Status of the MEG Experiment

W. Ootani
ICEPP, University of Tokyo
for the MEG collaboration
Outline

- Physics motivations for the MEG experiment
- MEG detector
- Status of the sub-detectors
 - Beam line
 - Photon detector
 - Positron spectrometer
 - Magnet
 - Drift chamber
 - Timing counter
 - Trigger, DAQ, and slow control
- Summary
MEG Collaboration

A. Baldini4, A. de Bari5, L. M. Barkov1, C. Bemporad4, P. Cattaneo5,
G. Cecchet5, F. Cei4, T. Doke8, J. Egger6, M. Grassi4, A. A. Grebenuk1,
T. Haruyama4, P. -R. Kettle6, B. Khazin1, J. Kikuchi8, Y. Kuno3, A. Maki2,
Y. Makida2, T. Mashimo7, S. Mihara7, T. Mitsuhashi7, T. Mori7, D. Nocol4,
H. Nishiguchi7, H. Okada8, W. Ootani7, K. Ozone7, R. Pazzi4, S. Ritt6,
T. Saeki7, R. Sawada7, F. Sergiampietri4, G. Signorelli4, V. P. Smakhtin1,
S. Suzuki8, K. Terasawa8, A. Yamamoto2, M. Yamashita7,
K. Yoshimura2, T. Yoshimura8

1 BINP, Novosibirsk, Russia
2 KEK, Tsukuba, Japan
3 Osaka University, Osaka, Japan
4 INFN, University and Scuola Normale Superiore, Pisa, Italy
5 INFN and University of Pavia, Pavia, Italy
6 PSI Villigen, Switzerland
7 University of Tokyo, Tokyo, Japan
8 Waseda University, Tokyo, Japan
$\mu \rightarrow e \gamma$

- Event signature
 - Back to back
 - Time coincident
 - $E_\mu = E_\gamma = 52.8$ MeV
- Lepton-family-number nonconserving process
- Extremely small branching ratio in the standard model with finite neutrino mass

 \[\text{ex.) BR}(\mu \rightarrow e \gamma) \sim 10^{-52} \text{ for } m_\nu \sim 0.05 \text{eV} \]
- Sensitive to physics beyond the standard model
 \[\text{SUSY-GUT, SUSY+ } \right \uparrow \, \cdots \]
- Present experimental bound
 \[\text{BR}(\mu^+ e^- \gamma) < 1.2 \times 10^{-11} \text{ (MEGA experiment, 1999)} \]
- New experiment with a sensitivity of BR$\sim 10^{-14}$ planned at PSI
Physics Motivations

- SU(5) SUSY-GUT predicts BR \(\mu \rightarrow e \gamma \) = \(10^{-15} - 10^{-13}\)
 (SO(10) SUSY-GUT: even larger value \(10^{-13} - 10^{-11}\))
- Small \(\tan\beta\) excluded by LEP SUSY search

J. Hisano et al.,
Physics Motivations, cont’d

After the recent SNO measurements...

SNO collaboration, Q.R.Ahamd et al., PRL89(2002)010302

Our goal

- Solar ν meas. strongly favor the LMA.
- Large $\tan\beta \rightarrow$ large $\mu e\gamma$ rate
MEG Detector

- Liquid xenon photon detector
- Positron spectrometer with gradient magnetic field (COBRA spectrometer)
- World’s most intense DC muon beam at PSI
- Sensitivity down to BR~10^{-14}
- Engineering/physics run will start in 2004
Sensitivity and Background

• Single event sensitivity

\[N_\mu = 1 \times 10^8 \text{sec}, \quad T = 2.2 \times 10^7 \text{sec}, \quad \Omega/4\pi = 0.09, \quad \varepsilon_{\gamma} = 0.7, \varepsilon_e = 0.95 \]

\[\Rightarrow \quad \text{BR}(\mu^+ \rightarrow e^+\gamma) \sim 0.94 \times 10^{-14} \]

• Major backgrounds

 • Accidental Coincidence
 Michel decay(\(\mu^+ \rightarrow e^+\bar{\nu}_e\nu_e\)) + random \(\nu\)
 \[B_{\text{accidental}} \sim 5 \times 10^{-15} \]

 • Radiative muon decays
 \(\mu^+ \rightarrow e^+\bar{\nu}_e\nu_e\)
 \[B_{\text{prompt}} \sim 10^{-17} \]

These values could be changed according to the actually achieved performance of the detector.
Beam Line

- DC muon beam rate above $10^8 \mu/s$ at $\pi E5$ beam line
- Two beam branches ("U" and "Z")
- Comparative study of the branches is in progress.
- Positron contamination can be reduced by:
 1. Combination of an energy degrader and a magnetic selection
 2. Wien filter

<table>
<thead>
<tr>
<th>Condition</th>
<th>"Z"-branch</th>
<th>"U"-branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>No degrader, transmitted to zone</td>
<td>$3.6 \times 10^8 \mu+/s$</td>
<td>$3.5 \times 10^8 \mu+/s$</td>
</tr>
<tr>
<td></td>
<td>$6.0 \times 10^6 e+/s$</td>
<td>$1.6 \times 10^9 e+/s$</td>
</tr>
<tr>
<td>Degrader at final focus</td>
<td>$2.0 \times 10^8 \mu+/s$</td>
<td>$3.2 \times 10^7 \mu+/s$</td>
</tr>
<tr>
<td>m/e ratio at Muon Peak</td>
<td>9</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Decision on the choice of the beam branch will be made after the beam tests with "U"-branch in Aug.2002 and with "Z"-branch in Nov.2002.
Liquid Xenon Photon Detector

- High light yield (75% of NaI(Tl))
- Fast signals
 → avoid accidental pileups
- Spatially uniform response
 → no need for segmentation

Current design

- Active volume of LXe: ~800 liter
- Scintillation light is collected by ~800 PMTs immersed in LXe
- Compact PMT with metal channel dynode structure and quartz window
 (Hamamatsu R6041Q)
Photon Detector Prototype

- A total of 120 liter liquid xenon (active volume of 69 liter)
- Viewed by 240 PMTs
- Large enough to test with ~50MeV γ
- LEDs and α sources (241Am) implemented for calibration
Gamma Beam Tests

- Performance test of large prototype using high-energy gamma rays
- Laser Compton backscattering facility at TERAS electron storage ring of AIST, Tsukuba, Japan
- Gamma-ray beam with energy up to 40MeV
- Energy resolution evaluated by spread of Compton edge
- Position reconstructed by PMT output distribution with proper collimator
- Timing reconstructed by averaging arrival time
- Beam test in Feb. 2002

Energy spectrum of gamma beam with 1mmφ collimator (simulation)
Beam test in Feb. 2002

- Observed amount of light from 40MeV γ is smaller than expected. (~10%)
- Strong correlation between the conversion depth and N_{pe}
- Worse position resolution than expected

σ^2: conversion depth parameter

→ can be explained by strong light absorption in LXe
MC Predictions with Absorption

Energy resolution

- Feb02 beam test
- MC: monochromatic 40MeV

Position resolution

- MC predictions indicate $\lambda_{\text{abs}} < 10\text{cm}$ in gamma beam test in Feb. 2002
- We need $\lambda_{\text{abs}} > 100\text{cm}$ at least for an energy resolution of a few % order
Light Absorption in LXe

H$_2$O, C$_2$H$_4$, NH$_3$, O$_2$ can strongly absorb 175nm scintillation light from LXe → Contaminations in LXe?

Mass spectrum for the remaining gas in the detector vessel
Purification

- New circulatory purification system is installed after the beam test in Feb. 2002.
- Xenon vapor is purified in Zr-V-Fe getter and Oxisorb filter and recondensed by the refrigerator and LN$_2$ during the operation of the detector.
- Circulation speed 10-12 cc liq./minute
Improvement of Light Yield

- Alpha event
- Cosmic ray event
Absorption Length Estimation

Absorption length is estimated by seeing the absorption of the light from the alpha source event and cosmic ray event.

4 x alpha source inside
Cosmic ray trigger setup
Absorption Length Estimation, cont’d

Both measurements (CR and \(\alpha\)) indicate \(\lambda_{\text{abs}} \approx 100\text{cm}\) after the purification.
Positron Spectrometer

COBRA spectrometer

- Thin superconducting magnet designed to form gradient magnetic field
- Drift chamber for positron tracking
- Scintillation counters for timing measurement
Concept of COBRA Spectrometer

COBRA : COnstant Bending RAdius

- Constant bending radius independent of emission angles
- Low energy positrons quickly swept out
Magnet

- Five coils with three different diameter to form gradient field
- \(B_z = 1.26 \text{T}, B_{zz} = 0.49 \text{T} \) at operating current = 359A
- Compensation coils to suppress the residual field around the LXe detector down to \(~50 \text{ Gauss}\)
- High-strength aluminum stabilized superconductor
 \(\Rightarrow \) thin superconducting coil: \(0.2X_0 \)
Construction of the Magnet

- Magnet design was finalized after detailed mechanical calculations and related experimental tests.
- Winding of the cable is in progress @ Toshiba.
- Excitation test for the central part of the magnet will be performed in October 2002.
Positron Tracker

- 17 chamber sectors aligned radially with 10° intervals
- Two staggered arrays of drift cells
- Chamber gas: He-C$_2$H$_6$ mixture
- Vernier pattern on the cathode foil to determine z-position
First Prototype of the Chamber

Sr-90

<table>
<thead>
<tr>
<th>Resolution(σ)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Drift time measurement</td>
<td>100-150μm</td>
</tr>
<tr>
<td>Vernier cathod measurement</td>
<td>425μm</td>
</tr>
<tr>
<td>Charge division measurement</td>
<td>2cm</td>
</tr>
<tr>
<td>Drift velocity and drift time</td>
<td>4-12ns</td>
</tr>
</tbody>
</table>
Chambers System R&D in PSI

- Two prototypes are under construction at PSI.
 - "Double cathode" test chamber
 - Two separated double-strip cathodes for each chamber layer
 → homogeneous position sensitivity
 - Test in 1 Tesla magnetic field
 - "Charge division" test chamber
 - Charge division test
 - 1m-long W(330W/m) or Steel(1200W/m)
- Supporting system is also under development.
Timing Counter

- Two layers of scintillator hodoscopes placed at right angles with each other
 - Outer: timing measurement
 - Inner: additional trigger information
- Goal $\sigma_{\text{time}} \approx 50\,\text{psec}$
Timing Counter Prototype

CORTES: Timing counter test facility with cosmic rays at INFN-Pisa

- Scintillator bar (5cm x 11cm x 100cm long)
- Telescope of 8 x MSGC
- Measured resolutions
 \(\sigma_{\text{time}} \approx 60 \text{psec} \) independent of incident position
- \(\sigma_{\text{time}} \) improves as \(\sim 1/\sqrt{N_{pe}} \) → use thicker counter \(\sim 12 \text{cm} \)
Trigger Electronics

- Beam rate: \(10^8\) s\(^{-1}\)
- Fast LXe energy sum: \(>45\) MeV, \(2 \times 10^3\) s\(^{-1}\)
- Interaction point
- \(e^+\) hit point in timing counter
- Time correlation \(\gamma-e^+\): \(200\) s\(^{-1}\)
- Angular correlation: \(20\) s\(^{-1}\)

- Design and simulation of type1 board completed
- Prototype board delivered in Pisa by this fall
Slow Control

- New field bus system under development for a reliable control of cryogenics of LXe detector, superconducting magnet, high voltage supply
- Low cost (typ. 20 US$ per node)
- Several prototypes have been built and tested at PSI
- See http://midas.psi.ch/mscb
Summary

• R&D work on the sub-detectors for the MEG experiment are going well.
• Performance of the LXe photon detector prototype is improving thanks to the improvement of the light yield.
• A beam test of the photon detector prototype with the purified xenon will be performed in Oct. 2002.
• Beam line tuning with the COBRA magnet and assembly of the sub-detectors will start in 2003.
• Engineering run will start in 2004.

Updated status can be seen at three mirrored sites:

http://meg.icepp.s.u-tokyo.ac.jp/
http://meg.psi.ch/
http://meg.pi.infn.it/