# COBRA MAGNET Status

W. OOTANI JUNE 27TH, 2006 MEG REVIEW

#### FIELD MEASUREMENT

- Final field measurement was done in February as scheduled.
- Measurement summary
  - COBRA field
    - I<sub>SC</sub>=360A I<sub>NC</sub>=320A
    - $|z| < 110 \text{ cm } \Delta z = 2 \text{ cm}, -4 \text{ cm} < R < +29 \text{ cm } \Delta R = 2 \text{ cm}, 0^{\circ} < \varphi < +330^{\circ}$  $\Delta \varphi = 30^{\circ}$
    - 22644 points
  - BTS fringe field
    - I<sub>BTS</sub>=200A (unlike polarity)
    - -110cm<z<0cm  $\Delta z$ =2cm, -4cm<R<+29cm  $\Delta R$ =2cm, 0°< $\phi$ <+330°  $\Delta \phi$ =30°
    - 11424 points
  - Field stability measurement with NMR

#### **COBRA FIELD STABILITY**

- Stability of the COBRA field was measured over a week with NMR at the magic point.
- COBRA field is stable within <20ppm.





### COBRA FIELD MAP

- We are finishing the analysis.
- Measured data
  - Correction for Hall-sensor readout
    - Absolute calibration
    - Temperature compensation
    - Planar Hall effect
  - Correction with the measured position of measuring machine
  - Interpolation bw/ measuring points by means of bspline surface fitting.
- Calculation
  - Detailed coil modeling
  - Thermal expansion at low temperature (~-0.4%)

#### COBRA FIELD MAP, CONT'D

- Comparison with calculation to check the validity of the measurement
  - The measured field is in agreement with the calculation within 0.22%(σ) all over the volume.
  - Center of field difference distribution ~ 0
  - Not a random deviation
  - Difficult to judge which is right.
- Possible usage
  - Measured data for |z|<1100mm R<290mm and calculation for the other regions.</li>





#### QUENCH PROBLEM

- There were frequent quenches in the COBRA magnet.
- We found that it is caused by the external noise on the input signal line of the quench detector.
- It seems that they happen mostly at the beg. and the end of the working time.
- Modified shielding and grounding scheme are being tried.
- No quench for the past three weeks, but with zero coil current.
- Looking for the noise source in parallel.

| Select Data Digital Copy Digital Display | Signal Jump Image: X 1/50 |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          | OD MONIT 0. 1426   CHI HEOC 1.0000V CHI CHI   SCA-CcT 0. 1297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Noise                                    | SCA-C6.00y OI 1297   PL-UT OI 0.1047   PK8 HR0C 50.000V CHS OF CONT CHS OF CONT   NCA-CUT CHS OF CONT CHS OF CONT   NCA-CUT CHS OF CONT CHS OF CONT   CHS HR0C 50.000V CHS OF CONT CHS OF CONT   CHS HR0C 50.000V CHS OF CONT CHS OF CONT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   | NCA-CuW CH6 0.0516   H5 HR0c 50.0000 CH6 0.9995   CH6 HR0c 50.0000 CH6 0.9995   CH6 HR0c 50.0000 CH6 0.3995   CH7 HR0c 50.0000 CH6 0.0516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                          | V-SC<br>248 HR0C 10.000V снв -1.6434<br>V-NC<br>248 HR0C 10.000V снв -0.0091 22.289000s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Quench detector signal                   | NCA-CdT 0.0766 E2<br>NCA-CdW -0.0281<br>NCA-CdW -0.0281<br>RFA-CuP -0.0047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                          | Critz Had S0.000Y CH12 CV V)   RFA-CUT -0.0484 -0.0484 -0.0484   CH13 HADC S0.000Y CH13 V/ -0.0484   RFA-CdP CH13 V/ -0.0484   CH14 HADC S0.000Y CH13 V/ -0.0219   CH14 HADC S0.000Y CH14 -0.0219 0day0h6min<br>58.587000s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                          | RFA-CdT -0. 0656<br>2H15 HPCC 50.000V CH15 (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



#### FRINGE FIELD PROBLEM

- A dramatic reduction of beam rate was found in  $\pi$ M3 beam line last month when the COBRA ON.
  - Reduction: 30% @ GPS, 95% @ LTF
  - Transverse component causes diffraction of the beam.
- There is an effect also at πE3 beam line, but it's not serious once the field is stabilized.
- Possible solutions @ πM3
  - Shielding on beam pipe with high-µ material
    - Installation of Parmalloy sheet (µ =180000) was done last week.
    - Shielding factor ~400 is expected.
  - Retune the beam line
  - Add horizontal steering magnet
  - Soft iron wall bw /  $\pi$ M3 and  $\pi$ E5
    - The effect is being calculated.



## FRINGE FIELD PROBLEM, CONT'D

- Shielding with high permeability material (Parmalloy  $\mu$ =180000) was installed in the  $\pi$ M3 beam line last week.
- The effect will be measured on Jun. 26th.

