http://meg.psi.ch **MEG Experiment** A New Experiment to Search for $\mu \rightarrow e \gamma$ at PSI

Wataru OOTANI for the MEG Collaboration

wataru@icepp.s.u-tokyo.ac.jp

International Center for Elementary Particle Physics(ICEPP), University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan

Abstract

A new experiment to search for the lepton flavor violating decay, $\mu \rightarrow e \gamma$ is planned at the Paul Scherrer Institute(PSI). The experiment is designed to search for the decay with a sensitivity down to 10⁻¹⁴ -10⁻¹³ branching ratio. The gamma-ray and positron from the decay can be detected by a liquid xenon scintillation detector and thin-wall superconducting spectrometer with gradient magnetic field, respectively. Current status of the preparation for the experiment will be presented focusing on the results from the beam test of the 100-liter prototype of the liquid xenon detector using laser Compton backscattering photon and the excitation test of the superconducting magnet.

after the xenon purification.

carded(30%).

€⁻¹⁰⁻¹² $\overset{\mathrm{H}}{\overset{\mathrm{J}}{\overset{\mathrm{I}}{\overset{\mathrm{I}}}}}_{\mathrm{H}} \mathrm{10^{-13}}$ 10^{-14} 10^{-1}

10-11

M_{V_{R2}} (GeV) Fig.1 Branching ratio of $\mu \rightarrow e \gamma$ in SUSY+Seesaw model(J.Hisano et al. 1999)

MEG Experiment

*only solution after KamLAND

- A new experiment with a sensitivity down to BR~ 10⁻¹⁴ -10⁻¹³ planned at PSI in Switzerland
- Liquid xenon scintillation photon detector(800liter LXe viewed by 800 PMTs)
- Positron spectrometer with graded magnetic field(COBRA spectrometer)
- World's most intense DC muon beam at PSI $\rightarrow 10^8 \mu$ /sec with 100% duty factor
- Main background: accidental overlap of Michel positron and random gamma.

• Strong correlation between the observed N_{pe} and depth parameter due to the light absorption disappeared

• For evaluating energy resolution, shallow events (depth parameter < 45) with large leakage of the light is dis-

Total Number of Photoelectrons, Npe Fig.7 Spectrum of total number of photoelectrons with xenon purification.

• Detailed analysis is in progress. (Energy, position, timing resolutions, etc.)

Fig.6 Total number of observed photoelectrons vs. depth parameter

Preliminary Results from the Beam Tests

COBRA(COnstant Bending RAdius) Spectrometer

Concept of COBRA Spectrometer

(a) before xenon purification (b) after xenon purification

- The magnet is designed to form graded magnetic field in the positron tracking region.
- Constant bending radius of the positron independent of emission angle \rightarrow definitive momentum window(Fig.8 (a))
- Michel positrons are quickly swept out. \rightarrow reduce the hit rate of the tracking chamber(Fig.8 (b))

Fig.8 Concept of COBRA spectrometer.

Magnet

- Five superconducting coils with three different radii to form graded magnetic field.
- $B_c = 1.26T, B_{z=1.25m} = 0.49T$ operating current = 360A

• Compensation coils to suppress the residual field around the photon detector down to ~50Gauss for proper operation of the photon detector.

• Transparent for the photons from $\mu \rightarrow e \gamma$ (52.8MeV) - High-strength aluminum stabilized superconducting cable - Thickness of the magnet $\sim 0.2X_0$

LXe Scintillation Photon Detector

- High light yield (W_{ph}(LXe)=24eV, W_{ph}(Nal)=17eV)
- Good energy resolutions(energy, position, time) \rightarrow Design goal: σ_{E} ~1%, σ_{x} ~2mm, σ_{t} ~50ps
- Fast decay \rightarrow usefull for pile-up rejection
- Spatially uniform response

Prototype Detector

- Constructed to demonstrate the performance of the proposed full-scale detector
- 69 liter active volume of LXe(120 liter in total)
- Viewed by 238 x PMTs
- Large enough to test with ~50MeV photon
- Xenon purification system was developed in this prototype detector.
- \rightarrow Long absorption length over 100cm achieved! (~10cm without xenon purification)

Construction was finished! (Fig.9)

Fig.9 COBRA magnet.

Excitation Test of the Magnet

- Excitation test wad done to study the performance of the magnet.
- Excitation up to 83% of full operating current was done due to the problem of the quench protection heaters.
- Mechanical strength was checked by measuring the strain of the superconducting magnet(Fig.10).
- \rightarrow Good behavior in strain distribution.
- Magnetic field in the tracking region was measured by 3-D mapping machine which was developed for the magnet(Fig.11). \rightarrow Good agreement with calculation!
- Stray field around the photon detector region was measured(Fig.12)
- \rightarrow Good suppression of stray field! (<50Gauss)

Beam Tests at Laser Compton Backscattering Facility

• Laser Compton backscattering facility at TERAS in the AIST, Tsukuba, Japan(Fig.4) • Response to 40, 20, 10MeV LCS photons was studied

• Spread of the Compton edge is used to evaluate the energy resolution

• Data taken in Feb. 2002(without purification, $\lambda_{abs} \sim 10$ cm) and Apr. 2003(with purification, $\lambda_{abs} > 100$ cm)

Summary

Fig.12 Measured stray field around the photon detector re-

gion

- A new experiment with a sensitivity down to BR~10⁻¹⁴ -10⁻¹³ is planned at PSI
- R&D works on the sub-detectors are going well.
- Liquid xenon scintillation photon detector

 \ge

 \bowtie

- Prototype detector with 120liter LXe was constructed
- Purification system was developed and long absorption length over 100cm achieved.
- Performance was measured by using high-energy photons up to 40MeV
- Energy resolution $\sigma_{\rm F}$ <2.0% (no correction, very preliminary)
- Detailed analysis is in progress.
- COBRA spectrometer
- Construction of the magnet was finished.
- Good performance of the magnet was confirmed in the excitation test.