)
µL + µ̄Rγ

µsin2θWµR

]
Z0
µ

− mµ

v
µ̄µH. (1.20)

The standard muon decay, µ+ → e+νeν̄µ
3 is described by the charged weak

interaction mediated by the W±
µ gauge bosons, namely the second line of eq.1.20.

Due to its large mass, the W±
µ boson will propagate for a very short distance

(' 0.0025fm). Thus the decay can be described by the point-like four fermions
Fermi interaction given by:

LFermi = −GF√
2

[
µ̄γµ(1− γ5)νµēγµ(1− γ5)νe + ν̄eγ

µ(1− γ5)eµ̄γµ(1− γ5)νµ
]
,

(1.21)
where GF is the Fermi coupling, connected with the weak costant by the rela-

tion:

GF =
g2

4
√

2m2
W

. (1.22)

Eq.1.21 represents the main muon decay mode. Other muon decay modes are
listed in tab. 1.3, which shows also upper limits (at 90% of confidence level) for
lepton flavour violating decay modes.

1.1.4 Neutrino mass and mixing

As already seen in section 1.1.2, lepton flavour conservation is preserved in Stan-
dard Model because of vanishing of neutrino masses. Nevertheless, the observation
of neutrinos oscillations indirectly shows that neutrinos have non vanishing mass
[11], [12].

A mass term for neutrinos can be easily inserted in the Standard Model, adding
to the Lagrangian a term like:

Lν = ν̄αRλ
ν
αβeβLH

† + h.c. (1.23)

where λναβ is the Yukawa coupling for the neutrino. Having a neutrino mass
term, now we have to carefully distinguish between mass eigenstates and inter-
action eigenstates, because a mixing phenomena analog to what happens in the
quark sector can now occour.

3Obviously the CPT conjugate decay µ− → e−ν̄eνµ is described by the same term. Here we
will refer to the mu+ decay being the kind of particle used in MEG experiment



8 The muon decay in the Standard Model

Decay mode Branching ratio Reference

Non LFV modes

µ+ → e+νeν̄µ ' 100%

µ+ → e+νeν̄µγ 1.4± 0.4% (Eγ > 10MeV ) [5]

µ+ → e+νeν̄µe
+e− (3.4± 0.4)× 10−5 [6]

LFV modes

µ+ → e+ν̄eνµ < 1.2% [7]

µ+ → e+γ < 1.2× 10−11 [8]

µ+ → e+e−e+ < 1.0× 10−12 [9]

µ+ → e+γγ < 7.2× 10−11 [10]

Table 1.3: Non-LFV and LFV muon decay modes.

To understand this phenomenon, consider a neutrino beam of definite flavour,
produced at some initial time t = 0; denoting flavour eigenstates by Greek indices
and mass eigenstates by Latin indices, we have [13]:

να =
n∑
i=1

U∗αiνi. (1.24)

with U a unitary matrix (known as the Pontecorvo-Maki-Nakagawa-Sakata
matrix).

We can now write the Schroedinger equation for the mass eigenstates:

i
d

dt
νi = Hνi, (1.25)

where H represents the diagonal Hamiltonian. The time evolution of the mass
eigenstates is given by:

νi(t) = e−i(Eit−piL)νi(0), (1.26)

where Ei, eigenvalues of H and pi are respectively the netrinos energy and
momentum and L is the distance travelled in the time interval t. Considering the
fact that neutrinos are almost massless, one has:

L ' t; Ei =
√
p2
i +m2

i ' pi +
m2
i

2E
, (1.27)

where mi is the neutrino rest mass. Hence

νi(t) ' e−i(m
2
i /2Ei)Lνi(0) (1.28)
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Let now consider the time evolution of a neutrino created at t0 = 0 as an
interaction eigentstate; at the generic time t this state will be described by:

να(t) '
n∑
i=1

U∗αiexp

(
−im

2
i

2E
L

)
νi(0). (1.29)

The probability amplitude of observing the flavour β at the distance L is given
by:

〈νβ|να(L)〉 =
n∑
i=1

U∗αiexp

(
−im

2
i

2E
L

) n∑
j=1

Uβj〈νj|νi〉

=
n∑
i=1

ξαβi exp(−iεiL), (1.30)

where we have used the unitarity of U and we have defined:

ξαβi = U∗αiUβj; εi =
m2
i

2E
. (1.31)

The corresponding probability is given by

Pνα→νβ = |〈νβ|να〉|2 = δαβ −4
n∑
i=1

n∑
j=i+1

Re
(
ξαβi ξ∗αβj

)
sin2 1

2
(εj − εi)L

−2
n∑
i=1

n∑
j=i+1

Im
(
ξαβi ξ∗αβj

)
sin(εj − εi)L (1.32)

In this scenario the total lepton flavour is still conserved, while the conservation
of the individual lepton flavours is violated4.

Equation 1.32 takes a simplier form if one assumes CP invariance in the leptonic
sector, and that only two flavours are onvolved in oscilltions mechanism. In this
case, the matrix U becomes a real orthoghonal matrix depending on a single mixing
angle: (

cosθ −sinθ
sinθ cosθ

)
(1.33)

4Formally this computation of Pνα→νβ is unsatisfactory on many respect. Quantum states
with defined momentum have infinite uncertainty in position, and therefore it makes no sense to
talk about observation at distance L. A rigorous treatment requires definition of neutrino states
as wave packets, which is equivalent to studying neutrino beams with a finite energy spread.
The initial neutrino wave packet decomposes into mass eigenstates wave packets, each travelling
with a different velocity, given by the average over the packet of the ratio of ~pi/E, and the
oscillation due to interference among the different components is lost at a distance at which the
wave packets cease to overlap. As log this is not the case, the oscillation probability is correctly
given by 1.32.
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and the last term of 1.32 vanishes; therefore the oscillation probability reduces
to:

Pνe→νµ(L) = sin22θsin2(∆m2L/4E). (1.34)

Eq.1.34 is usually written as:

Pνe→νµ(L) = sin22θsin2(1.27∆m2L/4E). (1.35)

where the previously omitted factors ~ and c are included, ∆m2 is expressed
in eV 2, L is in Km and E is in GeV .

In conclusion, the necessary and sufficient conditions to have neutrino oscilla-
tions are:

• a non vanishing value at least for a neutrino mass term;

• a non vanishing value for at least one off-diagonal element of the mixing
matrix V .

1.1.5 µ+ → e+γ decay in Standard Model with massive neu-
trinos

The Lagrangian of the Standard Model, including neutrino mass term, leads to
new Feynman diagrams as shown in fig.1.1, and opens to the possibility for the
existence of the µ+ → e+γ decay.

Referring to eq.1.34 the expected µ+ → e+γ decay rate is given by:

Γ(µ+ → e+γ) '
G2
Fm

5
µ

192π3

α

2π
sin22θsin2

(
∆m2L

4E

)
'
G2
Fm

5
µ

192π3

α

2π
sin22θ

(
∆m2L

m2
W

)2

, (1.36)

where it is possible to recognize the contribution coming from the standard

muon decay
G2
Fm

5
µ

192π3 , a γ-vertex and a term proportional to the neutrino oscillations
probability (we have considered that νe → νµ oscillation should occour over a
distance L ' 1/mW and the energy flowing in the loop is of the order of mW ).

The resulting Branching Ratio, normalized to the standard muon decay and
including the currently measured values for neutrino oscilations parameters is given
by [14]:

BR(µ+ → e+ + γ) =
Γ(µ+ → e+ + γ)

Γ(µ+ → e+νeν̄µ)
' α

2π
sin22θ

(
∆2
m

m2
W

)2

' 1

2 · 137 · π

(
7 · 10−5eV 2

80GeV 2

)2

' 10−55, (1.37)
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Figure 1.1: Feynman diagrams for the µ+ → e+γ decay in the Standard Model
including massive neutrinos.

an extremely small value, obviously unmeasurable with the current technology.
In conclusion, also including a neutrino mass term in the SM definition, even

if no more formally forbidden by the theory, lepton flavour violating events are
strongly suppressed.

1.2 Physics beyond the Standard Model

The SM expectations always resulted in very good agreement with the huge number
of experimental observations made in the last 40 years. Nevertheless, some aspects
of the theory remain unexplained, thus inducing to make the assumption that SM
is not a definitive theory but an approximation at low energy (that is, the energy
currently acessible for particle physics experiments) of a more fundamental theory.

In this section the main fails of the Standard Model description will be sum-
marized, then the main aspects of the new theories proposed to enlarge the SM
framework will be briefly described.

1.2.1 Standard Model open questions

In spite of the vast experimental success of the Standard Model, it is commonly
believed that this model is not the full picture of Nature and that New Physics
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(NP) beyond the SM may exist, at some energy scale higher than the electroweak
breaking (EW) scale (ΛEW ∼ 102GeV ).

It is indeed clear that the SM cannot describe physics above the so called Planck
scale (ΛPL ∼ 1019GeV ). At this scale, gravitational effects become as important
as the known gauge interactions and cannot be neglected. Indeed there are good
reasons to believe that there is an additional NP between ΛEW and ΛPL. Let first
recall the relevant problems related to experiments and observations [4], [15].

• As already said in sec. 1.1.4, there are two, related, experimental evidences
for neutrino oscillations, coming from observation of atmospheric [16] and
solar neutrinos [11], [17]. In both cases the measured fluxes are different
from the expections, and the discrepancy can be explained in an elegant and
simply way introducing neutrino masses, that are not included in the original
SM formulation.

• The standard Big Bang nucleosynthesis scenario is consistent with the ob-
served abundance of light elements only for a certain range of baryon asym-
metry. To generate baryon asymmetry, CP violation is required. The SM CP
violation generates baryon asymmetry that is smaller by at least 12 orders
of magnitude than the observed asymmetry. This implies that there must
be new sources of CP violation, beyond the SM.

• Others cosmological observations lead to the introduction of some kind of
“dark matter”, i.e. weakly interactive massive particles, not included in the
SM framework.

• The three gauge couplings of strong, weak and electromagnetic interactions
seem to converge to a unified value at a high energy scale.

There are also other “theoretical” deficiences in SM. One of the most clear is
the great number of free parameters that appear in the SM Lagrangian. Infact,
the SM as exposed in the previous section contains 19 free parameters (9 fermions
masses, not including neutrino masses, 4 parameters to describe VCKM matrix, 3
coupling costants and the Higgs parameters v and mH) that are inserted ad hoc
in the theory to get the consistency of the theory itself.

Moreover, other aspects remain unexplained:

• the Higgs mass requires an extremely fine tuning of the theory parameters,
in order to get the stability of the mass itself (naturalness problem). Without
anomalous cancellation, the natural Higgs mass scale should be the same as
the Planck scale, as explained in 1.2.3;

• between the electroweak scale and the unification scale should be a huge
range of energies without new physics (hierarchy problem).
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Various models have been proposed in the last years in order to explain the
problems listed above. Between them, the most important are those involving the
so called Grand Unified Theory (GUT) and the Supersymmetric Theory (SUSY).
Both models are based on the idea that the SM gauge group is a sub-group of
a larger symmetry, broken at some energy scale; the results of this symmetry
breaking should be the Standard Model as we currently know it. In particular,
supersymmetry solves in a very elegant way the naturalness problem, and opens
the possibility to have lepton flavour violating events with measurable Branching
Ratios. In the following sections we will describe the main characteristics of the
GUT and SUSY theories, then we will have a look at the predictions about LFV
muon decay in the new frameworks.

1.2.2 Grand Unified Theory

The fundamental idea behind the Grand Unified Theory is that the gauge sym-
metry increases with the energy [15]. In this sense, the fundamental interactions
should be different expressions of an unique interaction associated with some gauge
group that embed the SU(3)C×SU(2)L×U(1)Y SM group. The unification of the
interactions occours at some energy EGUT , that should be of the order of 1016GeV .

The idea of a grand unification at such huge energies raises many difficult
questions, but at the same time suggests a wonderful opportunity. Infact there
is another enormous energy scale in quantum field theory, that is given by the
scale at which the gravitational attraction of elementary particles should become
comparable with the other fundamental interactions. Conventionally, one can
define the Planck scale as the energy for which the gravitational interaction of
particles become of the order of 1:

mPL = (GN/~c)−1/2 ∼ 1018GeV. (1.38)

Though this scale is still slightly higher than the scale at which the standard
model coupling costants should met, it is not unreasonable to suppose that grand
unification is somehow related to the unification of gravity with the others funda-
mentals interactions.

The minimal symmetry group that can embed the SU(3)C × SU(2)L × U(1)Y
SM group is SU(5) [18]. In the SU(5) framework the particle content of SM
can be arranged into a 5̄-plet and a 10-plet (where the bar represents the adjoint
representation of the fundamental rapresentation). In the standard assignment,
the 5̄-plet contains the charge conjugates of the right-handed down-type quark
color triplet and a left-handed lepton isospin doublet, while the 10-plet contains
the six up-type quark components, the left-handed down-type quarks color triplet,
and the right-handed electron. This scheme has to be replicated for each of the
three known generations of matter.

In this context, neutrinos are still massless; nevertheless, as in the SM, it is
possible to add a right handed component into a singlet representation, without
compromising the consistency of the theory. Although this model nice fits the
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particle content of SM, it cannot be considered a reliable description of particle
interactios: one of the main fail of the SU(5) description is the prediction of a
proton decay rate completely in disagreement with the observations.

Another possible way to unificate the fundamental interactions in a unique
group is provided by the SO(10) group [19], [20]. It contains SU(5) as subalgebra.
The advantage of SO(10) over SU(5), as the group for grand unification, is that
SO(10) admits a representation of dimension 16, in which it is easy to accomodate
also a right handed neutrino. So in this framework one can easily give masses to
neutrinos, explaining in a natural way the observation cited in sec. 1.2.1.

Though GUT theories provide some answers to some critical questions of the
Standard Model, some others aspects, for example the hierarchy and the natu-
ralness problems, remain unsolved. The latter two issues are elegantly explained
introducing a new kind of symmetry in the model.

1.2.3 Supersymmetric theory

The fundamental idea of the Supersymmetic theory is the existence of a symmetry
between fermions and bosons. The symmetry can be realized in nature if one
assumes that for each particle of the SM exists a supersymmetric partner, which
has the same internal quantum number and an intrinsic angular momentum which
differs by half a unit from the SM one [21], [22], [23], [24].

Phenomenological applications of SUSY theories have been considered since the
late 70s in connection with the naturalness problem (or the hierarchy problem) in
the SM. The SM model can be regarded as being a low-energy approximation of
a more complete theory, and is replaced by this at a high energy scale. Supposing
that this high energy scale is close to the Planck scale (' 1019GeV ), the quadratic
divergence appearing in the radiative corrections to the Higgs scalar mass be-
comes problematic, because of a precise fine tuning between the bare mass and
the radiative corrections must be introduced to keep the electroweak scale well
below this high energy scale. This problem can be avoided if SUSY is introduced,
since the quadratic divergences are cancelled between fermionic and bosonic loop
contributions.

Here we introduce the Minimal Supersymmetric Standard Model extension
(MSSM). In MSSM, SUSY partners (which have different spin by 1/2 from the
corresponding ordinary particles) are introduced for each particle in the SM. For
quarks and leptons, complex scalar fields, namely squark (q̃) and sleptons (l̃), are
introduced. The superpartner of the gauge boson is a gauge fermion (gaugino),
and that of the Higgs field is called a higgsino (H̃). The superpartners of gluons,
SU(2) and U(1) bosons are respectively a gluino (G̃), a wino (W̃ ) and a bino
(B̃). After electroweak symmetry breaking, the SUSY partners of gauge bosons
mix with each other and form two charged Dirac fermions, called charginos (χ̃±i ,
i=1-2), and four Majorana fermions, called neutralinos (χ̃0

i , i=1-4). The SUSY
model contains at least two Higgs doublet fields, required to give mass term to the
particles. The particles content of the MSSM is listed in table1.4.
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Ordinary Particles Susy Particles

Particle Spin Particle Spin

quark (q) 1
2

squark (q̃) 0

lepton (l) 1
2

slepton (l̃) 0

gluon (G) 1 gluino (G̃) 1
2

W±, Z0, γ 1 chargino (χ̃±i ), (i=1-2) 1
2

Higgs boson (h,H,A,H±) 0 neutralino (χ̃0
i ), (i=1-4) 1

2

Table 1.4: Particle content of Minimal Supersymmetric Standard Model.

As already said, supersymmetry solves the problem of the naturaless of the
Higgs mass. Let’s now have a look more in details at this question.

In the calculation of the Higgs mass, the fermionic loop contributions lead to
a divergence, given by

∆m2
H(f) = −2Nf

|λf |2

16π2

[
Λ2 + 2m2

f ln

(
Λ

mf

)]
Λ 'MNewPhys (1.39)

as shown in fig.1.2. So, the Higgs predicted mass is dramatically higher than
the expected value, apart from an extreme fine tuning of the parameters that seem
to be really unnatural.

Figure 1.2: Radiative corrections to the Higgs boson mass.

The hypothesys of the existence of a bosonic (fermionic) supersymmetric part-
ner for each fermion (boson) of the Standard Model results in a double of the
Feynman diagrams that describes the loops, and elegantly solves the naturalness
problem. The contributions coming from the bosonic loops cancel those from the
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fermionic loops because of an additional −1 factor due to the Fermi statistics, as
shown in fig.1.3. We can recognized two type of contributions: one coming from
the interaction of the heavy Higgs boson and its superpatner; in this case, the
strenght of the interaction is given by the Yukawa coupling λ. The other contri-
bution comes from the gauge interaction from the heavy gauge boson and heavy
gaugino, and it is proportional to the gauge coupling costant g.

Figure 1.3: Cancellation of quadratic terms (divergencies) in Supersymmetric
framework.

In both cases, the quadratic terms cancellation takes place. The cancellation
is exact if the symmetry is unbroken, due to the following sum rule relating the
masses of the superpartners: ∑

bosons

m2 =
∑

fermions

m2. (1.40)

If the symmetry is broken, the cancelation is no more exact; the difference
between the bosons and fermions masses is given by∑

bosons

m2 −
∑

fermions

m2 = m2
SUSY . (1.41)

It is easy to understand that mSUSY should not be very large (∼ TeV ) in
order to make the tuning natural. This could be a hint about the existence of new
physics at an energy scale of the order of ∼ TeV .

1.3 Muon decay in the new Models

The introduction of new theory such as GUT and SUSY opens new scenarios for
LFV events. In particular, we will now examine the muon decay in the framework
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of the new theories [24].

In the SU(5) SUSY GUT model, LFV appears only in the right-handed sleptons
sector for small or moderate values of tanβ, which is defined by the ratio of two
Higgs vacuum expectation values, tanβ = 〈H2

0 〉/〈H1
0 〉. The diagonal terms of the

sleptons mass matrix can be examined on the basis where the Yukawa coupling
constant for leptons is diagonalized. The off-diagonal elements of the right-handed
slepton mass matrix on this basis become a source of LVF through the diagrams
shown in fig. 1.4.

Figure 1.4: Feynman diagrams for the µ+ → e+ + γ decay in SU(5) SUSY
GUT. The closed lines represent the flavor transitions due to the
off-diagonal terms of the slepton mass matrices.

Figure 1.5: Feynman diagrams in SO(10) SUSY GUT which gave dominant
contributions to the µ+ → e+ + γ process. (m2

τ̃ )RL and (m2
τ̃ )LR

are proportional to mτ .

The predictions for the branching ratio of µ+ → e+ + γ decay are presented in
fig. 1.6. The branching ratio is about 10−14 for sleptons masses of few hundred
GeV/c2. The plot shows the BR of the µ+ → e+ + γ decay as a function of the
right-handed slepton mass matrix element. Some parameters of the theory are
fixed. In particular the figure refers to a set of SUSY input parameters: the SU(2)
gaugino mass, indicated as M2 and the ratio of the two Higgs vacuum expectation
values, tanβ.



18 The muon decay in the Standard Model

Figure 1.6: Predicted branching ratios for the µ+ → e+γ decay in the SU(5)
SUSY GUT based on the minimal supergravity model as a function
of the right-handed slepton mass for four different sets of the SUSY
input parameters of M2 (the SU(2) gaugino mass) and tanβ (the
ratio of the two Higgs vacuum expectation values) [24].

Large LVF are expected in the SO(10) SUSY-GUT model. In the minimal
SO(10) SUSY-GUT both the left-handed and the right-handed sleptons are subject
to LVF effects. A large contribution comes from the diagrams shown in fig. 1.5,
where the mτ is involved. In this case, the prediction for the branching ratio of
µ+ → e+γ is enhanced by factor (mτ/mµ)2 compared to the predictions of the
minimal SU(5) SUSY-GUT. The BR of the muon LFV processes as a function of
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Figure 1.7: Predicted branching ratios for µ+ → e+γ decay in the SO(10)
SUSY GUT model [24]. The imput paramaters are the same as
fig. 1.6.

the right-handed slepton mass is shown in fig. 1.7. The SUSY input parameters
are the same as in fig1.6. The BR becomes comparable to the present experimental
upper bounds.

In these framework the contribution to the LFV is led by the slepton mixing
matrix coefficients. In analogy with SM physics, it is possible to model the slepton
mixing matrix to be similar to the quark mixing matrix (CKM model) or to the
neutrino mixing matrix (PMNS model). Fig. 1.8 shows the SO(10) SUSY-GUT
predicted value for the µ+ → e+γ in the region of parameters that will be scanned
by the LHC experiment in terms of tanβ and the χ̃0 mass (M1/2). The MEG
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Figure 1.8: Scaled BR(µ+ → e+γ) vs. M1/2. The plots are obtained by
scanning the LHC accessible SUSY-GUT parameter space at fixed
values of tanβ [24]. The horizontal lines are the present (MEGA)
and the future (MEG) experimental sensitivities. Note that MEG
will test the PMNS case and, for high tanβ, constrain the CKM
one.

experiment, having a sensibility down to 10−13 will explore a relevant part of the
theory predictions. It is important to underline the fact that the MEG measure-
ment is complementary to the LHC research: no measurement at the LHC collider
is expected to measure the slepton mixing matrix coefficients.
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1.4 Muon decay phenomenology and history

This chapter is concluded with a phenomenological treatment of the µ+ → e+γ
decay and historical overview of the research in the field of the muon physic; in
particular we will review the experimental apparatus of the MEGA experiment,
that currently defines the µ+ → e+γ BR upper limit.

1.4.1 Event signature

The event signature of µ+ → e+γ decay at rest is an e+ and a photon emitted
in coincidence, moving collinearly back-to-back with their energies equal to half
the muon mass (mµ/2 = 52.8MeV ), as depicted in fig.1.9. The searches are done
using a positive muon decaying at rest to fully utilize its kinematics. A negative
muon is not suitable to be used, since it would be captured by a nucleus when it
is stopped in a material.

Figure 1.9: µ+ → e+γ event signature.

There are two major background sources [24]. One is the physical (correlated)
background from radiative muon decay, µ+ → e+νeν̄µγ, the other is an accidental
coincidence of an e+ in a Michel muon decay, µ+ → e+νeν̄ν , accompanied by a
high energy photon. In the following section I will explain deeper in details the
characteristics and the contributes of each kind of background.

1.4.2 Physics background

The correlated background is given by the radiative muon decay, µ+ → e+νeν̄µγ,
when e+ and γ are emitted nearly back-to-back with two neutrinos carrying off
a negligible amount of energy. The spectrum of photons from radiative decay is
shown in fig.1.10.

The differential decay width of the radiative muon decay (RMD) is tipically
expressed as a function of x = 2Ee/mµ, y = 2Eγ/mµ and z = π − θeγ. In the
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Figure 1.10: Differential branching ratio of the µ+ → e+νeν̄µγ decay as a
function of the photon energy (y = 2Eγ/mµ). This branching
ratio is obtained by integrating over the e+ energy and the angle
between an e+ and a photon.

signal region, defined by x = y = 1 and z = 0, the width of radiative muon decay
vanishes. Nevertheless the finite resolution of real detector spread outside the
expected ranges both the event and the background distributions, thus introducing
background events in the signal region, limiting the achievable sensitivity.

The probability to have a background event in the signal region can be com-
puted integrating the differential radiative muon decay width in the signal bix,
defined by (1 − δx, 1) and (1 − δx, 1) in the [Ee, Eγ] plane. Here x and y are the
resolution on positron and photon energy respectively (see sec. A.1).

Fig.1.11 shows the fraction of the µ+ → e+νν̄γ decay for given value of δx and
δy with unpolarized muons in the case δz < 2

√
δxδy. From this picture we can see

that a value of 0.01 for both δx and δy is necessary in order to achieve a sensitivity
limit at the level of 10−15.

1.4.3 Accidental background

The accidental background consists of a spatial and temporal coincidence be-
tween a positron and a γ-ray coming from uncorrelated physical events. While
positrons can only originate from muon Michel decay, there are several sources for
high energy photons generation. The main ones are radiative muon decays and
positron interaction with the experimental enviroment, i.e. annihilation in flight
or bremsstrahlung.
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Figure 1.11: Effective branching ratio of the physics background from the
µ+ → e+νν̄γ decay as a function of the e+ energy resolution
(δx) and photon energy resolution (δy).

Figure 1.12: Integrated rates of backgrounds from annihilation-in-flight (dot-
ted line) and radiative muon decay (dashed line) as a function of
the photon energy. The sum of the two is shown by a solid line.
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The contribution of positrons can be estimated by integrating the Michel spec-
trum over the range of the Ee signal window, and is found to be roughly propor-
tional to the positron energy resolution (see sec. A.2).

In an analog way, the contribution of photons coming from radiative decay
can be estimated by integrating the µ+ → e+νeν̄µγ spectrum over the Eγ signal
window, while the contribution from annihilation in flight depends on the mate-
rials along the e+ tracks path. Fig.1.12 shows, for instance, the contribution of
annihilation in flight for the case of e+ passing through a µ-stopping target og
50 mg/cm2 and radiative muon decay for photons with energy between a given
threshold and mµ/2. The γ contribution to the accidental background results to
be proportional to (δy)2.

Moreover, one has to take into account the contributions from space resolution

and time resolution, respectively
δθ2eγ

4
and δteγ.

Thus, the effective branching ratio of accidental background is given by:

Bacc = Rµ · (2δx) ·
[ α

2π
(δy)2(ln(δy) + 7.33)

]
· (δθ

2

4
) · (2δt) (1.42)

For istance, taking some reference numbers like e+ energy resolution of 1%
(FWHM), photon energy resolution of 6% (FWHM), ∆Ωeγ = 3×10−4srad, ∆teγ =
1ns and Rµ = 3× 108µ/s, Bacc is 3× 10−13. The accidental background becomes
absolutely relevant, and dominates respect to the physical one. Therefore, it is
critical to make significant improvements in the detector resolution in order to
reduce the accidental background.

1.4.4 History of the µ+ → e+γ searches

Experimental searches for µ+ → e+γ have a history longer than 50 years. These
searches require intense muon beams. Experimental efforts have been devoted to
improving the detection resolutions of four variables, namely the positron energy,
the photon energy, the relative timing between positron and photon, and the rel-
ative angle between positron and photon. Various kinds of apparatus have been
developed in the past.

In table1.5, several experimental results of 90% C.L. upper limit of µ+ → e+γ
decay in the past experiments are listed togheter with their achieved detection
resolutions, while fig. 1.13 shows the improvement of the Branching Ratio mea-
surement as a function of the time.

The upper limit quoted in the Particle Data Group [25] is B(µ+ → e+γ) < 1.2×
10−11, which was obtained by the MEGA collaboration at Los Alamos National
Laboratory (LANL).

A schematical view of the MEGA spectrometer is shown in fig.1.14. The MEGA
detector consisted of a magnetic spectrometer for the positron and three concen-
tric pair-spectrometers for the photon. They were placed inside a superconducting
solenoid magnet with a 1.5T field. The positron spectrometer comprised eight
cylindrical wire chambers and scintillators for timing. The positron energy res-
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Place Year ∆Ee ∆Eγ ∆teγ ∆θeγ Upper limit Ref

TRIUMF 1977 10% 8.7% 6.7ns - < 3.6× 10−9 [26]

SIN 1980 8.7% 9.3% 1.4ns - < 1.0× 10−9 [27]

LANL 1982 8.8% 8% 1.9ns 37mrad < 1.7× 10−10 [28]

LANL 1988 8% 8% 1.8ns 87mrad < 4.9× 10−11 [10]

LANL 1999 1.2% 4.5% 1.6ns 15mrad < 1.2× 10−11 [8]

Table 1.5: Historical progress of search for µ+ → e+γ since the era of meson
factories with 90% C.L. upper limits. The resolutions quoted are
given as a full width at half maximum (FWHM).

Figure 1.13: The improvement of the 90% C.L. upper limit on the µ+ → e+γ
decay branching ratio as a function of the time.

olution (FWHM) was quoted from 0.5MeV (0.95%) to 0.85MeV (1.6%) for a
52.8MeV e+, depending on the number of helical loops of e+ tracks. For the pair-
spectrometer, each layer had lead converters, Multiple Wires Proportional Coun-
ters, Drift Chambers and scintillators. The photon energy resolutions (FWHM)
were 1.7MeV (3.3%) and 3.0MeV (5.7%) for the outer and inner Pb conversion
layers, respectively. A surface µ+ beam of 29.8MeV/c was introduced along the
detector axis, and was stopped in the muon- stopping target made of a thin tilted
Mylar foil. All the charged particles from muon decays are confined within the
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positron spectrometer. The intensity of the muon beam was 2.5×108µ/sec with a
macroscopic duty factor of 6%. The total number of muons stopped was 1.2×1014.
By using the likelihood method, a new limit of 1.2×10−11 with 90% C.L. has been
reported.

Figure 1.14: Layout of the MEGA experiment [8].

The MEG Collaboration proposal is to lowered this Branching Ratio of about
2 orders of magnitude, reaching the level of ∼ 10−13.
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Chapter 2

The MEG Experiment

The MEG Experiment aims to improve the current limit on the Branching Ratio
of the µ+ → e+γ of about 2 orders of magnitude, achieving a sensitivity of about
10−13 [29], [30].

In this chapter I will describe shortly the experiment that the MEG collabo-
ration has designed for the detection of µ+ → e+γ decay. This is a weak decay
of muon at rest in the apparatus frame giving oput two bodies: a positron and a
gamma. Both particles go out in opposite directions with the same energy.

The event is thus completely reconstructed by measuring 5 kinematics variables
with high accuracy:

• Ee = Eγ = mµ
2

= 52.8 MeV

• teγ = 0

• φeγ = θeγ = 180◦

The MEG apparatus is a result of a trade-off among several requirements of
the various detectors in order to obtain:

• the highest possible resolutions on those kinematic observables;

• an excellent background rejection (see sec.1.4.3);

• a precise calibration and monitoring of systematic errors.

The MEG experiment is running at the Paul Scherrer Institute (Villigen, CH)
where the world’s most intense continuos µ−beam (up to 3× 108µ/s) is available.
The use of a continuos source instead of a pulsed one is necessary in order to
minimize the background, which rises proportionally with the instantaneous µ
stopping rate, as described in 1.4.3.

The µ beam is focused to the target by a system of magnetic lenses (see sec.
2.1). The target is a thin plastic foil fixed at the center of a quasi-solenoidal
superconductive magnet, called COBRA (COnstant Bending RAdius) magnet.
The magnetic field provided by COBRA allows the momentum selection of the
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Figure 2.1: Side and front view of the MEG experiment detector layout. The
coordinates systems used in the experiment are also shown.
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positrons in the 40÷55 MeV energy range with cyclotron orbits smaller than 40 cm
of diameter. In this particular case the magnetic field is such that the positron
bending radius is independent from the emission angle. Further the transversus
momentum is adiabatically transferred in the longitudinal direction allowing a
faster removal of positrons from the spectrometer central section. This minimize
the multiple hits of those positrons that are emitted at large angles on the tracking
(Drift Chambers) and timing (Timing Counter) detectors (see sec. 2.2).

While all the positrons are bounded inside the magnet volume, the emitted
photons pass through the thin magnet wall and reach the LXe calorimeter, that
consists of a volume of ∼ 0.8m3 of liquid Xenon readout by photomultiplier tube.
All the photon kinematic variables are measured by the LXe calorimeter (see sec.
2.3).

A schematic view of the apparatus is showed in fig.2.1. The coordinates system
is such that the beam line corresponds to the z axis, and the plane orthogonal to
this direction is called the r − φ plane. In the following we will use rectangular
(x, y, z), cylindrical (r, z, φ) or spherical (r, φ, θ) coordinates. The origin of the
coordinates system is always chosen in the center of the target.

2.1 Beam and target

The PSI cyclotron (fig. 2.2) accelerates protons up to 590 MeV energy, with a
beam current of ∼ 1.9 mA. The main characteristics are reported in tab.2.1.

Figure 2.2: Picture of the Paul Scherrer Institute 590 MeV proton cyclotron.

Secondary beams of pions are generated at 2 different target stations, that are
distinguished by their respective thicknesses: 7 mm for the M target (Mince, thin)
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Injection energy 72 MeV

Extraction energy 590 MeV

Extraction momentum 1.3 GeV/c

Relative energy spread (FWHM) 1.2%

Beam emittance 2 mm× π mrad

Beam current > 1.8 mA DC

Accelerator frequency 50.63 MHz

Time between pulses 19.75 ns

Bunch width 0.3 ns

Table 2.1: Main characteristics of PSI cyclotron proton beam.

and 40÷60mm for the E target (Epais, thick). The 2 targets feed 7 different pion
and muon beam line. The channel used by the MEG experiment, namely the πE5
channel, selects low energy muons product in the E target, with an angle of about
175◦ respect to the primary beam direction. The main characteristics of the πE5
channel are reported in tab. 2.2.

With a proper choice of the extraction parameters it is possible to select only
the surface muons [31], [32], that means, only those muons which are produced
close to the target surface. For pions decaying at rest in the target, the resulting
surface muons have 28 MeV/c momentum and can be easily stopped in a thin tar-
get (like the MEG one), in such a way to reduce the multiple scattering phenomena
that could affect particles coming from thick target.

The selected beam passes trough a series of magnetic elements (see fig.2.3)
that perform the beam optimization: selection of low momentum µ, rejection os
spurious beam content (e+), degrading and focusing the µ beam, and realizing the
coupling between µ beam and the magnet volume.

Many studies were done with different magnetic elements layout, also using
dedicated simulations based on beam optics simulator software (TRANSPORT
[33]) and beam tracking simulator (TURTLE [34]). The final configuration is
mainly made by the following elements:

• a quadrupoles triplet, that preliminary focuses the beam coming from the
primary beam line;

• an electrostatic separator (Wien filter), that cuts down the positron content
of the muon beam. After passing through the separator, the positron con-
tamination in the beam is less than 1%. The separation between positron
and muon is equal to 7.2 σ, as shown in fig.2.4.
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Solid angle acceptance 150 msr

Momentum range 20÷ 120 MeV/c

Length 10.4m

Relative momentum band (FWHM) 10%

Relative momentum resolution (FWHM) 2%

Horizontal emittance 15.3 cm · rad

Vertical emittance 3.6 cm · rad

Spot size 4× 4 cm2

Table 2.2: Main characteristics of πE5 beam line.

• a second quadrupoles triplet that re-focuses the beam after the separator
stage;

• a beam transport solenoid (BTS) that carries the µ beam in the COBRA
volume. Inside the transport solenoid a µ-momentum degrader (Mylar sheet
of 300 µm thickness) is placed. The degrader further reduces the muon
momentum, thus optimizing the fraction of muons stopped in the thin target.

At the BTS exit the beam shows an elliptical spot with typical dimensions
σx = 5.5 mm and σy = 6.5 mm.

The target consists in a elliptical polyethylene sheet with 175µm thickness that
is mounted with a slanting angle of 22◦ respect to the beam direction (fig. 2.5).
This configuration maximizes the thickness crossed by muon and at the same time
minimizes the outcoming positron energy loss.

The positron spectrometer volume is filled with He in order to reduce to a
minimum level the multiple scattering of particles. The whole system made of the
degrader, the target and the He atmosphere is the best compromise for assuring
high beam quality together with low positron momentum degradation. On the
target surface few holes are shaped. with the purpose of testing the goodness of
the positron track reconstruction processes from Drift Chamber hits, and extract
the resolution on the muon vertex decay reconstruction (see sec. 7.2.1).

2.2 Positron spectrometer

The positron spectrometer consists of 3 key elements: the superconductive solenoid
COBRA, which provides a quasi-solenoidal magnetic field with gradient in both
axial and radial directions, a system of drift chambers, radially aligned in the center
of the magnet providing the measurement of positron direction and momentum
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Figure 2.3: Schematic view of the MEG beam line configuration.

and the Timing Counter, which purpose is the precise timing of the positron at
the end of its trajectory and topological trigger of first level. In chapters 3 and 4
I will describe extensively the Timing Counter to which I have devoted my Ph.D.
thesis work.
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Figure 2.4: Muon - electron separation in MEG muon beam, after crossing
electrostatic separator.

Figure 2.5: Picture of the MEG target. The holes on the surface are used for
testing the reconstruction algorithm of drift chamber system, and
to extract the muon decay vertex resolution.

2.2.1 COBRA magnet

The COBRA magnet [35] consists of a main superconducting magnet and a pair
of compensation (non superconducting) coils; a picture of the magnet is shown in
fig. 2.6, while in fig. 2.7 a schematic draw is sketched.

The compensations coils are necessary to minimize the stray magnetic field
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Figure 2.6: The COBRA magnet.

Figure 2.7: Schematic draw of the COBRA magnet.

in the position of the Liquid Xenon calorimeter as shown in fig. 2.8: indeed a
magnetic field greater than 50 Gauss affects the performances of the calorimeter
because strongly reduces the photomultiplier gains.

The main magnet is designed to obtain a magnetic field with a wanted gradient,
with maximum intensity B0 = 1.27 T at the center. It is manifactured with 5 coils
with different radii: a central coil, 2 gradient coils and 2 end coils. The coils are
obtained by a multifilament Nb-Ti cable embedded in an aluminum matrix. This
structure provides to the system the necessary mechanical strength reducing the
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Figure 2.8: COBRA magnetic field map. Note how the compensation coils act
to reduce field intensity in the calorimeter region.

need of external support. In this way it is possible to minimize the quantity of
material the photons having pass trough, thus reducing the interaction probability
of gamma rays before entering the calorimeter.

The behavior of the magnetic field versus the distance from the center is shown
in fig. 2.9. The main characteristics of the COBRA magnet are listed in tab. 2.3.

Magnetic solenoidal spectrometer of this kind have the advantage of radial
energy selection, therefore it is possible to set a detection energy threshold for the
tracking detector (Drift Chambers) simply placing them at opportunely chosen
radii: this lets to cut out the low energy part of the positron from Michel decay
mode µ+ → e+νeν̄µ. The expected positron rate as a function of the distance form
the COBRA axis is shown in fig.2.10.

Coil Central Gradient Inner End Outer end Compensation
Type Super Super Super Super Resistive

Inner diam (mm) 700 810 920 920 2210
Outer diam (mm) 712.4 820.6 929.5 929.5 2590

Length (mm) 240.3 110.4 189.9 749.2 265
Layers 4 4 3 3 14

Inductance (H) 1.64 0.62 0.35 2.29 0.54
Current (A) 360 360 360 360 360
Energy (KJ) 106 40 23 148 35
Weight (Kg) 9 4 7 28 1620

Table 2.3: Main characteristic of COBRA magnet.
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Figure 2.9: Magnetic field intensity as a function of the distance from the
COBRA center.

Figure 2.10: Rate of Michel positron as a function of the distance from CO-
BRA axis.
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Pure solenoidal field doesn’t match the MEG requirements in terms of tracking
efficiency and momentum reconstruction, because:

• positrons emitted with an angle of about 90◦ respect to beam axis presents
a very small pitch of the helicoidal trajectory; jamming the detector with
multiple turns with a consequent loss of efficiency (fig.2.11a);

• for a fixed value of outcoming momentum, the bending radius of the curved
trajectory depends from emission angle, resulting in a complication in track
selection and momentum measurement (fig. 2.11b).

Figure 2.11: Behavior of particle in an uniform solenoidal magnetic field: (a)
trajectory made by a positron emitted at 88◦ respect to the beam
axis; (b) trajectories of monochromatic positrons emitted at dif-
ferent angles.

Figure 2.12: Advantages for a quasi-solenoidal magnetic field with gradient
along beam axis direction: (c) trajectory made by a positron
emitted at 88◦ respect to the beam axis; the positron is faster
extracted from the DC region; (d) trajectories of monochromatic
positrons emitted at different angles. The bending radius results
to be independent from emission angle.

Such complications can be avoided using a quasi-solenoidal field, with a proper
gradient; in the case of COBRA magnet the gradient is in the direction of the beam
axis and also in the radial direction. This particular field map allows positrons
emitted with angle near to 90◦ to make only 1−2 turns inside the chambers. More-
over, the radius of the trajectory depends only on the module of the momentum
and not on transverse component; thus it is possible to tune the field intensity in
such way that only positrons with energy near 52.8 MeV (signal positrons) can
cross the chambers (fig.2.12 c,d).
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2.2.2 Drift chambers

Positron trajectories are detected by 16 thin (2.0× 10−3 X0 along positron trajec-
tory) Drift Chambers (DC) radially aligned in the center of the COBRA magnet
(fig.2.13) [36], [37]. The chambers have a trapezoidal shape: the sensitive area
extends from a radius r = 19.3 cm to r = 27 cm, while in the z direction they
cover |z| < 50 cm for the inner radius and |z| < 21.9 cm for the outer radius,
corresponding to an angular acceptance of |cosθ| < 0.35 and |φ| < 60◦ for signal
positrons. The layout of the drift chambers tracking system is shown in fig.2.13.

Each chamber is made up of two staggered arrays of drift cells. Each cell is
filled with a 50% He and 50% C2H6 gas mixture. This mixture was chosen in order
to achieve the best compromise between charge yield and gain (∼ 65e−/cm) and
multiple scattering.

Figure 2.13: Schematic representation of the drift chambers layout.

The structural view of a drift chamber is shown in fig.2.14. The chamber walls,
acting as cathodes, are made by an extremely thin (∼ 12µm) polyamide foil coated
with 250nm aluminum deposition. An array of sense and potential wires is fixed
to a carbon frame, that also realize the chamber structure.

The staggered-cell configuration allows to simultaneously measure the radial
coordinate and the hit timing with intermediate resolution of 5 ns. The difference
between the drift times t1 − t2 in two adjacent cells gives the r-coordinate of
the track with 200µm accuracy, while the mean of the measured times gives the
absolute timing with a precision of ∼ 5ns (fig.2.16). From the analysis of the
charge ratios between the two wire ends it is possible to obtain a measurement of
the z position with 1 cm accuracy. Moreover, the thin layer of aluminum deposit
is patterned in such way to obtain a so called “Vernier Pad” [38], as shown in
fig.2.15. Within one period of the Vernier Pad (5 cm) the z coordinate can be
estimated with the ratio of the charge induced in each pad, obtaining a refinement
of the z resolution to an accuracy of ∼ 500µm.
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Figure 2.14: Schematic view of a single drift chamber.

Figure 2.15: Picture of a chamber wall. The aluminum deposition is shaped
in such way to obtain a particular triangular pattern known as
Vernier Pad.
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Figure 2.16: Drift chamber section and hit reconstruction.

2.2.3 Timing Counter

Finally the positron trajectory is brought at the end to the Timing Counter. De-
tails about the Timing Counter design and operations will be extensively treated
in chapters 3 and 4. Here we only summarize the main characteristics.

The detector is designed to obtain an extremely high resolution (100 ps
FWHM) for the positron impact time measurement, and, at the same time, it
must be able to give an efficient and fast signal for the data acquisition (event
selection via direction match with LXe reconstructed events) for gamma time co-
incidence and topological trigger of first level. Another crucial requirement is the
determination of the positron impact point, both for triggering and track recon-
struction purposes.

The detector is structured in two independent sub-detectors, namely the lon-
gitudinal and the transverse detector. Both detectors are based on fast optical
devices: scintillating bars coupled to photomultiplier tubes and scintillating fibers
coupled to avalanche photodiodes, respectively fir the longitudinal and transverse
sub-detector. There are two identical Timing Counter modules, which are placed
upstream and downstream the target, at r = 31.9 cm. Each detector cover the
angular range −140◦ < φ < 15◦, 0.08 < |cosθ| < 0.35|, and extends along the
beam axis in the range 27.6 cm < |z| < 108.0 cm.

A picture of one Timing Counter module is shown in fig. 2.17.

2.3 Liquid Xenon calorimeter

The detection of gamma energy, timing and direction is performed by the Liquid
Xenon (LXe) Calorimeter [39], [40], [41], a C-shaped homogenous liquid Xenon
volume which is surrounded by photomultiplier tubes and is placed outside the
COBRA magnet as shown in fig. 2.1 and 2.18. This particular shape of the
detector was chosen in order to minimize the volume with respect to the angular
acceptance of the detector. The front wall of the calorimeter is placed 65 cm far
from the target position, and the Liquid Xenon thickness is 45 cm. The fiducial
volume of the detector corresponds to a solid angle ∆Ω/4π ' 12% (corresponding
to |cosθ| < 0.35 and 120◦ in φ).
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Figure 2.17: Picture of the downstream Timing Counter module in front of
the COBRA magnet.

The calorimeter is filled with ∼ 800 L of liquid Xenon at 165 K and pressure
of 3 atm. 846 photomultiplier tubes are immersed in the Xenon for best light
collection. The external view of the cryostat system and the inner view of the
calorimeter are shown in fig. 2.19.

The fast scintillation light emitted at λ = 178nm is directly connected by
the PMTs. The Xenon presents remarkable characteristics that are useful for
calorimetric purposes:

• short radiation length, resulting in limited thickness of the detector;

• high light yield (∼ 4 · 104 γ/MeV , comparable to the NaI response), which
guarantees a good energy resolution;

• the scintillation process has a short rise time , together with a short decay
time (4 ns). This property minimizes the problem of events pile-up and
allow to achieve good time resolution.

The main characteristics of liquid Xenon as an active medium are summarized
in tab. 2.4.

The scintillation mechanism involves excited Xe atoms (Xe∗) and Xe+ ions
produced by charged particles and can be described as follows:

Xe∗ +Xe→ Xe∗2 → 2Xe+ hν,
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Figure 2.18: Schematic side view of the Liquid Xenon calorimeter.

or, more detailed:

Xe+ +Xe→ Xe+
2 ,

Xe+
2 + e→ Xe+Xe∗∗,

Xe∗∗ → Xe∗ + heat,

Xe∗ +Xe→ Xe∗2 → 2Xe+ hν,

where hν is an ultraviolet photon emitted via decay of Xe∗2 excimer. Being the
binding energy of the excited excimer significantly less than the first excited state of
a Xe atom, and being the fact that excimer does not exist in the ground level but
only in the excited one, the liquid Xenon results transparent to its scintillation
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Figure 2.19: (left) Picture of the cryostat vessel; (right) Picture of the cryostat
inside.

Atomic number 54
Density 2.95 g/cm3

Boiling point 165 K
Fusion point 161 K

Energy deposit per scintillation photon 24 eV (γ), 19 eV (α)
Emission peak 177 nm

Radiation length 2.77 cm
Decay time 4 ns, 22 ns, 45 ns

Absorbtion length > 100 cm
Attenuation length ∼ 40 cm

Refractive index 1.6÷ 1.72

Table 2.4: Main characteristics of Xenon as scintillating medium.

light and the absorption length can be quite large (>> 1m). The latter is a
very important characteristic for building calorimeter purposes. Nevertheless the
presence of impurities like O2 or H2O in the Xe can result in an inhomogeneous
absorption of light with consequently worsening of energy resolution. For this
reason a purification system [42] was developed and implemented; moreover, Xenon
response and performances are continuously monitored during the whole run time.

A simulation of an event reconstructed in Liquid Xenon is shown in fig. 2.20.
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Figure 2.20: Example of reconstructed event in the Liquid Xenon calorimeter.

2.4 Trigger system

The trigger system processes with a proper acquisition and logic hardware the
signals coming from the fast detectors, namely the Timing Counter and the Liquid
Xenon, to select µ+ → e+ + γ like events and sensibly reject the background,
keeping an acceptable acquisition rate [43], [44], [45].

The main informations used at trigger level are:

• the γ energy and time, reconstructed by the Xenon calorimeter;

• the positron time, given by Timing Counter;

• the direction match between the reconstructed directions of the two particles.

The information on the positron momentum by the drift chambers is not used,
being too slow because of the delay of the electrons drift time in the gas.

The γ energy is reconstructed by summing all PMTs charges, each one weighted
by its gain and quantum efficiency. The selected energy threshold for the MEG



Trigger system 45

Figure 2.21: The structure of the trigger system: the two board types are used
for the γ calorimeter and for the positron tracker. The boards
are arranged in a tree-like structure.

trigger is Eγ > 45 MeV . The efficiency for detecting the γ signal is εγ = 98%.
The γ background in the LXe calorimeter comes both from annihilations in flight
and muon radiative decays. The background rejection, normalized to the number
of muon radiative decays with Eγ > 10 MeV , is fγ = 8× 10−3.

The γ timing is extracted from the rise time of the waveform associated with
the PMT which shows the maximum signal, while the positron timing is evaluated
using the mean of the times measured by the two PMTs of each bar. Details about
the positron time extraction will be given in chapter 3. The γ-positron coincidence
time window is set to 10 ns.

The γ direction is extracted using the coordinates of the PMT with the largest
pulse, and assuming the photon as coming from the center of the target. Positron
direction is reconstructed by using information on positron impact point by Timing
Counter. Both bars and fibers provide information in an independent way. The
combined informations about γ positron direction is used to reject non collinear
events. The overall efficiency of the direction match selection is estimated to be
εγe = 99%. The background rejection factor for the φ and θ coordinates are
respectively fφ = 0.2 and fθ = 0.5.

It is possible to evaluate the expected trigger rate in the experimental condition
as:

Rγ = Rµ × P (µ+ → e+νeν̄µγ|Eγ > 10MeV )fγ
Ω

4π
= 2.2× 103ev/s (2.1)

where Rµ = 108µ/s is the muon stopping rate on the target, P (µ+ →
e+νeν̄µγ|Eγ > 10MeV ) = 1.4% is the probability that a γ coming from a radia-
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tive decay has energy greater than 10MeV and Ω
4π

is the calorimeter geometrical
acceptance.

The expected positron rate (single bar rate) is RTC = 2×106 events. Combining
Rγ and RTC , taking into account the background rejection factors and considering
a coincidence time window of 10 ns we expect a MEG like trigger rate given by:

RTRG = 2RγRTCfθfφ∆T ' 10 Hz. (2.2)

The trigger hardware is mainly based on two types of boards: a first level trigger
board, that receives the analog signals and perform a digitization at 100MHz by
means of Flash Analog-to-Digital Converter (FADC), and the second level trigger
boards, based on Fast Programmable Gate Array (FPGA), which operates on the
digitized signal applying different algorithm depending of the kind of implemented
trigger. A third board (Ancillary board) is added to the trigger system to provided
the clock and the synchronization signals to all other boards. A schematic view of
the trigger system is shown in fig2.21.

2.5 DAQ system

The signals from all detectors are digitized by a 2GHz sampling chip developed
at the PSI [46] and based on the so called Domino Ring Sampler (DRS). Each
DRS board has 8 data acquisition channels plus 2 auxiliary channels (used for
calibrations purposes), each having 1024 sampler and holders (S-H) capacitors on
a single chip. A so-called “domino wave” circuit generates short pulses which opens
the analog switches of the S-Hs of each channel. The Domino wave is generated by
a series of inverters, whose speed is controlled by an analogue voltage [47]. An on-
chip phase-locked loop (PLL) rephases the Domino wave to an external reference
clock thus ensuring a high stability over temperatures and power supply voltage
changes. Time jitter is also controlled by the same mechanism.

The Domino wave can be stopped by an external trigger, after which the S-Hs
capacitors are read out and digitized by a commercial ADC. The readout speed is
40MHz. A simplified scheme of the DRS layout is shown in fig.2.22.

Each chip is housed on dedicated VME boards equipped with a 12 bit flash
ADCs and FPGAs, thus the configuration of the DAQ can be changed and opti-
mized during the set up of the experiment. A simplified scheme of data acquisition
system is shown in fig. 2.23. All the ∼ 1000 PMTs channels of the experiment are
digitized at a sampling speed of 2GHz, while the ∼ 3000 drift chambers channels
are digitized with a lower sampling speed of 500 Ms/s. A high quality low jitter
timing calibration signal is distributed and sampled in all DRS boards in order to
obtain the best timing resolution by keeping all boards synchronized.
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Figure 2.22: A simplified layout of the Domino Ring Sampler chip.

Figure 2.23: Schematic representation of the Data Acquisition System of the
MEG experiment.
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2.6 Experimental apparatus performances

I summarize here the performances obtained of MEG apparatus during the first
two years of data acquisition: 2008 and 2009. In tab. 2.5 the main results for
each kinematic variables involved in the signal recognition are listed, together
with some details about the DAQ time and the achieved sensitivity. Moreover,
the final results with the measured upper limit on the µ → eγ branching ratio
are anticipated. All details about the analysis technique used to extrapolate those
numbers from data will be given in chapter 7.

The 2010 data are still under analysis while I was writing, so that I omit here
the latest results. Some anticipation about the Timing Counter performances
during the last year run will be given in chapter 6.

2008 2009

Gamma energy (%) 2.0 (w > 2.0 cm) 2.0 (w > 2.0 cm)

Gamma timing (ps) 80 67

Gamma position (mm) 5(u,v)/6(w) 5(u,v)/6(w)

Gamma efficiency (%) 63 58

e+ timing (ps) < 125 < 125

e+ momentum (%) 1.6 0.61 (core)

e+ angle (mrad) 10(φ)/18(θ) 6.2(φ)/9.4(θ)

e+ efficiency (%) 14 40

e+ − γ timing (ps) 148 151 (core)

µ decay point (mm) 3.2(y)/4.5(z) 3.3(y)/3.3(z)

Trigger efficiency (%) 66 91

Stopping µ rate (s−1) 3× 107 2.9× 107

DAQ time /Real time (days) 48/78 35/43

S.E.S. @90% box 5× 10−12 1.4× 10−12

Expected NBG 0.5 1.2

Sensitivity 1.3× 10−11 3.5× 10−12

BR upper limit obtained 2.8× 10−11 9.5× 10−12

Table 2.5: Summary of the experimental apparatus performances during the
run 2008-2009. The resolution values are given in σ. The achieved
sensitivity and the final results are also listed.
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Chapter 3

The Longitudinal Timing Counter

The MEG experiment was conceived with the aim to push the timing resolution
between the individual detection of positron and gamma within 150 ps. This
comes out mainly from the spread of the gamma timing in the LXe calorimeter,
the reconstructed time of flight of the positron and the Timing Counter impact
timing.

The Timing Counter plays a key role because its design should ensure an intrin-
sic timing resolution for positron of 100 ps FWHM. Further, it must get out signals
both for fast triggering process based on gamma time coincidence and topological
correlation between gamma and positron hit positions. This argument is discussed
in ([48], [49]).

The choice and the characterization of the devices and the calibrations of the
detector play a fundamental role in defining the detector performances. In this
chapter the Longitudinal Timing Counter concept, design and commissioning is
described. I will start describing the working principles of the detector, then the
adopted solutions and the final accomplishments will be summarized. The cali-
bration methods developed to obtain the best from the detector will be described
in chapter 5.

3.1 Detector concept and design

The main tasks of the longitudinal Timing Counter are the measurement of the
positron time and impact point with a high efficiency triggering capability [50],
[51]. To obtain very high timing resolution, the active volume of the detector have
been divided in 15 adjacent 4 cm thick and 80 cm long plastic scintillating bars
coupled to PMTs.

The Timing Counter is composed by two specular modules, positioned in the
up- and down-stream sector respect to the target; the structure of scintillating
bars is placed inside the magnet, in a barrel-like assembly as shown in fig. 3.1.
This geometry has been selected for matching the corresponding back to back
acceptance angle of the Liquid Xenon Calorimeter.

The µ → eγ positrons emitted in the nominal acceptance angular (0.08 <
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Figure 3.1: Picture of Timing Counter with bar exposed.

|cosθ| < 0.35, −140◦ < φ < 15◦) hit on of the TC modules after a flight of about
1.5 turns in the drift chambers. In the following, we will refer to a single TC
module.

In the conceptual design for achieving high timing resolution it has been ex-
ploited the idea of maximize the sensitivity to the first scintillation photons emitted
by a plastic scintillator with fast rise time and good attenuation length. The prac-
tical realization is to collect only photons guided by total internal reflection; thus,
each bar is contained in a light absorbing housing as shown in fig.3.2, to prevent
highly scattered photons from reaching the PMTs.

The plastic scintillator was chosen to be the BICRON BC404, which has the
best availabel compromise between rise time of the emission (0.6 ns) and attenu-
ation length (≥ 140 cm).

The bars thickness was chosen in such a way to obtain an adequate photostatis-
tic, needed to reduce effects correlated to PMTs transit time spread (see 3.3.1).
The minimum value that fits the constraints due to the available space in the
magnet was found to be 4 cm: the bars were shaped with approximately 4×4 cm2

squared section as described in sec. 3.4.2.

Moreover, in order to improve as much as possible event fluctuations of the
detector light response versus the impact angle spread if trajectories in the x-y
plane bars are tilted respect z-axis of an angle α = 20.5◦ (see 3.4.2).

Monte Carlo simulations shows that after bar rotation the average impact angle
in the x-y plane is approximately perpendicular and the tracks that travel the
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whole thickness of the scintillator are maximized. A similar counter shape versus
trajectory matching in the y-z plane was not done because this would require
curved bars.

Figure 3.2: Picture of a Timing Counter bar inside the plastic socket before
surface polishing and black painting of the socket. Note the par-
ticular shape of the bar section, made in order to optimize the
particle trajectories inside the scintillator.

3.2 Timing generalities

In this section the basics of the timing counter operations will be described [52].
Considering a positron that impinges on a TC bar, as shown in fig 3.3, the

information from the PMTs positioned on each end of the bar can be written as:

tin = Tphys + bin + TWi +
L
2

+ z

v
(3.1)

tout = Tphys + bout + TWi +
L
2
− z
v

, (3.2)

where Tphys is the “real” time of impact of the positron on the bar, bin,out are
fixed offsets due to the different electronic chain, TWin,out are contributions from
Time Walk effect and v is the effective velocity of light in the bar. The subscript
in and out are referred to the “more” internal and “more” external position inside
the COBRA magnet. The centre of the z axis is taken in the middle of the bar.

In such conditions the impact time can be easily evaluated as the average of
the two PMTs times:
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Figure 3.3: Definitions of the quantities involved in positron timing. See text
for details.

Tphys =
tin + tout

2
− bin + bout

2
− TWin + TWout

2
− L

2v
. (3.3)

The determination of the factors b and TW will be discussed hereinafter in
deeper detail.

On the other hand, taking into account the time difference between the two
pulses we can obtain the reconstruction of the positron impact point:

z =
v(tin − tout)

2
− v(bin − bout)

2
− v(TWin − TWout)

2
, (3.4)

or, more simply,

z =
v · (t∗in − t∗out)

2
, (3.5)

where t∗ takes already in account the time corrected with the contributions
mentioned above.

The information about impact point can also be extrapolated in a different way
evaluating the ratio between the charges delivered by the two PMT pulses:

Qin = E ·Gin · e−
L+z
2λ (3.6)

Qout = E ·Gout · e−
L−z
2λ , (3.7)

where E is the energy released inside the bar, G takes into account several
contributions (i.e. the scintillator yield, PMT quantum efficiency and gain), λ is
the attenuation length of the bar. Taking the ratio we obtain:

Qin

Qout

=
Gin

Gout

− 2z

λ
(3.8)

which, solving for z and taking the logarithm, leads to:

z =
λ

2

(
ln
Qin

Qout

− ln Gin

Gout

)
(3.9)
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Moreover, the product Qin ∗ Qout is proportional to the square of the energy
released in the bar:

Qin ·Qout = E2 ·Gin ·Gout · e−
L
λ . (3.10)

Note that combining equations (3.5), (3.9) and (3.10) one obtains a way to
evaluate effective velocities and attenuation lengths of TC bars.
The two impact point reconstructions are used in different stages in the data
acquisition. Positron timing from PMTs time difference is used in offline analysis
after a series of corrections necessary to get the best estimate from the signals,
providing also a good z resolution, while the online algorithm needs realt time
response. Therefore, the trigger system is based on the charge ratio positrion
reconstruction, that doesn’t need offline calibrations.

3.3 Contributions to timing resolution

In order to obtain the goal timing resolution of 100ps FWHM or better, it is
necessary to evaluate the sources of resolution worsening, and apply some tricks
useful to reduce these contributions, coming from:

• the intrinsic PMT time response, due to the different transit time of electrons
through the dynodes chain (transit time spread, TTS),

• the intrinsic spread in the scintillating process (rise time, fall time and
FWHM of the light signal0),

• the spread in the energy release process,

• the propagation mechanism of photons emitted isotropically, resulting in a
wider distribution of the photons arrival time on each PMT cathode;

• the readout electronics.

In the following sections each contribution will be discussed in details and
quantified.

3.3.1 PMTs transit time spread

Concerning the photomultiplier tubes, one of the most disturbing issue to face in
detector realization is the need to work inside a strong magnetic. This affects both
the gain and the intrinsic time resolution of the devices, thus having important
implication in PMTs choice. As I will discuss more in details in sec. 3.4.1, a
special kind of PMTs, namely fine-mesh PMTs, was chosen because of their low
sensitivity to magnetic field.

The intrinsic time resolution of the device is estimated using the transit time
spread (TTS) [53], [54], [55]. In fact, due to the stochastic nature of the multi-
plication process in the dynodes chain, any electronic avalanche will have slightly
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different transit time along the chain itself, depending both on PMTs intrinsic
characteristics (shape and disposition of the dynode, dimensions of photocathode)
and on external factors (bias voltage, voltage divider, magnetic field strength and
orientation). The width of this distribution is called TTS and is usually quoted
for a single photoelectron extracted at the cathode. In a realistic case, with the
emission of N photoelectrons, the TTS will rescale as

√
N , whence the advantage

of a scintillator with very high light yield.
The measured value of the TTS is ∼ 600 ps FWHM, to be rescaled by the

number of photo electrons produced in a time interval equal to the TTS itself,
quoted as NTTS ' 900.

The measured value of the TTS is 2 or 3 times greater than the typical value
measured on standard PMTs: this is a consequence of the configuration of the
dynode chain of fine-mesh

3.3.2 Scintillator time response and time of flight spread

Let’s consider the same system depicted in 3.3. The signal observed at the bar end
is given by the superimposition of the signals coming from each photon generated
in the scintillation processes. Every single photon will arrive at the cathode surface
with a delay:

∆t = Ti − Tphys, (3.11)

where Tphys is the impact time on the Timing Counter bar. The distribution
of the delay time is strictly related in a obvious way with the probability density
function (pdf) of the scintillator emission time. If we consider a single photon
emission, the delay time that this photon can assume will be known with an
uncertainty given by the σ of the scintillator pdf, which has a behaviour like:

I = I0

(
e
− t
τ1 − e−

t
τ2

)
, (3.12)

where τ1 and τ2 are respectively the fall and the rise time of the scintillator.
If we consider the emission of N photons, we can define the lowest delay as

∆tmin = min{∆Ti}. (3.13)

whose r.m.s. is rescaled as the squared root of the number of photons generated
in the scintillator processes that arrive at the PMT cathode. This number can be
evaluated as the ratio between the bar geometrical acceptance (defined by the
limit reflection angles, correlated with the refractive index of the bar) and the
whole solid angle. This was estimated to be 6.6% of the total number of generated
photons, meaning Npe ∼ 6 · 103. This indicates the need to have a scintillator with
the better light yield possible.

The characteristics that lead us in the choice of scintillator were:

• higher possible light yield, to increase overall photo-statistic;
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• shorter possible rise and fall time, meaning that light emission is narrow and
most of the photons are emitted in the leading edge.

The characteristics of the chosen scintillator will be described in sec. 3.4.2.
Moreover, in the calculation we have also to consider the spread of the optical

path travelled by the photons inside the bar. This was calculated by means of
Monte Carlo simulation, and result to be σflight ' 1.2 ns.

3.3.3 Energy release in the bar

Another fundamental source of uncertainty is the spread of the energy release
inside the scintillator, continuously distributed along positron trajectories inside
the bar, rather than fully localized in a point-like region. Also an additional
contribution due to the positron incidence angle should be taken into account:
both were evaluated using Monte Carlo simulations (as will be shown in sec. 3.4.2).

Figure 3.4: Sketch of the definitions of the angles β (a) and α (b); n is the
normal to the bar surface. See text for details.

In particular the important quantities in the optical spread evaluation, are
respectively the angles α (β) formed by the normal to the bar surface with the
projection of positron tracks on x− y(y − z) planes (as described in fig. 3.4), and
were studied by Monte Carlo simulations; the effect due to α was made negligible
rotating the bar around their axis by an angle α̂ = 20.5◦, corresponding to the
mean value of α, in such way the positrons impinge orthogonally to the bar surface.
Thus one can calculate the mean lenght of the energy released in the bar that is
in first approximation proportional to the projection of the positron tracks in z
direction:

〈∆TE〉 '
lsinβ

veff
' 200 ps, (3.14)

where we consider a mean positron track length of 5 cm and β = 40◦, both
extrapolated from Monte Carlo simulation, and the length has been converted in
time units introducing the effective velocity of light in bar, veff ' 14.7 cm/ns.
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In order to estimate the contribution to the overall time resolution, one has
to calculate the convolution between a rectangular function with width equal to
〈∆TE〉 with the scintillator response already described in sec. 3.3.2, and the extract
the width of the resulting function. The result was found to be σE ' 1.0 ns

3.3.4 Expected performances

It is now possible to evaluate the expected time resolution for a Timing Counter
bar, by taking into account all the contributions listed in the previous sections, as:

σ =

√
σ2
el +

σ2
TTS

NTTS

+
σ2
flight + σ2

E

Npe

' 30 ps, (3.15)

where σel represents the contributions coming from the electronic devices used
to process the PMTs signals. In the first test made at the Beam Test Facility in
Frascati (Rome, Italy) the electronic contribution was estimated to be σe ' 15 ps.

We have to keep in mind that this number must be taken as an intrinsic lower
limit for the scintillator-PMTs system resolution, given by the system itself and its
features (physical processes, geometry, devices characteristics). In this calculation
we have considered an ideal case, in which real world effects (additional noise from
EMI pick-up, digitizer jitter, time reconstruction algorithm systematic errors, rate
dependent events from crowding bars) are not taken in account. As we will see in
chapter 6 the time resolution in the real experimental conditions is slightly worse.
Nevertheless, it is important to remark that eq.3.15 shows that the resolution
target value of the Timing Counter is fully feasible.

3.4 Timing Counter design criteria

We will describe now more in details the characteristic of the devices chosen in the
Timing Counter realization.

3.4.1 PMT choice and characterization

As already stated in sec. 3.3.1 a strong constraint in Timing Counter design
is the fact that PMTs must operate in a high magnetic field (Binner = 1.27 T ,
Bouter = 0.4 T ), being the detector positioned inside the COBRA volume. It’s
well known that magnetic field severely affects PMTs performances [53], [54], [55],
both gain and the transit time spread by acting on secondary electrons trajectories.
Moreover, important characteristics to be considered in the PMT choice were:

• transit time spread as low as possible, to reduce intrinsic PMT contribution
to timing resolution;

• good geometrical matching between the PMTs sensitive area and the scin-
tillator surface to reduce at a negligible level the inefficiency correlated to
light losses;
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• optimum cathode quantum efficiency in correspondence of the peak of the
scintillator light emission, to have the maximum number of photons con-
verted in photoelectrons on the cathode;

In the Timing Counter project has been decided to use a particular kind of
photomultipliers tube, namely fine-mesh photomultipliers (HAMAMATSU R5924
[56]), that guarantee good performances also in high magnetic field, and also fit
the requests listed above. The main characteristics of the used PMTs are listed in
tab. 3.1.

Diameter 2′′

Diam. of sensitive area 39mm
Number of dynodes 19

Quantum efficiency (390nm) 22%
Gain (B=0) 1.0× 107

Gain (B=1T) 2.5× 105

Rise time 2.5ns
Mean anodic current 100µA

Table 3.1: Main characteristic of HAMAMATSU R5924 photomultiplier
tubes.

Figure 3.5: (up) Fine mesh dynode layout; (down) schematic of HAMA-
MATSU R5924 PMTs [56].

The working principle of a fine-mesh photomultiplier is the same as a conven-
tional PMT; the remarkable difference is in the dynode configuration, depicted in
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fig. 3.5. In this case, the multiplicating structure is made by a set of very fine
mesh with reticular step ∼ 10µm, stacked with less than 1mm distance between
consecutive layers (dynodes): this geometry prevents electrons losses due to curved
trajectories in a magnetic field. In such way, it is possible to obtain only a small
decrease in gain also in the very harsh working conditions of the MEG experiment.

An extensive campaign of preliminary test was done to measure the behaviour
of the main PMT parameters (gain, TTS, rate capability) as a function of magnetic
field intensity and direction with respect to the PMT axis to take advantage from a
careful design of the detector [57], also considering that the mechanical constraints
left some room for PMTs displacement as shown in fig.3.6.

Figure 3.6: Particular of the PMT displacement with respect to the end of the
scintillator bar. The mechanical constraints from COBRA magnet
profile and Drift Chamber structure are also shown.

Here will be reported only the results about the gain, transit time spread and
overall time resolution. The measurements were done in the COBRA magnet,
keeping the PMTs in the same working condition of the experiment, with a mag-
netic field variable from 0 to 1.2 T and exploring a set of angular position in the
range 0◦ < α < 60◦.

In fig. 3.7 the gain as a function of the magnetic field intensity for different
angles is plotted, taking the PMTs at a constant voltage of 2KV (close to the final
working point). The graphs clearly show the dependence of gain versus magnetic
field intensity. Moreover, the gain worsening in the range α ∼ 20◦ ÷ 30◦ is much
lower with respect α < 20◦ or α > 30◦.

Dependencies of transit time spread and time resolution were verified, as shown
in 3.8 and 3.9, in the angular range 0◦ < α < 30◦. While the transit time spread
is almost independent from the angle, resulting in just a 10% of variation for the
highest field values, the time resolution show a worsening of about a factor 2 in the
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Figure 3.7: PMT gain in magnetic field normalized to “null” field gain, as a
function of magnetic field intensity measured for different angle
between PMT axis and magnetic field lines.

Figure 3.8: TTS normalized to “null” field TTS, for a PMT in magnetic field
as a function of field intensity, measured for different angle between
PMT axis and magnetic field lines.

comparison between α = 0◦ and α = 30◦. This last effect is obviously correlated
with the corresponding worserning of PMT gain shown in fig. 3.7.



60 The Longitudinal Timing Counter

Figure 3.9: Behaviour of the PMT time resolution in magnetic field, as a func-
tion of magnetic field intensity for different angles between PMT
axis and magnetic field lines.

Thus, the angular range 20◦ < α < 30◦ was found to be the best one for the
PMT tilting angle with respect to the magnetic field line: considering also the
mechanical constraints, the final PMTs position was chosen to be α = 22◦, as
shown in fig. 3.6.
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3.4.2 Scintillator

As already remarked in sec. 3.3.2, to obtain the desired performances the use of a
scintillating material with the fastest time response, together a high light yield is
required. The final outcome of the R&D process was that the ideal candidate is
the BC404 plastic scintillator, whose main characteristics are summarized in tab.
3.2 [58].

Material Polyvinyltoluene
Density 1.032g/cm3

Light yield (% Anthracene) 68
Rise time 0.7ns
Fall time 1.8ns

Pulse width (FWHM) 2.2ns
Attenuation length 140cm

Emission peak 408nm
Refractive index 1.58

Table 3.2: Main characteristic of BC404 plastic scintillator.

Figure 3.10: Track length distributions inside timing counter bar for michel
positron

Bar sizes and placement were evaluated using Monte Carlo simulations, to-
gether with test beam campaign. In order to obtain a good photostatistic for
µ→ eγ positrons, the minimum path length in scintillator was found to be 4 cm,
that was used as bar thickness. A plot of the track distribution inside the scin-
tillating bar is shown in fig. 3.10. Moreover, the geometrical constraints on the
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minimum radius allowable for the bar detector led to particular section of the bars,
shown in fig. 3.11, with cut corner angles. The bars are directly coupled to the
PMTs with a good match between bar shape and 2” PMTs sensitive area.

Figure 3.11: TC bar geometry: (up) side view. The cut shape of each end side
is optimized to obtain the best tilt angle between PMT axis and
magnetic field lines; (down) section view. The edges of the bar
were shaped in such a way to satisfy the mechanical constraints,
together a bar rotation along its major axis.

The spread of positron trajectories inside the bars was studied and minimized
by means of Monte Carlo simulations. The definitions for significative angles α
and β was already given in fig. 3.4. The results are shown in fig.3.12 and fig.3.13.

In fig.3.12 is reported the simulation of the distribution of positron hit angle on
bar surface: in the plot, α∗ is the impact angle after having tilted the bar around
its axis, as explained in sec.3.4. One can see that the width of this distribution is
∼ 9◦, thus resulting in a negligible effect in time resolution.

The plot in fig.3.13 shows the simulation of the β angle. The mean value of
this distribution was used in section 3.3.3 to evaluate the contribution to the time
resolution.
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Figure 3.12: Monte Carlo simulation of the impact angle between the projec-
tion of the positron track on the x − y plane and the normal to
the surface of the bar, α∗

Figure 3.13: Monte Carlo simulation of the impact angle between the projec-
tion of the positron track on the z − y plane and the normal to
the surface of the bar, β.
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3.4.3 Read out electronic and time extraction from data

In order to preserve the performances obtained by our detector, a custom made
electronic was designed and developed. A schematic representations of the elec-
tronic readout chain of the Timing Counter channels is shown in fig. 3.14.

Figure 3.14: Schematic representation of the Timing Counter electronic read-
out chain.

Each PMTs signal passes through a passive splitter, with different attenuation
factors:

• 80% is sent to the Double Threshold Discriminator boards, with square pulse
output (NIM standard);

• 10% is sent to an active splitter, that made two identical copies of the signals,
sent respectively to the trigger boards and to the digitizer boards;

• the last 10% is sent to a charge integrator for monitoring purposes.

This configuration permits us to take advantage of some benefits:

• the dynamic range of the digitizer and trigger boards is not saturated by the
analog signal;

• we have the possibility of pushing the gains of PMTs, obtaining high signal
to noise ratio, satisfactory time resolutions also without applying Time Walk
corrections (see .5.2); moreover, we can set a threshold level to a few photons;

• robustness against digitizer ADC non linearities jitter averaging over the
discriminator output pulse length.

The Double Threshold Discriminator (DTD) is a high bandwidth, low noise
and ultra-low jitter comparator in which two different thresholds are set. The
lower one is set as low as possible, compatibly with the noise level of the PMT
signal, in order to reduce the effect of Time Walk on timing resolution (for a
complete treatment of the Time Walk issue, see sec. 5.2). The higher threshold
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is set to reject noise spikes and events with low energy deposit, coming from
particles crossing a few millimeters of scintillator and from secondary particles,
giving low energy background. The value of the high threshold determines the
detector efficiency and is set accordingly to the trigger threshold. When a pulse
height is larger than the higher threshold a logic NIM signal is fired and digitized
by a DRS channel. The optimization of the value for the two thresholds will be
described in sec. 5.2.1 and sec. 5.4.
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Figure 3.15: Timing counter signals: in red the Double Threshold Discrimi-
nator output with the template fit superimposed (black), in blue
the analog signal digitized by the DRS.

The impact time of positron on Timing Counter is obtained starting from the
DTD NIM waveforms output. For each channels some pulses are mediated, in
order to obtain a mean waveform of the pulse, the template waveform. In this way
one obtains a reference pulse to be used in the fitting procedure [59].

The fit has two free parameters:

• the baseline level, that is, the mean voltage level of the considered channel;

• the leading edge of the pulse, that means the starting point of the pulse,
corresponding to the point with greater derivative.

The leading-edge is used as a measurement of the arrival time of positron. As
explained in section3.2 this time is affected by some systematic uncertainty that
mainly arise from Time Walk effects, and will be discussed in the follow paragraph.
In fig. 3.15 are shown the NIM output from a DTD channel (red) with the template
waveform superimposed (black) and the corresponding analog signal (blue).
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3.5 Final test

An extensive test was performed at the Beam Test Facility of Frascati (Roma),
where it is available an electron/positron beam with energy up to 500 MeV . The
beam is absolutely well collimated (typical beam spot dimensions are of the order
of 5 mm), and it is possible to have bunches of 1 or 2 electrons, thus preventing
effects due to multiple hits on bar. The test was performed orienting the bar in such
a way to reproduce the MEG positron impact average angles, thus reproducing
the experimental conditions.
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Figure 3.16: Time resolution as a function of impact point position and bar
number achieved during the beam test at the Beam Test Facility
of Frascati.

During this test the time resolution was estimated evaluating the resolution of
the quantity ∆T = T1 − T2, that is the time difference between the two opposite
PMTs of each bar.

The resolution was measured for different impact points along the bars, and
the results are shown in fig. 3.16. The timing resolution is generally higher than
the required value, being worse than 100 ps only in a few points: this confirm us
the possibility to reach the target Timing Counter resolution. Nevertheless, we
have to consider the fact that in the final experimental conditions, some issues can
worse the detector resolutions, as will be explained in sec. 6.1.2.
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Chapter 4

The Transverse Timing Counter

The first proposed purpose of the Transverse Timing Counter is to provide a direct
geometric pattern signal of the event to be fed into the Trigger processor. Later
it has been recognized that the possibility to improve the z recognition to about
1 cm could have been useful for positron track reconstruction.

In this chapter the design criteria (sec. 4.1) and the devices (sec. 4.2 and sec.
4.3) used in the detector realization will be presented. Finally, the results achieved
in the run 2010 will be shown. For general reference for this chapter, see [60], [61].

4.1 Detector concept

The Transverse Detector consists of two modules, each formed by an array of 256
scintillating fibers (Bicron BCF20) read out by Avalanche PhotoDiodes (APD)
HAMAMATSU S8664-55 [62], segmented along z direction and covering the inner
surface of the longitudinal detector barrel.

The small cross section of the fibers (5 × 5 mm2) allows for a good spatial
resolution and perfect match with the APD sensitive area (5×5 mm2). In order to
fit the mechanical constraints, fibers are curved with two different shapes, leading
to some losses in the fiber light transmission that has been studied and recovered
by using a reflective wrapping.

APDs have some attractive features: compactness, high quantum efficiency
of about 80%, insensitivity to magnetic field [63], quite fast response but low
gains (up to 103), even if biased near the breakdown voltage. This last point has
some negative implications on detector stability and noise performances that has
required a long work for achieving best signal to noise ratio, as we will see in the
following.

The Front End electronics is mounted on the detector to perform signal pro-
cessing very close to the diode, in order to reduce the stray capacitance; each
APD signal is read-out by a high gain low noise voltage amplifier, discriminated
and acquired by an FPGA-based VME board integrated in the data acquisition
system.

Groups of 8 APDs are mounted on same board that provides common bias,
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the analog sum, and the 3 bit digital word of hit pattern. Because of mechanical
constraints, a double row of FE boards is prepared to host APDs, so adjacent
fibers go alternatively to either board. Therefore a couple of boards manage 16
APD-fiber blocks covering a region of ∆z ∼ 9.6 cm. Analog signals from each
FE are sent to the trigger boards, where the signals corresponding to 2 adjacent
bunches of 8 fibers are summed together, providing an independent measure of the
impact point to be merged with the one coming from the longitudinal detector.

A picture of the transverse timing counter is shown in fig. 4.1.

Figure 4.1: Picture of the Timing Counter with scintillating fiber exposed.

The original proposal of a transverse detector made like the longitudinal one
(see chapter 3) was rejected because, several disadvantages coming from a PMT-
based system:

• the bars displacement, that should be orthogonal respect to the magnetic
field lines, demands an angle between PMTs axis and field lines greater than
the limit angle measured for fine mesh PMTs (see sec. 3.4.1). Moreover,
the alternative of using an optimized light guide would have been a very
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complicated issue, in particular concerning the implementation of an efficient
signal transport system outside the COBRA magnet;

• the use of PMTs instead of avalanche photodiodes would have required a
larger segmentation resulting in a decrease of the achievable resolution on
positron impact point.

The realization of a scintillating fibers system read-out by APD permits to
bypass these problems: the use of APDs allows signal read-out directly inside
the COBRA magnet, without the need to use light piping to transport signal
outside the magnet itself; moreover, the reduced dimensions of the devices results
in a compact detector, suitable for mechanical integration in the MEG apparatus
layout. Scintillating fibers guarantee an optimal matching with APDs sensitive
area, and make possible a thin detector with a 5 mm pitch along the z axis.

Nevertheless, the realization of such a kind of detector presents some technical
challenges to be solved:

• the need to operate the APDs in the proximity of the junction breakdown
voltage, far away from the usual working point, in order to obtain the highest
signal multiplication before the electronic amplification and signal shaping;
it should be noted that the APDs came from the CMS production and there-
fore are optimized for operation at low gain (50), in which the excess noise
contributions are less significant;

• the necessity to work with curved square scintillating fibers, that have light
losses at the corners and at low curvature radii;

• the realization of a support structure, which acts as cooled thermal bus with
temperature stability better than 0.5 degrees.

These issues will be described deeper in details in the next sections.

4.2 APD characterization

An avalanche photodiode is a photodiode that owns an internal multiplication
mechanism [64]: a simplified sketch of the APD operations is shown in fig. 4.2.
The multiplication process is due to the profile of the doping concentration, result-
ing in a high field avalanche region, and it is activated by the voltage applied to the
APD. The free charge carriers generated by the incident radiation are accelerated
sufficiently between collisions to create additional electron-hole pairs along the
collection path. Because of lattice dynamics (thermal agitation mainly) the gain
factor is very sensitive to temperature and applied voltage, therefore avalanche
photodiodes require well-regulated high-voltages power supply and a precise mon-
itoring of the working temperature.

A schematic draw of the APD is shown in fig. 4.3, while the main characteristics
of the devices are summarized in tab 4.1. The chosen photodiodes are realized
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Figure 4.2: Schematic draw of the multiplication process inside the APD [62].

Sensitive area 5× 5 mm2

Spectral response range 320÷ 1000 nm
Peak sensitivity wavelength 600 nm
Quantum efficiency (420nm) 70%

BD voltage typ. 400 V
BD voltage max. 500 V
VBD − T coefficient 0.78 V/K
Dark current typ. 10 nA
Dark current max. 100 nA

Capacitance 80 pF

Table 4.1: Main characteristics of HAMAMATSU S8664-55 APD.

via epitaxial growing on a low resistivity Si substrate. The thickness of the p-
doped material, realizing the p-n junction, is lower than 7 µm, thus minimizing
the amount of ionizing radiation absorbed in this region and keeping only the
depletion region sensitive to the radiation itself, in order to have a more uniform
response. An additional layer of n-doped material decreases the device capacitance
and increases stability with respect to applied voltage variations [65].

The APD working parameters are strongly temperature dependent. In par-
ticular, the gain is inversely proportional to the temperature, while BD increases
with temperature [66]. The gain behaviour is due to the fact that a temperature
decrease implies an increase of the mean free path of the charge carriers inside
the device, that means a lower energy loss for elastic scattering with the crystal
lattice. For the same reason, also the breakdown voltage will change together with
temperature. The behaviour of the dark current will be explained in sec. 4.6.

4.2.1 Breakdown measurement

The first issue to face with during the detector realization is the measurement of
the breakdown (BD) voltage, related to the need for a high gain that forces the
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Figure 4.3: Schematic draw of HAMAMATSU S8664-55 APD [62].

APDs working point to be very close to the BD itself.
The BD occours at the voltage sufficiently high to have the multiplication

process self-sustained [67]; in this circumstance thermally generated electron-hole
pairs (ehp) can trigger an avalanche resulting in an exponential increase of the
generated current, and a corresponding huge amount of recorded pulses. In order
to determine the BD voltage for each device, a bench test has been developed:
an APD is mounted on a copper support and completely obscured to prevent the
environment light from generating unwanted pulses. A 10MΩ load resistor is put
in series to the device, as shown in fig. 4.4.

The current flowing from APD on the resistor generates on the latter a voltage
drop, measured by a high precision multimeter. Until the bias voltage Vbias is far
from the breakdown point, the voltage drop across the resistor VR is negligible
(few mV ), because the dark current is of the order of 10−9 A; vice versa, when
the bias voltage approaches the BD value, both the current and and the measured
potential drop VR increase exponentially. We define the breakdown condition when
VR > 1 V , corresponding to a dark current greater than 100 nA; then we estimate
VBD as:

VBD = Vbias − VR. (4.1)
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Figure 4.4: Wiring diagram of the APD breakdown voltage measurement.

This rough estimate of the BD voltage is used to group 8 by 8 the APDs
with matched performance, because each group of 8 APDs belonging to a single
electronic board with common bias voltage.

The apparatus is also suitable to measure the BD variations with temperature,
which is regulated by means of a recirculating system, coupled to the APD copper
support, with 0.1◦ accuracy and great stability. The obtained results are shown
in fig. 4.5. The basic principle of a recirculating system with thermoelectric coller
was applied to the final detector too.

Figure 4.5: Breakdown voltage as a function of temperature, with linear fit
superimposed.

The data have been fitted by means of a linear function as shown in fig. 4.5,
obtaining the result:

dV

dT
= 0.80± 0.03 V/K, (4.2)
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in very good agreement with the manufacturer data sheet (see tab. 4.1). The
precise knowledge of the breakdown-temperature correlation will be used during
the data acquisition to make fine adjustment of the voltage supply, optimizing the
devices performances.

4.2.2 Dark current characterization

As expected for any seminconducting junction, the thermal excitation generates
free electron and hole carrier in the depleted layer. The resulting current is called
dark current.

Generally, inside any semiconductor device the probability to generate an
electron-hole pair by thermal agitation decreases by lowering the temperature,
following the law:

p(T ) ∝ e−
Egap
kT , (4.3)

where Egap is the energy gap between valence conduction bands.

Figure 4.6: Schematic representation of the two components that charac-
terized the dark current inside an avalanche photodiode (from
HAMAMATSU).

The APD dark current, due to the presence of an internal mechanism of mul-
tiplication, can be expressed as the sum of two components as shown in fig. 4.6
[66], [68], [69]:

• surface leak current flowing through the interface between the PN junction
and Si oxide layer, IS;

• internal bulk current, generated inside the Si substrate, Ibulk.

The surface leakage current is not multiplied because it does not flows in the
avalanche region,while the internal does, thus the total dark current ID is given
by:

ID = IS +G · Ibulk, (4.4)
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where G is the gain of the device.
It is important to emphasize again here that the multiplication process in-

creases with decreasing temperature, so that the behaviour of the dark current as
a function of the temperature will be different depending on the voltage bias. In
particular two competing effects are presents:

• variation of number of thermally generated carriers with temperature;

• increase of a gain of a single ehp with decreasing T .

Depending on applied bias, one of these two mechanisms become dominant
resulting in a subsequent behaviour of ID.

In fig. 4.7 the dark current measurements obtained during the detector RD are
shown. The measurements have been performed using the same procedure already
described in sec. 4.2.1.

Figure 4.7: Dark current behaviour as a function of bias voltage, for different
working temperatures.

For bias voltage far away from the BD voltage, where the surface current
dominates, the dark current is nearly constant, and greater currents correspond
to greater temperatures. Vice versa, in proximity of the breakdown voltage the
surface current becomes negligible while the internal current is relevant, thus the
dark current increases exponentially, and, fixing the bias voltage, it is greater for
low temperatures.

This suggests us again the need to have a complete control of the devices
temperature, avoiding abrupt variations that could affect the detector operations.
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4.2.3 Gain characterization

The APD gain is defined as:

G =
Nel

Nph

, (4.5)

where Nph is the number of incident photons on the APD sensitive area, while
Nel is the number of generated photoelectrons. The measurement was performed
using the apparatus depicted in fig. 4.8.

Figure 4.8: Sketch of the apparatus used to measure the APD gain.

The APD under test is illuminated by means of a pulsed laser with λ = 408 nm,
rise time 200 ps and width τ ∼ 4 ns, in order to reproduce a light pulse similar
to the scintillating fibers output. The fiber output is a broad spectrum peaked
around 500 nm. The gain and the quantum of the device are independent from
the radiation wavelength in the range 400÷ 500 nm, therefore the performed test
results to be a good approximation of the real experimental conditions.

The laser output crosses a series of semi-reflecting optical filters, which have
the purpose to divide the beam, directing it simultaneously on the APD under
test, on a calibrated APD used as reference device and on a photodiode connected
to a high precision photometer, which realize, given the transmission coefficient of
the optical filters, the real time monitoring of the light intensity incident on APDs.

Before illuminating the APD surface, the laser beam was attenuated in order
to prevent APD operations in a non linear region. Both APDs are read-out by
charge amplifiers, which outputs are connected to the data acquisition system.
The temperature is controlled by means of a Peltier cell, which keeps APDs at the
constant temperature T = 20.0± 0.2 ◦.

It is now possible to measure the gain of the devices, taking in mind eq. 4.5
and considering that the mean number of photons impinging on the APD surface
at each pulse is given by:

Nph =
Pε

fEphA
, (4.6)
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f 2 KHz
Eph 3 eV
A 5000

G (420nm) 450 mV/pC
ε 0.7

Table 4.2: Summary of the values the parameters of eq. 4.6 and 4.8

where P is the mean power of laser beam measured by the photometer, f is the
repetition rate of the pulses, Eph is the photon energy, A the attenuation factor of
the optical system and finally ε is the APD quantum efficiency.

The number of photoelectrons produced by the APD is given by:

Nel =
Vout
eG

, (4.7)

where Vout is the amplifier output, G its gain and e represents the electron
charge.

Thus substituting eq. 4.6 and 4.7 in eq. 4.5 one obtains:

G =
Nel

Nph

=
Vout
eG
· fEphA

Pε
. (4.8)

In tab. 4.2 the values of the parameters used in eq. 4.6 and 4.8 are listed.
The obtained result is shown in fig. 4.9, which demonstrates a typical behaviour

of gain as a function of the applied voltage in the region near the breakdown point.
The breakdown voltage for the considered APD resulted to be VBD = 403.8 V .
The data points were fitted by means of an exponential function, obtaining as a
result VBD = 403.9± 0.7, in very good agreement with the prediction made.

The measurement has confirmed that it is possible to obtain sufficiently high
gain, G ∼ 200 ÷ 500 keeping the APD in a voltage range 3 ÷ 5 V below the
breakdown voltage.

4.3 Scintillating fibers characterization

In the transverse Timing Counter realization scintillating fibers BCF20 from Saint
Gobain were used [70]. These fibers presents a squared 5 × 5 mm2 section and
emission spectrum peaked at λ = 492 nm. The main characteristics of the fibers
are summarized in tab. 4.3.

The fibers are characterized by a double step refractive index cladding type,
that increases the devices trapping efficiency (see sec. 4.3.1). The number of
photons a fiber can trap depends in fact on the maximum internal reflection angle
allowed. This angle is directly correlated with the ratio between the fiber reflective
index and the external material reflective index. Impurities of the fiber surface,
such as dust, scratches, fingerprints, that can occour during fiber manipulation,
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Figure 4.9: APD gain as a function of applied voltage, close to the breakdown
point, with exponential fit superimposed.

can strongly influence the trapping efficiency. Adding a second layer of cladding
material (in this case polymethylmethacrylate, PMMA) a protective interface is
created, that prevents deterioration of the primary one, thus avoiding efficiency
worsening.

4.3.1 Trapping efficiency

The trapping efficiency η is defined as the ratio between the number of photons
that fiber is able to convoy outside itself and the total number of photons created
by incident radiation. This number can be easily estimated for squared section
fibers from the formula [71]:

η =
Ω

4π
=

4

4π

π/2∫
θ=θl

sinθdθ

π/2∫
φ=φl

dφ, (4.9)

where Ω represents the good solid angle, given by the limit angles θl and φl,
defined by:

θl = sin−1

(
n1

n2

)
, (4.10)

where n1 and n2 are respectively the refraction indexes of the material outside
the fiber and the fiber material itself. The integral of eq. 4.9 has been evaluated
using the data reported in tab. 4.3 obtaining η = 0.073, in agreement with the
manufacturer data sheet.

Nevertheless, we decided to measure the trapping efficiency. For this measure-
ment, a test fiber was illuminated by means of a laser beam (λ = 408 nm). Before
impinging on the fiber, the beam passes through a 50 : 50 splitter; one half of the
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Single cladding Double cladding
Fiber dimensions 5mm× 5mm× 1m 5mm× 5mm× 1m

Core material Polystyrene Polystyrene
1st cladding material Acrylic Acrylic
2nd cladding material Fluor-Acrylic
Core refractive index 1.60 1.60

1st cladding refractive index 1.49 1.49
2nd cladding refractive index 1.42

1st cladding thickness 4% 4%
2nd cladding thickness 2%

Emission peak 492nm 492nm
Attenuation lenght > 3.5m > 3.5m
Trapping efficiency 4% 7.3%

Scintillation decay time 2.7ns 2.7ns

Table 4.3: Main characteristics of multicladding BCF20 scintillating fibers,
compared with single cladding scintillating fibers (data from Saint-
Gobain).

light is read by a photometer, while the remaining part crosses a diffuser before
entering in the fiber. In this way we are sure that the beam does not directly
crosses the fiber, introducing a possible source of systematic errors due to prefer-
ential orientation of light inside the fiber. At one end of the fiber a second channel
of the photometer is collocated. The fiber trapping efficiency is then evaluated as
the ratio between the intensities measured by the photometer inputs. We found
ηmeas = 6.6± 0.5%, a value slightly lower than expected.

4.3.2 Attenuation lenght

The measurement of the attenuation length was performed using the experimental
setup shown in fig. 4.10.

A 90Sr source positioned on one side of the fiber is used to excite the fiber
itself. The end-point of the 90Sr @2.2 MeV allows for a good simulation of MEG
positron energy loss in fiber, thus permitting to estimate available signals in real
working conditions as well as attenuation length. On the other side of the fiber
a PMT coupled to a little slice of scintillator is positioned, with the purpose to
collect the electrons that fully cross the fiber and to generate a trigger signal. The
APD used to read-out the fiber is opticallt connected at one end of the fiber and
its signal amplitude is acquired by an ADC together with a multichannel analyzer.

Moving the source along the fiber it is possible to measure the APD response
as a function of the source distance, and thus the fiber transport properties, by
means of the analysis of the amplitude spectra acquired with the multichannel
analyzer. The obtained results are shown in fig. 4.11. Data were fitted by means
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Figure 4.10: Sketch of the experimental setup used in the measurement of the
scintillating fibers attenuation length.

of a double exponential function:

y = Aex/x01 +Bex/x02 , (4.11)

obtaining x01 = 22.3± 0.5 cm and x02 = 260± 15 cm.
The first exponential is typically caused by direct light, self absorption and

re-emission due to both the wavelength shifter and the residual superimposition
of emission and absorption band of dopant fluors. At high path length, where the
wavelength is fully shifted to the emission band and these effect are negligible, the
core attenuation length appear clearly [72].

4.3.3 Emission spectrum

In order to measure the fiber emission spectrum, a UV lamp (λ = 365 nm) was used
to excite the scintillating fibers. The light output passes trough a monochromator
and then is read out by a photomultiplier tube. The acquired spectrum is shown
in fig. 4.12.

We found a peak around 498 nm, in very good agreement with the manufac-
turer data sheet.

4.3.4 Geometrical effects on light loss

The particular structure of the transverse detector and the mechanical constraints
forced us to give the fibers a curved shape in order to perfectly match the longi-
tudinal detector radius; moreover, the different pitch of fibers and APD system
forced to have a double APD row, resulting in two different shapes for the fibers
end on the APD side. A sketch of the two fibers profiles is shown in fig. 4.13. The
common part has a curvature radius r0 = 288.9 mm; the end part shape can be
either a single curve with radius rA = 173.7 mm or a “S-like” double curve with
radii rB1 = 17.5 mm and rB2 = 22.5 mm.

Especially in this latter case the end shape strongly influences the fiber trapping
efficiency, because of unefficient reflection of the light in the final part of the fiber
itself. For this reason, a coating in the curved part of fibers was necessary to obtain
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Figure 4.11: Fiber attenuation length measurement. a) Single exponential fit.
b) Double exponential fit.

a satisfactory recovery of the scintillation light. We tested few possible solutions,
namely:

• reflective paint produced by KODAK (Kodak White Reflective Coating);

• alluminated mylar;

• reflective foil produced by 3M (3M radiant mirror film).

All these materials guarantee a reflectivity > 99%. The tests were performed
using the experimental apparatus already described in sec. 4.3.2.

In fig. 4.14 the results obtained are shown, together with the comparison with
the performances of a straight fiber kept as a reference fiber during all tests.
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Figure 4.12: Measured fiber emission spectrum.

Figure 4.13: Section of transverse detector, highlighting the two different pro-
files of scintillating fibers end.
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Figure 4.14: a) Comparison between the performances of the curved fiber with
coats under test and te straight fiber. b) Comparison between
the coated fiber transport efficiency, normalized to the efficiency
of the straight fiber.
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The best results were achieved using the 3M reflective foil. So we decide to
cover each terminal part of the fibers with a slice of reflective foil, as shown in fig.
4.15.

Figure 4.15: Details of the scintillating fiber with covered surface.

Two final tests were performed in order to compare the performances of the
scintillating fiber in the final experimental configuration. The first one was to
evaluate the fiber response as a function of the distance between the source and
the detector, being the bias voltage of the APD fixed. We tested 4 different bias
voltages. The results are shown in fig. 4.17, where an increase in the APD output
signal of the order of 50 ÷ 100% depending on the APD voltage supply can be
observed.

The last test was done fixing the detector position and varying the APD bias
voltage, as shown in fig. 4.16. Also in this case we found an increase of about a
factor 2 in the detector performances. Both these test confirmed us that the fiber
wrapping with high reflectance material is in practice the best way to recover light
in our curved square fibers.
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Figure 4.16: Comparison between the performances of the covered fibers re-
spect to the naked ones, being the detector bias voltage fixed and
varying the distance between source and detector.
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Figure 4.17: Comparison between the performances of the covered fibers re-
spect to the naked ones, being the detector-source distance fixed
and varying the APD bias voltage.
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4.4 Electronic readout

The APD Front-End electronics is mounted directly on the same support on which
are mounted the photodiodes, as shown in fig. 4.18. In this way it is possible
to process and amplify the analog signals very close to the devices, in order to
reduce as much as possible the stray capacitance that should get worse the devices
performances.

Figure 4.18: Wiring diagram of the single channel APD analog signal ampli-
fier.

The electronics is designed in such a way to realize the two tasks of the trans-
verse Timing Counter: provide a trigger signal to the data acquisition system,
based on the sum of 16 adjacent fibers, and furnish an event reconstruction based
on the discriminated single fiber signal in offline analysis.

For this reasons, groups of 8 APDs are accommodate on the same board (Front
End boards, FE) that provides common bias; signals from APDs on same board
are summed up and sent to the trigger system. At trigger level another sum stage
is performed: in this way, from the trigger point of view, each Timing Counter
sector is divided in 16 sections, each covering ∆z ∼ 9.6 cm. The analog signals
are sampled by a digitizer at 66MHz.

Moreover, the single analog signal passes through a discriminator stage. For
each digitizer sample, the fiber hitmap is saved and recorded. This data will be
used in the offline analysis in order to identify the hit fiber, and reconstruct the
positron impact point with a resolution of the order of 1 cm, in an independent
way with respect to the bar reconstruction.

4.4.1 Signal processing and signal to noise ratio

In order to identify the request on the signal amplifier, first of all we have to
quantify the order of magnitude of the APD signal. The number of photoelectrons
generated at the APD output by a positron crossing the fiber can be estimated as:

npe = E · d · Y · ηF · ηAPD · e−x/x0 ·G ·K, (4.12)
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where E is the positron energy deposit in the fiber for lenght unit (2 MeV/cm
for ∼ 52.8 MeV positrons), d is the length of the trajectory inside the fiber
(∼ 5 mm), Y is the fiber light yield (8 ·103 γ/MeV ), ηF and ηAPD are respectively
the fiber and the APD efficiencies (7% and 80%, see sec. 4.3.1 and sec. 4.2), the
exponential term takes into account the fiber attenuation, being x the distance
between the impact point and the APD and x0 the typical fiber attenuation length
(see sec. 4.3.2), and G is the APD gain (see sec. 4.3.2). Finally, K represents the
light recovered using the fiber wrapping; its value is ' 2, as shown in sec. 4.3.4.

Considering, for example, an impact point x = 30 cm and an APD gain of 500,
and substituting all numbers in eq. 4.12, we obtain npe ' 105 electrons at the APD
output, corresponding to ∼ 16 fC in charge. Considering a device capacitance of
80 pF , the order of magnitude of the maximum signal at the APD output will be
2× 10−4 V . This means that we need an amplifier stage with gain 103 or more to
obtain signals suitable to be used for our purposes.

For this reason a dedicated amplifier system has been designed; in order to
obtain the desired gains, we decide to split the amplification system in two stages,
with gain 50 and 100 respectively. The wiring diagram of the APD amplifier is
shown in fig. 4.19.

Figure 4.19: Schematics of a single APD amplifier.

Dedicated simulations based on a commercial simulation software (TINA [73])
was used to study the electronic chain response, in conjunction with bench test
on prototypes to optimize the PCB design; in fig. 4.20 the Bode gain plot of the
system is shown. As one can see, the full circuit behaves as a passband filter, with
cut frequencies f1 = 1.3 MHz and f2 = 11.3 MHz, thus shrinking the bandwidth
to 10 MHz. This results in a sensible noise reduction.

The expected noise can be calculated using a simplified model of the system,
shown in fig. 4.21. In this model we have considered only the noise induced by
the first stage, that is amplified by a factor 5× 103; the noise of the second stage
will be negligible, being amplified only by a factor 100. There are 4 contributions
to the total noise:

Amplifier voltage noise: can be evaluated as:
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Figure 4.20: Bode gain plot of a single channel APD analog signal amplifier.

Figure 4.21: Equivalent circuit for amplifier noise study.

V out
v = v ·

√
B ·G ' 15 mV r.m.s. (4.13)

where v is the equivalent input voltage noise of the amplifier (0.85 nV/
√
Hz).

Amplifier current noise: can be evaluated as:

V out
i = i ·

√
B · Z1 ·G ' 20 mV r.m.s. (4.14)

where i is the equivalent input current noise and Z1 the input impedance.
The last is given by the parallel of APD capacitance (80 pF ) and the load
resistor Rload; this results in a limited bandwidth of 2 MHz for the input
current noise.

APD shot noise: coming from the APD dark current. Its contribution can be
evaluated as:
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V out
APD =

√
2eiAPD ·R1 ·

√
B ·G ·M ' 30 mV r.m.s. (4.15)

where e is the electric charge, iAPD the APD dark current (iAPD = 100 nA);
M is the so called “excess noise factor”; it was measured during the first
APDs bench tests, and its value was found to be ∼ 10.

Resistor thermal noise: this is correlated to the thermal agitation inside the
resistance, and can be evaluated as:

V out
R =

√
4 · kB · T ·R ·B ·G ' 40 mV r.m.s. (4.16)

where kB is the Boltzmann constant, T the temperature of the resistor
(300 K). Here we consider only the contribution of R1, (Rload in fig. 4.21)
the only one that will be amplified.

From the calculation shown above, one can evaluate the total noise as the
quadratic sum of esch contribution:

Vnoise =
√

(V out
v )2 + (V out

i )2 + (V out
APD)2 + (V out

R )2 ' 55 mV r.m.s. (4.17)

Considering an APD signal of about 2 × 10−4 V at the amplifier input as
previously calculated, resulting in ∼ 1 V at the amplifier output, we obtain for
the signal to noise ratio:

S

N
=

1 V

65 mV
' 20, (4.18)

a satisfactory result that guarantee good APD operations. This result was
confirmed by the measurement performed on a prototype board, as shown in fig.
4.22.

After being amplified, the analog signals are summed up and sent to the trigger
system. A set of amplitude spectra acquired by the trigger system is shown in fig.
4.23. In these plot one can see clearly the separation between the signal peak and
the noise, resulting in an efficient trigger threshold definition. In the lower panel
(corresponding to APD biased just 1 V below the BD condition) on can clearly see
that the noise level is increased dramatically by the amplification of dark current.
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Figure 4.22: APD signal as a function of the positron impact point along the
fiber.
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Figure 4.23: Analog signal from 2 FE summed up together (equivalent to 16
APDs), as acquired by the trigger system as a function of the
FE applied HV: (up) nominal HV value (3 V under BD point);
(centre) nominal HV value increased by 1 V ; (down) nominal
HV value increased by 2 V .
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4.4.2 Positron impact point resolution

Each individual fiber signal passes also through a discrimination stage; the output
of each discriminator is then sampled and stored in the data file, in order to be
processed in the offline analysis. In such a way, for each event one can define which
fibers have fired the discriminator, thus obtaining the hitmap of the fiber detector.
This is a very useful tool to obtain a positron impact point determination in a
completely independent way with respect to the longitudinal detector.

The detector resolution can be defined as the width of the distribution of the
differences between the fiber and the bar reconstructed z, ∆Z = Zfiber −Zbar. An
example of these distributions obtained during the 2010 physics run is shown in
fig. 4.24.

Figure 4.24: Plot of the ∆Z = Zfiber−Zbar distributions for upstream (green)
and downstream (red) Timing Counter sectors.

The obtained resolutions are 1.6 cm and 2.5 cm for the downstream and up-
stream sectors respectively. The differences between the two detectors are related
to differences in the electronic noise level. Some “hot” channels (oscillating APDs
that generate many hits not correlated to physical events on fibers) were found,
mainly in the upstream side. This problem will be investigated during the 2011
beam shut down.
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4.4.3 Efficiency

The final point in the evaluation of the transverse Timing Counter performances
is the determination of the efficiency of the detector. For this purpose, an useful
tool is provided by cosmic rays that pass through 2 bars positioned at the external
side of the Timing Counter, as depicted in fig. 4.25. This selection on bars hit
guarantees also that at least one fiber should fire a hit, being crossed by the cosmic
ray. A dedicated trigger was developed in order to exclude the central bars of each
TC sector (in the MEG trigger numbering convention this is called TRG24).

Figure 4.25: Sketch of the TRG type used for determination of APD system
efficiency (TRG24, see text for details).

The efficiency is evaluated calculating the ratio between the number of event
triggered by the the bar and the number of event with a fiber hit recorded. The
results are presented in tab. 4.4.

Fiber cluster DS TRG US TRG DS hit US hit DS eff. US eff.
0 33 107
1 204 340 130 309 0.64 0.91
2 444 559 173 473 0.39 0.85
3 538 521 504 520 0.94 1.00
4 491 373 475 373 0.97 1.00
> 4 720 401 711 401 0.99 1.00

total 2430 2301 1993 2076 0.82 0.90

Table 4.4: Transverse detector efficiency.

The resulting efficiencies are 82% and 90% respectively for the down-stream
and up-stream module. The difference between the two sector can be explained by
the fact that during 2010 data acquisition a section of the down-stream module,
corresponding to 32 fibers (' 12% of the sensitive area) was blind because of a
hardware failure.
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Chapter 5

A study on TC calibration tools

As already described in chapter 3, the TC operation needs the accurate knowl-
edge of a number of typical parameters for the physical calibration of the time
scale, the time difference respect the other detectors, the space scale for positron
reconstruction. Further all these parameters need to be monitored over the full
data acquisition. Thus, a full set of calibrations was developed to obtain the best
Timing Counter performances [52].

First of all, the PMT gain equalization is needed to optimize the working
point, for equalization of charge/energy ratio among all scintillating bars. This
allows a reliable z reconstruction for triggering purpose. Once the pulse shape is
fixed, it is necessary to evaluate the contributions of time walk effect, which is
the first order correction to the timing resolution caused by the relative amplitude
spread of pulse height. Afterwards, it must be evaluated the offsets associated to
the different electronic chains that gives rise to a spatial bars alignment. Having
completed the calibrations strictly related to the Timing Counter, the time offset
between each bar of the detector and the Liquid Xenon calorimeter is measured.

The calibration procedure will be described step by step more in details in this
chapter.

5.1 Gain equalization

PMTs gain equalization is a first step required for an uniform response, necessary
to obtain almost similar pulse shape for PMTs belonging to the same bars, both
for timing measurement and for triggering algorithm optimization. This gives an
easier and more reliable estimation of positron impact point via charge ratio, which
is used by the trigger processor for the positron impact point reconstruction. For
the same reason, equalized energy spectra are needed also between different bars.

A useful tool are the cosmic rays crossing the detector: they have the advantage
of the flat spatial distribution over all the detector, together with rather well
defined energy spectrum. One can thus evaluate both factors: gain unbalance
between PMTs on the same bar and inter-bar gain adjustment.

A dedicated set of runs were taken at the beginning of each data acquisition, in
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order to have a satisfactory statistic for each PMTs pair. At this stage, the trigger
is based only on Timing Counter information and requires to have a coincident
signal on both PMTs on single bar. More precisely, we collect data that generate
signals with at least 40mV amplitude on each PMTs and at least 100mV as sum,
whit single bar multiplicity. In the MEG framework this kind of trigger is labeled
as TRG22, and the same convention is adopted hereinafter. The choice of the
trigger thresholds levels is related to the necessity of reject low energy events that
pass only through few millimeters of the bars [45].

An adequate set of such data can be used to evaluate gain unbalance between
PMTs on same bars and different bars and, iterating the procedure 2 ÷ 3 times,
one can achieve a gains uniformity of ∼ 10%.

5.1.1 PMTs gain equalization

The equalization is achieved using signals from cosmic rays events hitting the
bars: because of the spatial flatness of cosmic rays spectrum, the charge and
amplitude spectra of the inner and outer PMTs should not be affected too much
by geometrical effects (i.e. spread of the trajectories).
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Figure 5.1: Pulse spectra for different PMTs with Landau fit superimposed.
The amplitude equalization is achieved within 10%.

For each PMT the pulse amplitude and charge spectra are acquired, with the
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condition that the pulse has fired the Double Threshold Discriminator. The thresh-
old was set for these runs to 500 mV . The cut over the high thresholds together
with the trigger conditions allow to reject events that pass through only a little
slice of scintillator. It is straightforward to fit the pulse spectra in order to obtain
the value of the convolute Landau distribution.

Since the PMT gain-voltage relation is given by:

G = K · V α, (5.1)

where K and α are parameters determinated in the R&D period, it is easy
to tune the photomultipliers voltage supply in order to equalize their response,
“moving” the peak of the Landau distribution; in fact, the ratio between the
peaks is directly proportional to the ratio between the PMTs gains.

In fig. 5.1 amplitude spectra for different pmts after equalization are shown.
The uniformity of gain is achieved within ∼ 10% of precision.

5.1.2 Bar energy response equalization

As already shown in sec. 3.2, the product of the charges delivered by two PMTs
of each bar is direct proportional to the energy released inside the bars. Being
the cosmic rays spatial spectrum uniformly distributed on the Timing Counter,
triggering on each bar we can obtain quite similar convolute Landau distributions
peak in the case of well equalized PMTs. An example of a spectrum acquired with
a TC bar is shown in fig. 5.2.
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Figure 5.2: Example of charge Landau distribution with fit superimposed.



98 A study on TC calibration tools

Each spectrum is then fitted and the peak position is extracted, in the same
way as described in sec. 5.1.1. In this way, taking both information from single
PMT and Landau spectra it is possible to obtain a quite good equalization of all
TC PMTs.

The summary of the peaks positions for each bar as obtained after a couple of
optimization steps is shown in fig. 5.3.
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Figure 5.3: Summary of the fitted Landau peak.

The final equalization achieved for bar spectra is about 15%. Further fine tun-
ings are performed in the trigger system, introducing an algorithm with a proper
choice of constants. In this way the equalization in the data taking conditions is
about 1÷ 2%.

5.2 Time Walk correction

The so called Time Walk (TW) effect is given by the time distribution of the
crossing instant of a fixed threshold by pulses of different amplitudes. A graphical
example is shown in Fig. 5.4. Because of its dependence from pulse amplitude, this
effect directly influences the timing resolution, but can be estimated and corrected
in an event by event basis.

For each PMTs a reference waveform template is prepared: several PMT wave-
forms are recorded, normalized to a same amplitude and averaged over the whole
reference waveform set, in order to obtain a template with interpolated points.
First of all, the waveform is “inverted”, obtaining a plot of the signal time delay as
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Figure 5.4: Time walk effect

a function of the normalized amplitude. An example of an inverted pulse is shown
in fig. 5.5.
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Figure 5.5: Time vs amplitude with time walk correction with fit superim-
posed.

The inverted pulse is then fitted with the function (fig. 5.5):

TW = A+B
√
x+ C log x, (5.2)
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where A, B and C are free parameters and x represents the ratio between the
low level threshold value (LLT, which is fixed) and the pulse amplitude. x is the
parameter that can be used to estimate the TW delay of discriminator triggering,
simply starting from the LLT value and pulse amplitude.

The time walk correction gives out a net improvement of time resolution by a
factor 2. A qualitative example is shown in 5.6.
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Figure 5.6: Comparison between the time difference distributions for two ad-
jacent bars; the red line represents uncalibrated data, the black
line represents the calibrated ones.

A summary of the bar performances is given in fig. 5.7, quoted on a double
bar sample (see sec. 6.1), both for a calibrated and uncalibrated data. In many
cases the improvement of the timing resolution is significative: the mean value
of the resolution for uncalibrated data is ∼ 200ps, while the mean value of the
calibrated sample resolution is ∼ 75 ps.

5.2.1 Low level threshold optimization

Being directly involved in the timing performances, both directly and through the
Time Walk correction algorithm, the low level threshold value must be accurately
chosen in order to maximize the time resolution. For this reason, dedicated set of
data taking runs were taken just at the beginning of the physics data acquisition
phase, using the same beam configuration and triggering on the Timing Counter
alone (TRG22).

We have scanned the range 10÷ 30 mV with 5 mV step; for each data sample,
the resolution was quoted with the double and triple samples evaluation method
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Figure 5.7: Comparison between the resolution obtained on double sample
using calibrated (black markers) and uncalibrated (red markers)

described in sec. 6.1 and finally a comparison was made. In fig. 5.8 the comparison
between the results obtained with LLT values of 10 and 25 mV is reported. The
latter value of threshold maximize tge resolution and it was set as default for the
whole MEG data acquisition time. The result that the relatively high threshold of
25 mV gives out better result respect to a lower one could be at a glance surprising,
considering that lower the threshold is, lower the time walk correction. This effect
is easily explained having a deeper look at the time walk correction. This will be
done in the next section.

5.2.2 Further improvements in time walk correction

Although the resolutions obtained with the current time walk correction are quite
satisfactory (the results will be given more in detail in chapter 6), being around
∼ 75 ps, some improvements are under study in order to get better results. With
regard to the hardware limit set by the devices intrinsic characteristics (see sec.
3.3), we can think about a further improvement of about 10 ps.

We can estimate the margin of improvement in a simple way, by evaluating the
difference between the time extracted from the template waveform and the time
reconstructed using the time walk correction formula. This quantity is plotted as
example for one PMT in fig. 5.9. It is quite evident that the current calibration
works very well for x > 0.01. Considering a LLT value of 25 mV , this means
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Figure 5.8: Comparison between the resolutions obtained on double sample
using TW calibrated data, with two different values of the low
level threshold: 10 mV (red markers) and 25 mV (black markers).
The best results were achieved using 25 mV as LLT.

that the time walk correction is reliable for pulse amplitude lower than 2.5 V (this
value can be slightly different for each PMT).

The possible ways to improve the TW could be:

• divide the events in two categories, with a cut represented by the limit ratio
defined above. In such a way, for events with bad fit-template accord (low
x ratio) an additional correction could be added, just fitting the time walk
residuals distribution;

• change the function used in the fit, adding more parameters in order to allow
more degrees of freedom in fit procedure;

• considering the possibility to create a position dependent template for dif-
ferent impact points, in order to take into account possible effects due to
geometry, light propagation, different track spread as a function of the im-
pact point.

All these three possibilities are currently under study. The results will be
presented as soon they will be ready, and hopefully used by the beginning 2011
run time.
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Figure 5.9: Plot of the difference between the inverted template waveform and
the time calculated by means of eq. 5.2.

5.3 Offsets equalization

After having optimized the pulse shape characteristics one needs to study the
offsets that different electronic chains can generate between different PMTs. This
effect is a pure systematic constant error, being a constant offset for each PMT.
On the other hand, this influences the mean of the time different distributions,
and consequently the z alignment on the bar, resulting in a wrong z reconstruction
of the impact point via the time difference method (sec. 3.2).

The offsets are evaluated using two different methods based on analysis of inde-
pendent data samples. The first one is based on evaluation of cosmic rays hitmap
distribution on each bar; the second one is based on the comparison between the
z reconstruction provided by the Timing Counter and the reconstruction indepen-
dently provided by the extrapolation of the positron tracks reconstructed by Drift
Chambers to the Timing Counter. The two calibrations methods will be described
in details in the next sections.

5.3.1 Interbar offset with cosmic

The first way used to evaluate the offset is based on cosmic rays. For each bar, the
time difference between inner and outer PMT spectra is acquired. The flatness
of the spectrum should be well reproduced by the hitmap distribution for well
equalized PMTS. Note that the use of Michel events should be avoided for offsets
estimation, due to the sharp asymmetry of Michel spectra on bars.

An example of an acquired spectrum is shown in fig. 5.10.
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Figure 5.10: ∆t distribution for cosmic rays events with fit superimposed.

Being the z reconstruction obtained starting from the time difference (as shown
in eq. 3.5) it is easy to identify the z offset in each bar by fitting the z distribution
with a step like function (fig. 5.10) whose outputs are the half maximum values
of left and right edges: the z offset is estimated by averaging these values, while
the comparison of their difference with the hardware fixed bar length gives a hint
about the effective velocity.

The offsets calculated in this way are then applied on the z reconstruction.
Fig. 5.11 shows the hitmap distributions in the z− φ plane for cosmic rays before
(upper panel) and after (lower panel) applying the calibration. It can be clearly
seen how the rectangular shape of the bar array is well reproduced in the two
dimensional hitmap after the calibration.

In order to have a clear understanding of the final experimental conditions, the
same calibrations constant were applied to a Michel sample. The results are shown
in fig. 5.12. Also in this case the bars result to be very well justified, confirming
the reliability of the used calibration.

The summary of the calculated offset is shown in fig. 5.13. The achieved
alignment is better than 1 mm.
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Figure 5.11: Comparison between uncalibrated (upper panel) and calibrated
(lower panel) cosmic rays hitmaps.
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Figure 5.12: Comparison between uncalibrated (upper panel) and calibrated
(lower panel) Michel events hitmaps. The offsets used here are
the same calculated for fig. 5.11
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(black markers) bar offsets, calculated on cosmic rays sample.
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5.3.2 Interbar offset with drift chambers

The bar offsets can be evaluated also in a different way, using information about
positron impact point provided by the Drift Chambers in Michel runs. For this
kind of data, in fact, we can compare the impact point measured independently
by both detectors, evaluating the offset between Drift Chambers system and each
bar. An example of the distribution of ∆z = zdc − ztc is shown in fig. 5.14.
All distributions are then fitted with a gaussian function. The means of each
distribution represent the offset between DC and the considered bar.

This is proved to be a very powerful tool to calibrate the detector. In fact, while
cosmic rays offer the best way to evaluate Timing Counter offset between the bars
without giving information about the absolute displacement of the detector with
respect to the rest of the experimental apparatus, the using of Michel sample
permits to get the detector position in the COBRA reference system.

   bar[7] tc  - zdcz
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Figure 5.14: Example of zdc− ztc distribution evaluated on Michel data, with
gaussian fit superimposed. The mean of the distribution corre-
spond to the offset of the bar.

Of course, assuming a reliable z reconstruction by the DC system, the offset
values calculated with Michel events and cosmic rays events must be compatible.
The comparison between the offsets calculated using different methods is shown
in fig. 5.15, where it is possible to see a good agreement between the two sets of
calibration constants.



High level threshold optimization 109

Bar number
0 5 10 15 20 25

O
ff

se
t 

[c
m

] 

-15

-10

-5

0

5

10

15
cosmic data

michel data

Figure 5.15: Comparison between offset calculated using cosmic rays data
(black markers) and Michel data (red markers).

5.4 High level threshold optimization

The last parameter for proper TC operations is the determination of the best
value for the high level threshold. As already explained in 3.4.3 the high level
threshold directly influences the Timing Counter efficiency, and it must be chosen
accordingly to cut already performed by the trigger system, based on a cut placed
in the valley between the noise peak and the Landau peak.

We define here the Timing Counter reconstruction efficiency as the ratio be-
tween the number of hits fired by the DTD divided by the total number of events
triggered.

In fig. 5.16 the behaviour of the TC efficiency as a function of the high level
threshold in the range 250÷600 mV , with 50 mV step, is reported. The efficiency
is about 100% for threshold value of 400 mV ; no significant improvements are
visible for lower values. Moreover, lowering too much the threshold implies other
problems, such as rate effects on NIM signal, events pile-up and low energy spurious
hits entering in the data set.

We decide to keep 400 mV as the default value for physics data acquisition.

5.5 TC-LXE calibration

Once the timing counter bar system has been calibrated, it is necessary to “syn-
chronize” the TC with the Liquid Xenon calorimeter. For this purpose, we need a
data sample that correlates the two detectors. Two main physics processes provide
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Figure 5.16: High level threshold efficiency.

a viable method: two photons emission by a Boron target and Dalitz decay of π0.
Both of them are not obtainable with the normal µ beam and need dedicated setup
developed for calibrations purposes. More details will be given in the follow.

5.5.1 Boron sample

A dedicated Cockcroft-Walton (CW) accelerator technique has been implemented
[41] to obtain special reactions useful in calibrating the experimental apparatus:
(in particular, energy resolution and scintillation of Liquid Xenon). The MEG
CW provides up to 1 MeV protons that impinges on a Li2B4O7 target, inducing
the 11

5 B(p, γ)12
6 C reaction, which is resonant at 163 KeV .

The Boron reaction provides two γ rays with energy 4.4MeV and 11.7MeV ,
that are emitted and can be simultaneously detected by Timing Counter and
Xenon calorimeter. A sketch of the experimental layout is shown in fig. 5.17

A dedicated trigger has been developed to select such events. The γ energy
distribution as measured by the calorimeter is plotted in fig. 5.18, where the two
peaks are clearly recognizable.

For each bar, the distribution of the time difference between the TC and the
Xenon is acquired. An example is shown in fig. 5.19. Each distribution is then
fitted by means of a gaussian function. In a way similar to that already discussed
in sec 5.3.2 the mean of the gaussian function gives a direct measurement of the
time offset between the two detectors, and can be used to evaluate the calibration
constants one has to apply to obtain well timing alignment between detectors.

The summary of the extracted offsets is plotted in fig. 5.20. In order to have
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Figure 5.17: Sketch of the experimental layout in the Boron events.
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Figure 5.18: γ energy spectrum for Boron events. The peaks at 4.4 MeV and
11.7 MeV are clearly recognizable.

a reliable estimation of the timing, one has to choose a reference bar to join the
Xenon detector, and then all the other TC bars are aligned to the reference one.
For the 2010 data taking bar number 20 was arbitrarily chosen as the reference for
all other bar offsets. The rescaled offsets are shown in fig. 5.21.

The calculated offsets are then inserted in the MEG Database and used during
the offline analysis to correct the TC-LXe relative timing. In fig. 5.22 the offsets
before and after the calibration are shown. It is possible to see the effect of
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Figure 5.19: Example of tγγ distribution.
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Figure 5.20: Mean of tγγ distributions as a function of bar number.

the offset evaluation, corresponding to a clear time alignment of the bar around
23.5 ns. The achieved precision in the alignment is about 100 ps, limited by some
systematic effects in the fit procedure.
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Figure 5.21: tγγ offsets as a function of bar number, referred to the bar number
20.
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Figure 5.22: Comparison between the mean of tγγ distributions for calibrated
(red markers) and uncalibrated (black markers) data samples.

As an exercise, and to evaluate the Timing Counter performances on a data set
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different from the standard one (Michel data), one can evaluate the timing resolu-
tion on the Boron sample, just taking the width of the time difference distribution
as a resolution estimator. The obtained resolutions are shown in fig. 5.23, and
were quoted dividing the data in two samples, as a function of the gamma energy
reconstructed in the Liquid Xenon calorimeter. As one can expect, the resolution
is strongly correlated to the energy of the gamma impinging in the calorimeter, be-
ing the time resolution of the latter (roughly) inversely proportional to the squared
root of the energy itself. The obtained mean values were ∼ 180 ÷ 200 ps for the
higher energy gammas in the Xenon, and ∼ 300÷ 350 ps in the opposite case.
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Figure 5.23: Timing resolution measured on Boron sample. The data were di-
vided in two samples, cutting on the gamma energy reconstructed
by the calorimeter. The resolution shows a strong correlation
with gamma energy, as one can expect from LXe characteristics.
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5.5.2 Dalitz sample

The offsets between TC and Xenon can be evaluated also on a different data
sample, namely from the Dalitz decay, π0 → e+e−γ generated during a calibration
run: we switch from a muon beam with MEG target to a pion beam with dedicated
target. The main purpose of this calibration run is to obtain a reference energy
release in Liquid Xenon calorimeter to characterize its energy resolution in the
signal region (for an extensive discussion see, for example, [41]).

Figure 5.24: Sketch of the Dalitz decay sample.

The Dalitz sample is a very useful one, since the Dalitz and the µ → eγ
decays have very similar topology. In fact, as shown in fig. 5.24, for electron not
reconstructed in the spectrometer, the γ detected in the Xenon and the positron
detected in the Timing Counter could mimic a µ → eγ decay. The Dalitz decay
hitmap as seen by the timing counter is shown in fig. 5.25.

The Dalitz decay was used as a control sample to determine the absolute offset
between Timing Counter and LXe calorimeter. The procedure used is the same
as described in sec. 5.5.1: for each bar, the time difference spectrum between the
detectors are acquired and fitted by means of a gaussian function. The extrapo-
lated mean of the distribution represents the offset between liquid xenon and the
timing counter. Fig. 5.26 shows the results obtained for each bars. They are in
good agreement to what already calculated in the Boron sample, confirming the
reliability of the used calibration constant.
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Figure 5.25: Dalitz decay events hitmap.
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Figure 5.26: Offset calculated on Dalitz sample.
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Chapter 6

The Timing Counter
performances

In this chapter I will review the timing resolution and impact point reconstruction
of the Timing Counter in the last two years of data acquisition time (years 2009÷
2010). Then I will report about the TC and LXe combined analysis of the timing of
radiative decay events. This is the way for measuring the whole apparatus timing
resolution between positron and gamma.

6.1 Study of intrinsic Timing Counter resolution

In order to study the Timing Counter timing resolution in the experimental con-
ditions, an analysis tool has been developed, based on the Michel events that
involved a set of adjacent bars. In particular, we used the so called “double” and
“triple” data sample, meaning a cluster made by 2 or 3 consecutive bars hit in
coincidence by the same positron (fig. 6.1).

Figure 6.1: A triple bars cluster

Clusters with greater multiplicity are not suitable to be used for timing resolu-
tion evaluation purposes, both for low statistic and significant multiple scattering
effects in the positron propagation between the bars.

Considering a double bar sample, the times measured by each bar are:
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Figure 6.2: Distribution of bar multiplicity in Timing Counter clusters.

TA = Tphys

TB = Tphys +
l

c
(6.1)

where Tphys is the true impact time on Timing Counter and l is the trajectory
length between the two bars. The time difference distribution ∆T = TB − TA will
have a Gaussian shape with mean equal to the mean value of l/c and width equal
to σ∆T . We can made the reasonable assumption that the two bars resolutions are
equal and that the uncertainty on l/c is negligible; in this case we can extract the
single bar resolution as:

σ∆T =
√
σ2
TA

+ σ2
TB
'
√

2σT , (6.2)

that implies:

σT '
σ∆T√

2
. (6.3)

In a similar way, in the case of the triple sample, one can define the difference
∆Tas:

∆T =
TB + TA

2
− TC . (6.4)

Also in this case the distribution will have Gaussian shape but, differently from
the double sample, it will be centered around zero. In fact, the shift related to
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the positron propagation is recovered using the triple sample. This technique will
be extensively used in the Timing Counter performances evaluation; moreover,
substituting the impact time with the impact position measured by each bar, we
obtain an useful tool for evaluating also the resolution on the positron impact
point.

Making the same assumption made above for the double sample, we can extract
the single bar resolution as:

σ∆T =

√
σ2
TA

+ σ2
TB

4
+ σ2

TC
'
√

3

2
σT

σT '
√

2

3
σ∆T . (6.5)

6.1.1 Fit of the time difference distributions

As already said in the previous section, the time difference distributions were fitted
by using a gaussian function. This method gives quite good results, but does not
take into account the tails of distributions, which include uncorrelated events that
can generate a worsening of the evaluated resolutions. An example of a time
difference distribution fitted by a single Gaussian function is shown in fig. 6.3. In
this case, the estimated resolution results to be 103± 4 ps.

Figure 6.3: Plot of the time difference distribution for double events sample,
with single gaussian fit superimposed. The estimated resolution
results to be σ = 103 ps.

In order to have a better estimate, we try to fit the same distribution using
a more extended function, namely the sum of a Gaussian function with a second
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order polynomial. In this way, also the tails of the distributions should be taken
into account; the time resolution can be evaluated as the width of the core gaussian,
that results narrower respect to the one obtained by the previous fit, as shown in
fig. 6.4, where the same distribution of fig. 6.3 is fitted with the new function,
obtaining σT = 85± 3 ps.

Figure 6.4: Plot of the time difference distribution for double events sample,
with gaussian + order 2 polynomial fit superimposed. The es-
timated resolution increases respect to fig.6.3 and results to be
σ = 85 ps.

The fraction of events that falls in the tail of the distribution was calculated and
resulted to be ∼ 3% of the total number of events; thus, concerning the statistical
effect, this is absolutely negligible. Vice versa, the effect on timing resolution is
really appreciable: in fig. 6.5 it is shown the comparison between the resolution
evaluated using the two different fit functions. The mean increase in the resolution
is ∼ 10 ps, meaning about a 15% improvements in the estimated resolution.

The same test was repeated using a triple bar sample, with the results shown
in fig. 6.6, Also in this case, the mean increase in the resolution evaluation is
∼ 10 ps. Therefore we finally decided to use the Gaussian+polynomial function
as the default one for the resolution extrapolation from double and triple sample.

6.1.2 Run 2010 timing resolutions

In order to estimate the final timing resolution of our detector in the experimen-
tal conditions, we analyze a sample of the same data set used for MEG physics
analysis, with the technique described in sec. 6.1 and sec. 6.1.1.

The results obtained on the double bar sample are shown in fig. 6.7. All the
bar resolutions except one lay in the range 60÷80 ps, that is quite close the target
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Figure 6.5: Summary of the time resolutions obtained on double sample, with
two different fit functions: single gaussian (red markers) and gaus-
sian + order 2 polynomial (black markers).

Figure 6.6: Summary of the time resolutions obtained on triple sample, with
two different fit functions: single gaussian (red markers) and gaus-
sian + order 2 polynomial (black markers).

value (100 ps FWHM, corresponding to ∼ 45 ps, see chapter 3), thus showing also
a good uniformity detector response.

Fig. 6.8 shows the summary of the results obtained using the triple bar sample:
as one can see, the mean improvement of using this sample is ∼ 10 ps, laying the
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Figure 6.7: Summary of the time resolutions obtained during 2010 run, eval-
uated on double bars sample.

Figure 6.8: Summary of the time resolutions obtained during 2010 run, eval-
uated on triple bars sample.

resolutions in the range 50÷ 70 ps, with exception for two bars1.

1The anomalous behaviour of bar 8 (7−8 in case of triple sample) has been investigated during
the run time; the problem was identified in low gains of the PMTs belonging to bar 7. Due to
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Comparing the results obtained during the MEG run time with the ones ob-
tained during the first beam test shown in sec. 3.5, we can notice a mean worsening
of 10÷15 ps. This is not surprising and can be explained considering the different
experimental conditions in which the two tests were performed, mainly:

• during the test at the Beam Test Facility (BTF) in National Laboratory of
Frascati (LNF), the bar resolution was measured in single bar each time,
determining the uncertainty on the T1 − T2 quantity using a START-STOP
technique [48], [49], thus avoiding effects due to the propagation between 2
bars;

• the energy of the BTF beam can be tuned with high precision (was 420MeV
during the test), resulting in a monochromatic beam; moreover, it was pos-
sible to have a beam with single-electron multiplicity per bunch, avoiding
effects correlated with multiple hits on bar;

• the spot size in the BTF is less than 5 mm, resulting in a very good deter-
mination of the positron impact point, whit respect to the Michel decays in
COBRA, that hit almost uniformly the Timing Counter, with consequent
effects due to the spread of the trajectories;

• finally, in BTF test there wasn’t magnetic field, allowing to operate at higher
amplitude pulse.

6.1.3 Resolutions stability

The stability of the detector performances was monitored during the whole run
time, comparing the Timing Counter timing resolutions evaluated on double and
triple data set acquired in different periods.

The results are shown in fig. 6.9 for the double bar sample. The overall stability
was found to be quite good, also if some little discrepancy of the order of 10 ps
appears. Anyway, these effects do not affect the whole detector (Timing Counter
and Liquid Xenon) teγ resolution, that will be described in sec. 6.2.

The triple sample (fig. 6.10) is more stable, with few bars with some differences
between different periods, mainly located in the upstream (bar number 15 − 29)
sector of the detector.

These results confirmed us the good operations of the Timing Counter during
the data acquisition time.

6.1.4 Comparison between 2010-2009 results

In order to investigate the detector resolutions during a time interval longer than
few months, we enlarged the study of the resolution stability, comparing the results

the difficulty in intervene during the run time, and being the involved bars performances not so
dramatic, we decided to postpone the maintenance of the PMTs to the 2011 beam shut-down,
in order to not waste useful DAQ time.
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Figure 6.9: Resolution stability during run 2010, evaluated on double bar sam-
ple. The different markers represent different data acquisition pe-
riods.
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Figure 6.10: Resolution stability during run 2010, evaluated on triple bar sam-
ple. The different markers represent different data acquisition
periods.

obtained during 2010 run with the resolutions measured during the previous data
acquisition period (2009).
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In this analysis we have to take in mind some crucial differences existing be-
tween the two data sets:

• some PMTs that shown a little decreasing of gain response were changed in
the detector maintenance performed during the 2010 beam shut down period;

• the full set of calibration described in chapter 5 were repeated at the begin-
ning of each DAQ period; in particular, those concerning the PMTs equal-
ization and consequently the template waveforms for Time Walk corrections
(sec. 5.2).

This means that the detector was not exactly in the same experimental condi-
tions between the two data period considered.

The results on the double sample are shown in fig. 6.11. We can notice a little
worsening of the resolution between the two data sets. For a couple of bars the
worsening is sensible greater, resulting about 20 ps. The differences can be better
evaluated having a look at fig. 6.12, where the σ(2010) − σ(2009) difference as a
function of the bar number is plotted. The overall effects, obtained mediating the
resolution differences over all the bars is 5 ps. The reasons for this effect will be
investigated during the 2011 beam shut-down.

In fig. 6.13 the results of the same analysis performed on a triple bar sample
are shown. In this case, the worsening is less evident, and mainly concentrate in
the upstream sector.

Figure 6.11: Comparison between resolution obtained in 2009 and 2010 runs,
evaluated on double bars sample.
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Figure 6.12: Summary of the differences in time resolutions between 2009 and
2010 runs, evaluated on double bar sample.

Figure 6.13: Comparison between resolution obtained in 2009 and 2010 runs,
evaluated on triple bars sample.
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6.2 The teγ resolution: the radiative decay sam-

ple

The crucial point in the evaluation of the detector performances is the measure-
ment of the teγ resolution, being this observable directly involved in the background
rejection (see sec. 1.4.2 and 1.4.3) and signal selection (see sec. 7.2).

A very useful tools in teγ resolution is given by the radiative muon decay (RMD)
µ+ → e+ν̄µνe. This kind of event is characterized by a coincident emission of
positron and photon, without any angular coincidence. The RMDs permit to
evaluate the overall detector performances, involving both the Timing Counter
and Liquid Xenon calorimeter, together with the positron and photons trajectories
reconstruction algorithms. The RMD data were taken in dedicated runs during the
run time and also during the MEG data acquisition, enabling the relative trigger
with an opportune prescale factor.
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Figure 6.14: ∆Teγ distributions on radiative decay sample, for run 2010 (Pro-
visional results).

The RMD data sample was selected applying the following cuts on the observ-
ables:

• 40 < Eγ < 47 MeV ;

• 45 < Ee < 55 MeV ;
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• θeγ, φeγ < 300 mrad.

The provisional result for the 2010 run is shown in fig. 6.14. The distribution
is fitted with a Gaussian function, that takes into account for the peak of corre-
lated events, plus a constant term, that considers the flat background due to the
accidental background events. The teγ resolution is extrapolated as the width of
the Gaussian function, and results to be σteγ = 151± 6 ps.

 (nsec)e t
-1 0 1

N
um

be
r 

of
 e

ve
nt

s /
(0

.0
80

 n
se

c)

0

500

1000

1500

2000

 8 ps±mean  =     0 
 10 ps±sigma = 149 

Figure 6.15: ∆Teγ distributions on radiative decay sample, for run 2009.

In fig. 6.15 it is shown the same plot, referred to the 2009 data [74]. The
result is almost unchanged with respect to the 2010 performances, being the teγ
resolution in this case σteγ = 149± 10 ps. It is also noteworthy that in both cases
the teγ distribution is absolutely well centered around zero, confirming the good
quality of the calibrations applied in order to synchronize the detectors response
5.5.

These results confirmed us the absolutely good stability of the whole detector
performances.

6.3 Impact point resolution

The evaluation of the positron impact point resolution can been performed with
the same technique used for the time resolution estimation (sec. 6.1). Also in this
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case, we take advantage of both double and triple bars data samples. We therefore
define the “z difference” ∆z as follow:

∆z = zB − zA, for double sample, (6.6)

∆z =
zB + zA

2
− zC , for triple sample, (6.7)

which permit us to estimate the z resolution as:

σ∆z =
√
σ2
zA

+ σ2
zB
'
√

2σz ⇒ σz '
σ∆z√

2
. (6.8)

σ∆z =

√
σ2
zA

+ σ2
zB

4
+ σ2

zC
'
√

3

2
σz ⇒ σz '

√
2

3
σ∆z, (6.9)

respectively for the double and triple bar data sample.
An example of a ∆z distribution for double bar events is shown in fig. 6.16.

Similarly to the time difference distribution, we can fit the distribution by means
of a Gaussian function and take the width as an estimate for the impact point
resolution. The mean of the distribution is obviously different from zero, because
of the inclination of the positron trajectories. So the mean value of the fitted
Gaussian function gives the mean distance between the impact positions on two
adjacent bars.

The summary of the position resolutions as a function of the bar number is
given in fig. 6.17. All resolutions lay in the range 1.5 cm < σz < 2.5 cm.

Concerning the triple bar sample, an example of a ∆z distribution is shown
in fig. 6.18. In this case, the distribution is clearly narrower with respect to the
double sample, and also centered around zero.

The summary of the z resolution evaluated on the triple bar sample as a
function of the bar number is shown in fig. 6.18. We can see a clear improve-
ment with respect to the double bar sample: the resolutions lay in the range
1.0 cm < σz < 1.5 cm.
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Figure 6.16: ∆z distributions for double bar sample, with Gaussian fit super-
imposed. The width and the mean of the Gaussian represent
respectively the z resolution and the mean distance between the
impact positions on two adjacent bars.
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Figure 6.17: Summary of the z resolution as a function of bar number, evalu-
ated on double bar sample.
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Figure 6.18: ∆z distributions for triple bar sample, with Gaussian fit super-
imposed.
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Figure 6.19: Summary of the z resolution as a function of bar number, evalu-
ated on triple bar sample.
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Chapter 7

Physics analysis and results

In this chapter the results obtained by the analysis of the 2008 run (9.5 × 1013µ
collected in the period September-December) will be presented.

The analysis is based on a “blind analysis” technique in order to avoid any
possible bias in results, and it is made by means of a maximum likelihood fit per-
formed on the spectra of the kinematic variables that define the µ → eγ signal.
The normalization scheme is constructed in such a way to be independent of the
instantaneous beam rate and nearly insensitive to positron acceptance and effi-
ciency factors associated with DC and TC detectors. The confidence level on the
resulting branching ratio is evaluated by means of Toy Monte Carlo simulations
based on the calculated probability density functions.

7.1 Blinding box

At the first stage of the data processing, a data reduction (pre-selection) is per-
formed by selecting events with conservative criteria that require the time of the
photon detector signal to be close to that of a timing counter hit, and at least one
track to be detected by the drift chamber system. This reduces the data size to
16% of the recorded events. The pre-selected data are again processed and those
events falling into a pre-defined window (blinding-box), containing the signal re-
gion on the γ energy and the time difference between the γ-ray and the positron,
are “hidden”, that means written to a separate data-stream, inaccessible to the
experimenter. The use of a blind-box analysis is a consolidate technique in particle
physics, especially when one has the need to estimate accurately systematic errors
for the measurement, without biases induced by the experimenter himself.

The box is defined in the [teγ, Eγ] plane by the following cuts:

• 48 MeV < Eγ < 58 MeV ;

• |∆teγ| ≤ 1 ns.

Event distribution after the pre-selection and blinding processes is shown in
fig. 7.1. The data in the region outside the blinding box (namely the side-bands)
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Figure 7.1: Plot of the MEG blinding box. Outside the signal box, one can
recognize the side-bands used for calibration purposes.

are suitable to be used for calibration and background estimation purposes; in
particular, one can identify two kind of side-bands:

• the time side-bands, defined by |∆teγ| ≥ 1 ns;

• the energy side bands, defined by 44 MeV ≤ Eγ ≤ 48 MeV .

Both side-bands are used for background level estimation: the time side-bands
are used to study the accidental events spectra, particularly for Eγ, while the
energy side-bands, in which the main part of the µ radiative decay events accu-
mulates, is used for time resolution and TC-LXe offsets evaluate, and to estimate
the number of radiative decay in the analysis region.

7.2 Probability density function

In order to extract the number of signal, radiative and accidental background a
maximization of a likelihood function is performed. The likelihood function is built
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starting from the probability density function (PDF) that describe each kinematic
observable. In the following we will describe how each PDF is determined.

7.2.1 Signal PDF

The signal PDF S is defined as the product of the statistical independent PDFs
evaluated for each observable:

S(Eγ, Ee, θeγ, φeγ, teγ) = S1(Eγ)S2(Ee)S3(θeγ)S4(φeγ)S5(teγ). (7.1)

The γ energy PDF, S1(Eγ) (fig. 7.2a), is defined by the calorimeter response
function for Eγ measured in dedicated π0 runs. The shape is asymmetric with
a low energy tail due to γ rays converting in front of the Liquid Xenon sensitive
volume. A tri-dimensional mapping of the parameters is also made, since they
depend to some extent on the position of the γ-ray conversion, mainly on the
conversion depth inside the detector (w). As an example, the average resolution
for deep events (w > 2 cm) is measured to be ∆E/E = (5.8 ± 0.35)% FWHM ,
with a right tail of σR = (2.0± 0.15 %).

The positron energy PDF, S2(Ee) (fig. 7.2b), is evaluated by fitting the kine-
matical edge of the measured Michel positron energy spectrum at 52.8 MeV . The
fit function is formed by folding the theoretical Michel spectrum form with the
energy-dependent detector efficiency, and the response function for mono-energetic
positrons. The latter is extracetd from the Monte Carlo simulation of µ→ eγ de-
cays, and is well described by a triple Gaussian function (a sum of a core and two
tail components). The resolutions extracted from data are 374 KeV, 1.06 MeV
and 2.0 MeV in sigma for the core component and the two tails, with correspond-
ing fractions of 60%, 33% and 7%, respectively. The uncertainty on these numbers
is dominated by systematic effects and was determinated by varying both the event
selection and fitting criteria.

The angular PDFs S3(θeγ) and S4(φeγ) (fig. 7.2c,d) are formed combining the
contributions of positron emission angles, muon decay vertex reconstruction and
photon position resolution in the Liquid Xenon detector.

The positron direction and decay vertex position are determined by projecting
the positron back to the target. The γ-ray direction is defined by the line linking
its reconstructed conversion point in the LXe detector with the vertex of the can-
didate companion positron. The resolution of the angles between the two particles
is evaluated by combining the angular resolution and the vertex position resolu-
tion in the positron detector and the position resolution in the photon detector.
The positron angular resolution is evaluated by exploiting tracks that make two
turns in the spectrometer, where each turn is treated as an independent track.
The θ and φ resolutions are extracted separately from the difference of the two
track segments at the point of closest approach to the beam-axis and result to
be σθ = 18 mrad, σφ = 10 mrad. Because of this difference in resolution, θeγ
and φeγ are separately treated in the analysis. The vertex position resolutions are
measured, using the double turn, technique, to be ∼ 3.2 mm and ∼ 4.5 mm in the
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vertical and horizontal directions on the target plane respectively. These values
were confirmed independently by a method which reconstructs the edges of several
holes placed in the target.

The position of the photon conversion point is reconstructed by using the distri-
bution of the light seen by the PMTs near the incident position. The performance
of the position reconstruction is evaluated by a Monte Carlo simulation and it is
validated in a dedicated calibrations runs by placing a lead collimator in front of
the photon detector. The average position resolutions along the two orthogonal
front-face sides of the LXe detector and the depth direction (w) are estimateed to
be ∼ 5 mm and ∼ 6 mm respectively.

On combining the individual resolutions, the averaged opening-angle resolu-
tions of 21 and 14 mrad for θeγ and φeγ are obtained respectively.

The time teγ PDF, S5(teγ) (fig. 7.2e), depends on the positron and gamma
timing measured by the detector, corrected for the particles time of flight, and
consist in a single Gaussian function with width equal to the teγ resolution. The
resolutions on this observable is quoted on the radiative decay peak that is clearly
visible in the Eγ sideband. The teγ peak is fitted in the region 40 < Eγ < 46 MeV ,
and, taking into account a small dependence from Eγ observed in π0 runs, the
timing resolution is estimated to be σteγ = (148± 17) ps.
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Figure 7.2: PDFs for µ+ → e+γ signal event.
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7.2.2 Radiative decay PDF

The µ+ → e+νeν̄µ kinematical constraints correlate all the observables except of
the teγ one. Thus the RMD PDF can be defined as:

R(Eγ, Ee, teγ, θeγ, φeγ) = R1(Eγ, Ee, θeγ, φeγ)R2(teγ). (7.2)

R2(teγ) is defined as the same function as for the teγ signal PDF, while
R1(Eγ, Ee, θeγ, φeγ) is obtained by folding the theoretical distribution of the radia-
tive decay with the detector experimental resolutions and acceptance functions.

The projections of the RMD PDF on each variable are shown in fig. 7.3.

Figure 7.3: Radiative PDFs. Panel from a) to d) represent the projection
of R1(Eγ , Ee, θeγ , φeγ) on each variable, while in e) it is shown
R2(teγ).
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7.2.3 Accidental background PDF

As explained in sec. 1.4.3 the accidental background is given by a positron and
a γ-ray in time and spatial coincidence, coming from uncorrelated events. Thus
there are no correlations between each observables, and the PDF can be defined as
the product of statistically independent PDFs for the five observables in a similar
way with respect to the signal PDF:

B(Eγ, Ee, θeγ, φeγ, teγ) = B1(Eγ)B2(Ee)B3(θeγ)B4(φeγ)B5(teγ). (7.3)

B1(Eγ) (fig. 7.4a) is obtained by fitting the background spectrum in the
teγ sidebands, measuring separately 38 tridimensional sections of the calorime-
ter. Each spectrum is fitted by a spectrum evaluated in Monte Carlo simulation
smeared by the detector response.

B2(Ee) (fig. 7.4b) is obtained by fitting the Michel spectrum, and it is common
to all the events in the analysis window.

B5(teγ) (fig. 7.4e) is described by a flat distribution, because of the accidental
nature of this kind of background.

The angular PDFs, B3(θeγ) and B4(φeγ) (fig. 7.4c,d), are extracted from all
the side-bands data. One would expect to find flat distribution in cos θeγ and φeγ
but this was not the case. In fact, the experimental data were found to be biassed
by the online selection algorithm and also by the detector acceptance. Thus the
angular PDFs are evaluated along 8 possible directions.

The 5 individual PDFs are shown in fig. 7.4.

7.3 Likelihood analysis

The blinding-box is opened after completing the optimization of the analysis algo-
rithms and the background study. The number of µ→ eγ events is determined by
means of a maximum likelihood fit in the analysis window region defined by the
following cuts:

• 46 < Eγ < 60 MeV ,

• 50 < Ee < 56 MeV ,

• |teγ| < 1 ns,

• |θeγ| < 100 mrad,

• |φeγ| < 100 mrad.

The analysis window is slightly larger with respect to the signal box: the cuts
are approximately ten sigmas wide compared to the measured resolutions, in such
a way to fully contain the signal events and to include some background events as
well.
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Figure 7.4: PDFs for accidental background.

An extended likelihood function L is constructed as:

L(NSIG, NRMD, NBG) =
NNobsexp

−N

Nobs!

Nobs∏
i=1

[
NSIG

N
S +

NRMD

N
R +

NBG

N
B

]
, (7.4)

where NSIG, NRMD, and NBG are the number of µ→ eγ, RMD and BG events
respectively, while S, R and B are their respective probability density functions
(described in sec. 7.2.1, 7.2.2 and 7.2.3). Nobs = 1189 is defined as the total
number of events observed in the analysis window and N = NSIG +NRMD +NBG.

The likelihood fit has been initialized with the number of expected RMD in the
analysis region. This number is calculated to be 40 ± 8, evaluated by scaling the
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Figure 7.5: Projected distributions for each observable, containing all events
in the analysis window. A solid line shows the likelihood functions
fitted to the data.

number of events in the peak of the teγ distribution, obtained with lower energy
cuts, using the probability ratio in the PDFs.

The maximum likelihood fit results are:

NSIG = 4.3+3.9
−2.9 events

NRMD = 25+17
−16 events

NBG = 1159+38
−37 events
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The fitted number of radiative decay events agrees with the expected one within
the errors.

The event distributions of the five observables for all events in the analysis
window are shown in fig. 7.5, together with the projection of the fitted likelihood
function.

7.4 Normalization scheme

A Branching Ratio is defined as the decay rate for a particular process, normalized
to the total one; in MEG, we have:

BR(µ+ → e+γ) ≡ Γ(µ+ → e+γ)

Γtot
. (7.5)

Because of the total decay rate of µ is wholly made up of Michel decay (with a
small correction deriving from radiative decays), we can normalized the Γ(µ+ →
e+γ) to the Michel decay rate, Γ(µ+ → e+νeν̄µ). Therefore we define:

BR(µ+ → e+γ) =
Γ(µ+ → e+γ)

Γ(µ+ → e+νeν̄µ)
. (7.6)

Thus, one can calculate the Branching Ratio in such a way to be independent
of the instantaneous beam rate and nearly insensitive to positron acceptance and
efficiency factors associated with the DCH and TC detectors, as these differ only
slightly between the signal and the normalization samples, due to small momen-
tum dependent efficiency [75]. This is a quite useful technique, in particular for
2008 run, because of the DC operations showed some instability during the data
acquisition time.

The number of Michel decays NM detected can be written as:

Neνν̄ = Nµ ×Beνν̄ × f eeνν̄ × T ×
1

Peνν̄
× εtrigνν̄ × ATCeνν̄ × εDCeνν̄ (7.7)

where:

• Nµ is the number of muon stopped in the target;

• Beνν̄ is the Michel decay branching ratio;

• f eeνν̄ is the fraction of Michel events with energy greater than 50 MeV (the
cut in the analysis window);

• T is the data acquisition livetime;

• Peνν̄ is the trigger prescaling factor (the number of events which have to
occour before one of those is recorded by the DAQ);

• εtrigνν̄ is probability to have a trigger fired, if the event satisfy all the selection
criteria;
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• ATCeνν̄ is the probability to have at least one hit on TC, once a positron is
emitted in the acceptance and tracked by the DC;

• εDCeνν̄ is the tracking efficiency for the positron emitted in the DC geometrical
acceptance.

A similar expression can be written for the number of signal events:

Neγ = Nµ ×Beγ × T × εtrigeγ × ATCeγ × εDCeγ × εeγ × AGEOeγ (7.8)

with the same meaning of symbols. In eq. 7.8, additional factors are εeγ and
AGEOeγ , defined as γ-ray detection and reconstruction efficiency (including selec-
tion criteria) and conditional acceptance of γ-ray detection from µ → eγ events
(probability that the γ-ray from µ → eγ decay is detected in the fiducial volume
of LXe calorimeter when the corresponding e+ is detected in the spectrometer).
Moreover, in the last equation the prescaling factor is considered to be 1 and thus
omitted.

Finally, solving eq. 7.7 and 7.8 for the branching ratios and taking the ratio,
one obtain:

Beγ

Beνν̄

=
NSIG

Neνν̄

× f eeνν̄
P
× εtrigeνν̄

εtrigeγ

× ATCeνν̄
ATCeγ

× εDCeνν̄
εDCeγ
× 1

Ageoeγ
× 1

εeγ
=
NSIG

k
. (7.9)

where the normalization factor k takes into account all the parameters. The
definitions and the values of the parameters that appear in eq. 7.9 are summarized
in tab. 7.1.

Performing the calculations, the normalizing factor results to be k = (5.2 ±
0.5) × 1011; this number will be used in sec. 7.6 to obtain the upper limit on
µ+ → e+γ branching ratio.

Neνν̄ 11414
f eeνν̄ 0.101± 0.006
P 107

εtrigeγ /ε
trig
νν̄ 0.66± 0.03

ATCeγ /A
TC
eνν̄ 1.11± 0.02

εDCeγ /ε
DC
eνν̄ 1.02± 0.005

Ageoeγ 0.98± 0.005
εeγ 0.63± 0.04
k (5.2± 0.5)× 1011

Table 7.1: Values of the parameters that appear in eq. 7.9 (ratio given as
signal to Michel).
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7.5 Confidence level scan

The 90% confidence level (C.L.) intervals on NSIG and NRMD are determined by
the Feldman−Cousins approach [76]. A contour of 90% C.L. in the [NSIG, NRMD]
plane is constructed by means of a toy Monte Carlo simulation.

The starting point of this technique is the result obtained by the maximum
likelihood fit described in sec. 7.3, NSIG = 4.3 and NRMD = 25. Then, one pick
up a random point (N i

SIG, N
i
RMD) in the [NSIG, NRMD] plane, and generates

a set of pseudo-experiments (1000 for each point) based on the measured PDF
distributions, assumingN i

SIG andN i
RMD as true expection value. Moreover, in each

simulated experiment the number of signal and radiative decay events can fluctuate
accordingly to the Poisson statistic. A maximum likelihood fit is performed to
all the simulated experiment, in order to extract N j

SIG and N j
RMD, where the

upperscript j denoted the toy experiment number.
Finally, the likelihood ratio for data and toy Monte Carlo are calculated as

follow:

Ri
DATA =

L(N i
SIG, N

i
RMD, N

best0
BG )

L(N best0
SIG , N

best0
RMD, N

best0
BG )

(7.10)

Ri
MCj

=
L(N i

SIG, N
i
RMD, N

best0
BG )

L(N
bestj
SIG , N

bestj
RMD, N

bestj
BG )

(7.11)

The toy experiment are then classified in a decreasing order, based on the like-
lihood ratio. After the ordering, the fraction of toy MC which have a likelihood
ratio Ri

MCj
greater than the one obtained for the real experiment, Ri

DATA is calcu-

lated. If the fraction is ≤ 0.9, then the point (N i
SIG, N

i
RMD) belongs to the 90%

C.L. region of the [NSIG, NRMD] plane.
This procedure is iterated for many choice of the (N i

SIG, N
i
RMD) point, in such

a way to scan the contour of the C.L. region. A schematic representation of the
C.L. region determination via the Feldman−Cousins approach is shown in fig. 7.6,
while the scan of the confidence level versus NSIG is shown in fig. 7.7.

7.6 Upper limit on µ+ → e+γ branching ratio

The limit for NSIG is obtained from the projection of the contour of the 90%
confidence level region on the NSIG-axis. The obtained upper limit is NSIG ≤ 14.7,
where the systematic error is included. The largest contribution to the systematic
error coming from uncertainties on:

• selection of photon pile-up events (∆NSIG=1.2);

• response function of the positron energy (∆NSIG=1.1);

• photon energy scale (∆NSIG=0.4);
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C.L. contour

N
RM
D

Figure 7.6: Schematic representation of the construction of 90% confidence
level contour by Feldman-Cousins approach.

Figure 7.7: Confidence level as a function of the expected number of signal
events.

• positron angular resolution (∆NSIG=1.2).

The upper limit on µ+ → e+γ branching ratio is then calculated with the
technique explained in sec. 7.4. Thus, we finally obtain:

BR(µ+ → e+γ) ≤ NSIG

k
=

14.7

5.2× 1011
= 2.8× 10−11 (90% C.L.) (7.12)
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This result is very close the current best estimation for the upper limit on
BR(µ+ → e+γ) set by the MEGA experiment, and show how, starting from the
analysis of the 2009 and 2010 data that is currently on going, MEG can really
explore new frontiers in the Lepton Flavour Violation physics.
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Conclusions

The MEG experiment has started the physics data acquisition in 2008, looking for
the µ→ eγ decay. As shown in the final chapter of this thesis, the first published
data (related to the 2008 physics run) show the possibility to reach the expected
sensitivity on the BR(µ→ eγ), thus confirming MEG as a cutting edge experiment
in the particle physics framework, with remarkable possiblity to make a discovery
in fundamental physics. The 2009 and 2010 data are currently under analysis, and
will give really important indications about the BR(µ→ eγ).

The good results of MEG follow from the development of a dedicated experi-
mental apparatus, able to measure the kinematic variables that define the µ→ eγ
with extreme high resolutions, in order to have a reliable background rejection,
needed to explore such a little Branching Ratio.

In particular, in this thesis I showed the development, the calibrations and
the operations of the Timing Counter detector, which is devoted to the positron
timing and impact positron measurement. The detector, split in two sub-detector
each realizing different tasks, had long stable operations during the whole data
acquisition time, showing performances very close to the expected one.

The achieved time resolution on the positron timing was found to be σt ' 60 ps.
This results in an overall e+-γ timing resolution σ(teγ) = 150 ps, considering the
contributions coming from Timing Counter and LXe detector, and particles time-
of-flight reconstruction.

The position reconstruction obtained using longitudinal detector shows a reso-
lution 1.0 cm ≤ σZ ≤ 1.5 cm. The impact point reconstruction with the transverse
detector has a slightly worse performances, σZ = 1.6 cm or σZ = 2.5 cm, respec-
tively for the down- and up-stream TC module.





149

Appendix A

Background

A.1 Physics background

The most important physics background to the µ+ → e+γ searching is given by the
muon radiative decay µ+ → e+νeν̄µ (BR=1.4% for Eγ ≥ 10 MeV ), when e+ and
γ are emitted nearly in opposite direction with neutrinos carrying off a negligible
amount of energy, thus mimicking a signal event. The differential decay width of
this decay has been calculated as a function of the positron and gamma energy,
Ee and Eγ respectively, normalized to the maximum allowed energy, namely x =
2Ee/mµ and y = 2Eγ/mµ [77] [78].

The ranges of x and y are the following:

2
√
r < x < 1 + r for 0 < y ≤ 1−

√
r, (A.1)

(1− y) +
r

(1− y)
≤ x ≤ 1 + r for 1−

√
r < y ≤ 1− r, (A.2)

where r = (me/mµ)2.
The kinematic case when x ' 1 and y ' is the critical one as background for

µ+ → e+γ searching. The spectrum of photons from radiative decay was already
shown in fig.1.10.

In an approximation of the limit of x ' 1 and y ', with opening angle between
e+ and γ trajectories θeγ ' 180◦, the differential decay width of radiative decay is
given by [79]:

dΓ(µ+ → e+νν̄γ) '
G2
Fm

5
µα

768π4
×[

(1− x)2(1− Pµcosθe) +

(
4(1− x)(1− y)− 1

2
z2

)
(1 + Pµcosθe)

]
dxdydzd(cosθe)

(A.3)
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where θe is the angle between the muon spin and the e+ momentum direction,
GF is the Fermi coupling costant, α is the fine-structure costant, z = π − θeγ,
and cos z is expanded in a polynomial of z, being z small; only the terms up
to the second order are kept. Moreover, in the case x ' 1 and y ', the effect
of the e+ mass is found to be negligible (order of (me/mµ)2), and therefore it is
omitted. When x = 1 and y = this differential decay vanishes. However, in a
real experiment, the finite detector resolutions introduce background events which
would ultimately limit the sensitivity of a search for µ+ → e+γ.

Having defined the detector resolution, the sensitivity limitation from the ra-
diative decay background can be estimated by an integration of the differential
decay width over the kinematic signal box, normalized to the total muon decay
width:

dB(µ+ → e+νν̄γ) =
1

Γ(µ+ → e+νν̄)

∫ 1

1−δx dx
∫ 1

1−δy dy
∫ min(δz,2

√
(1−x)(1−y))

0
dz dΓ(µ+→e+νν̄γ)

dxdydz
=

= α
16π

[J1 + J2] d(cosθe) ,(A.4)

where δx, δy and δz represent half width of the µ+ → e+γ signal region for x,
y and z respectively; Γ(µ+ → e+γ) is the total muon decay width. I have consider
here only unpolarized muons, as the MEG case. J1 and J2 are given by:

J1 = (δx)4(δx)2, J2 =
8

3
(δx)3(δy)3, (A.5)

in the case δz > 2
√
δxδy, or

J1 =
8

3
(δx)3(δy)(

δz

2
)2 − 2(δx)2(

δz

2
)4 +

1

3

1

(δy)2
(
δz

2
)8

J2 = 8(δx)2(δy)2(
δz

2
)2 − 8(δx)(δy)(

δz

2
)4 +

8

3
(
δz

2
)6, (A.6)

if δz < 2
√
δxδy.

A.2 Accidental background

Increasing the muon decay rate under observation, the accidental background be-
comes more important than the physical one. This is the case of the present
µ+ → e+ +γ search experiment. The accidental evetn rate normalized to the total
decay rate (Bacc) can be estimated as [24]:

Bacc = Rµ · f 0
e f

0
γ∆teγ

(
∆Ωeγ

4π

)
, (A.7)
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where Rµ is the instantaneous muon rate, f 0
e and f 0

γ are, respectively, the
integrated e+ and γ spectra in the energy signal window. They include their
corresponding branching ratios. ∆teγ and ∆Ωeγ are, respectively, the full widths
of relatinve timing and angles between e+ and γ close to the expected value dictated
by the kinematic constraints. ∆teγ and ∆Ωeγ are determinated by the detector
resolution functions.

Given the experimental limits to the size of the signal window, Bacc can be
evaluated. Let us take δx, δy, δθeγ and δteγ to be the half width of the signal
window for e+ and γ energy, angle θeγ, and relative timing between e+ and γ,
respectively. In this case f 0

e can be estimated by integrating the Michel spectrum
over 1− δx < x < 1, yielding f 0

e ' 2(δx). Given the angular resolution, δθeγ, the

back-to-back resolution ∆Ωeγ
4π

is represented by ∆Ωeγ
4π

=
δθ2eγ

4
.

f 0
γ is related to the radiative muon decay µ+ → e+νeν̄µγ or to e+ annihilation

in flight from the normal muon decay µ+ → e+νeν̄µ. As an example, in the first
case, the differential branching ratio must be integrated over 2π for θeγ, and then
over the γ energy within the width of the signal region (1 − δy < y < 1). For
unpolarized muons, one obtains:

f 0
γ =

1∫
1−δy

dy

∫
d(cosθγ)

dB(µ+ → e+νν̄γ)

dyd(cosθγ)
' (

α

2π
)(δy)2 [ln(δy) + 7.33] . (A.8)

From eq.A.2 one can deduce that f 0
γ for µ+ → e+νeν̄µγ is roughly proportional

to (δy)2.
From the above, the effective branching ratio of accidental background is given

by:

Bacc = Rµ · (2δx) ·
[ α

2π
(δy)2(ln(δy) + 7.33)

]
· (δθ

2

4
) · (2δt) (A.9)
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