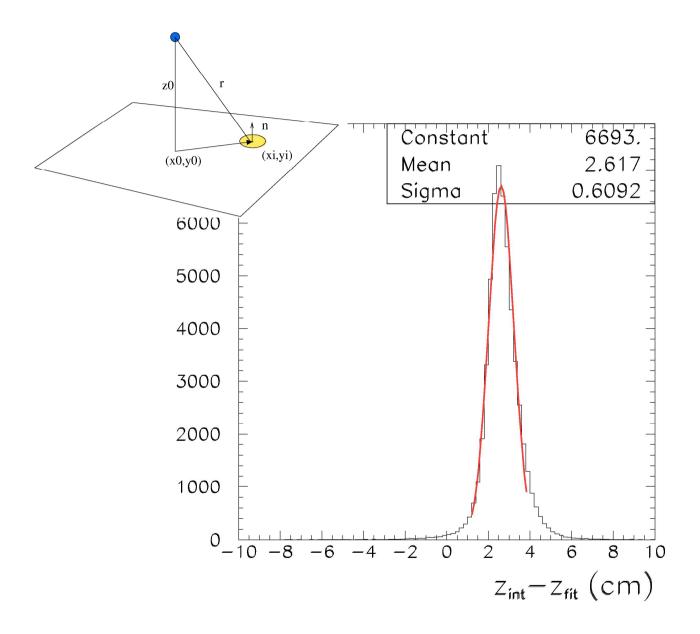
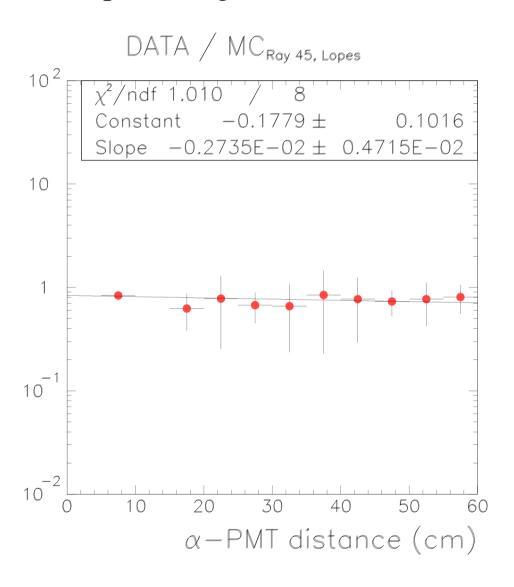
Summary

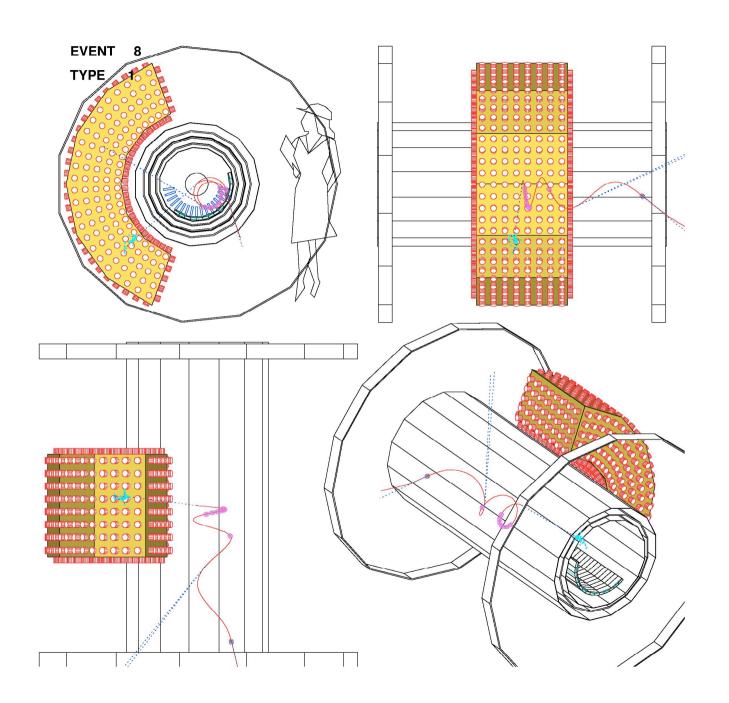

Sensitivity and Schedule

T. Mori

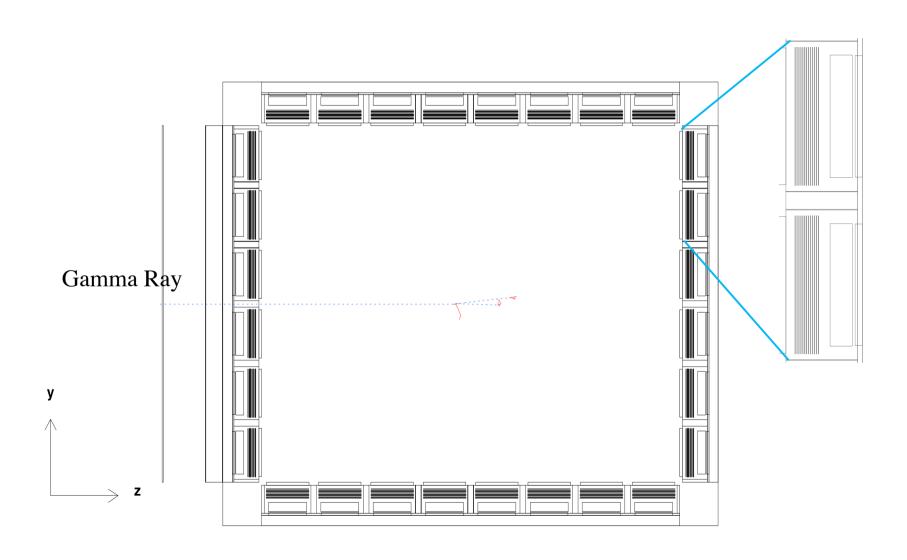
Background and Sensitivity

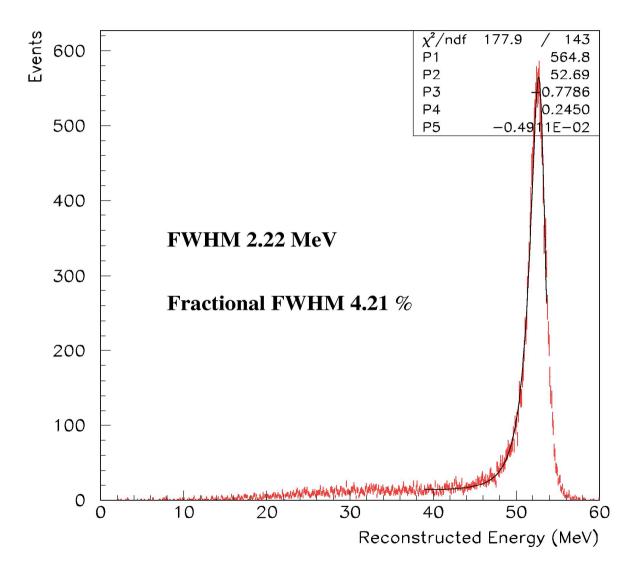
	proposal		
$\delta E_{\gamma} \ (\%)$	1.4 (2.0)	4.0 – 4.5	
$\delta p_{ m e} \ (\%)$	0.7	0.7-0.9	
$\delta t_{ m e\gamma} \; ({ m nsec})$	0.15	0.15	
$\delta t_{ m e} \ ({ m nsec})$	0.1	0.1	
$\delta t_{\gamma} \; (\mathrm{nsec})$	0.1	0.1	
$\delta z_{\gamma} \; (\mathrm{mm})$	16	16–18	
$\delta \theta_{\mathrm{e}\gamma} \; \mathrm{(mrad)}$	12 (14)	17-20.5	
$\delta \theta_{ m e} \ ({ m mrad})$	9	9-12	
$\cdot \delta d_{ m e} \; ({ m mm})$	2.1	2.1-2.5	
$\delta x_{\gamma} \ (\mathrm{mm})$	4 (7)	9-10.5	
$\Omega/4\pi$	0.09	0.09	
$\epsilon_{ m e}$	0.95	0.9	
ϵ_{γ}	0.7	0.6	
ϵ_{sel}	0.8	0.7	
R_{μ}/sec	1.0×10^{8}	$(0.2 – 0.3) imes 10^8$	
T sec	2×10^{7}	$2.6 imes10^7$	
S_{1ev}	0.94×10^{-14}	$(3.8-5.6)\times10^{-14}$	
B_{acc}	0.5×10^{-14}	$(2.2-3.5)\times10^{-14}$	
N_{acc}	0.5	0.6	
S_{90}	2.9×10^{-14}	$(1.0-1.6)\times10^{-13}$	

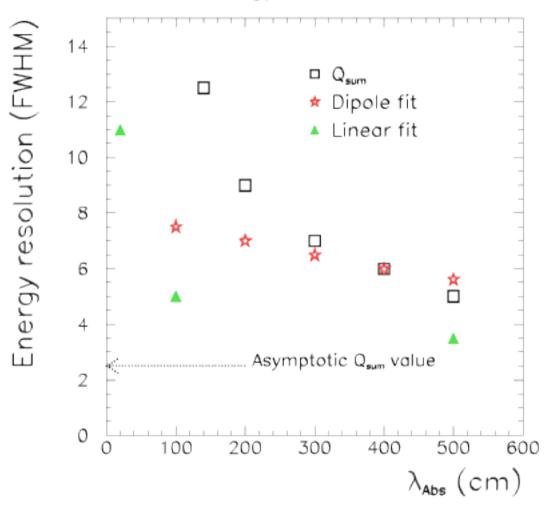

17 - 28 times worse sensitivity, 30% poorer acceptance


We anticipate further improvements in the detector performance:

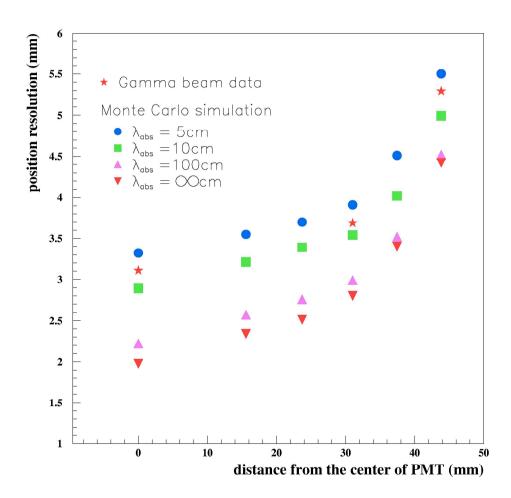
- absorption length of 100cm assumed
- present PMTs assumed
- no elaborate optimization of detector configuration has been made
- reconstruction methods are not sophisticated enough

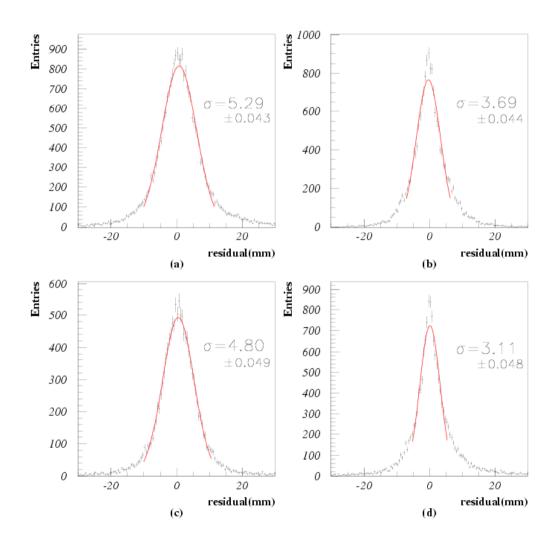

Absorption length of 100cm achieved



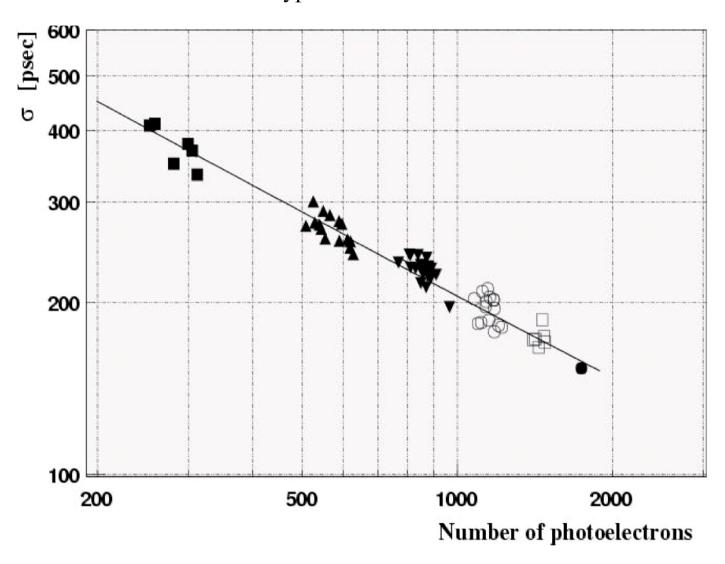


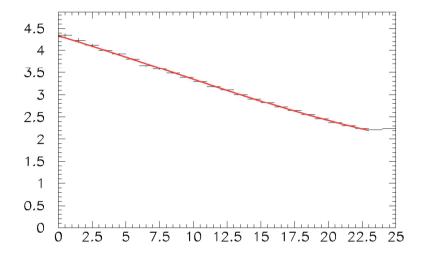
Simulation of the Photon Detector

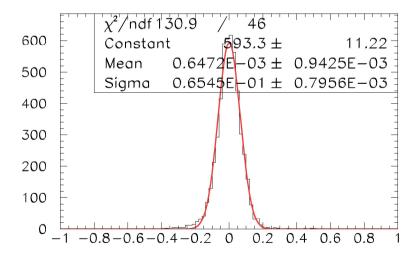




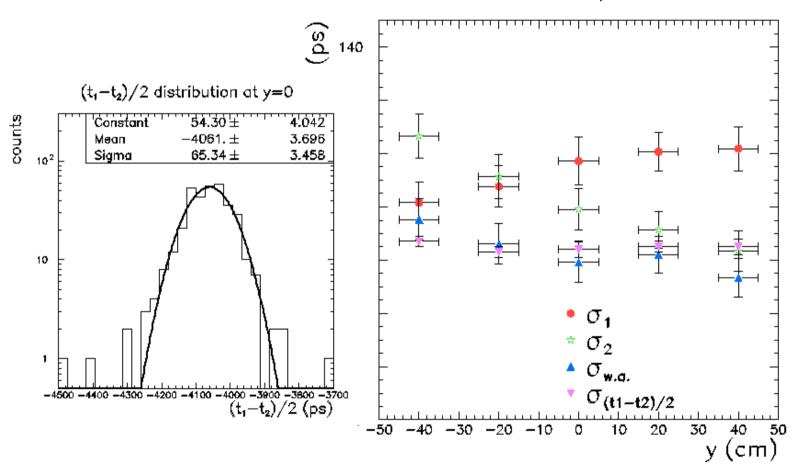
MC Energy Resolution


	proposal	
$\delta E_{\gamma} \ (\%)$	1.4 (2.0)	4.0 - 4.5
$\delta p_{ m e}~(\%)$	0.7	0.7 - 0.9
$\delta t_{\mathrm{e}\gamma} \; \mathrm{(nsec)}$	0.15	0.15
$\delta t_{ m e} \; ({ m nsec})$	0.1	0.1
$\delta t_{\gamma} \; (\mathrm{nsec})$	0.1	0.1
$\delta z_{\gamma} \; (\mathrm{mm})$	16	16 – 18
$\delta\theta_{\mathrm{e}\gamma} \; \mathrm{(mrad)}$	12 (14)	17 - 20.5
$\cdot \delta \theta_{ m e} \; ({ m mrad})$	9	9-12
$\cdot \delta d_{ m e} \ ({ m mm})$	2.1	2.1 - 2.5
$\delta x_{\gamma} \; (\mathrm{mm})$	4 (7)	9 - 10.5
$\Omega/4\pi$	0.09	0.09
$\epsilon_{ m e}$	0.95	0.9
ϵ_{γ}	0.7	0.6
ϵ_{sel}	0.8	0.7
R_{μ}/sec	1.0×10^{8}	$(0.2 – 0.3) imes 10^8$
T sec	2×10^{7}	$2.6 imes10^7$
S_{1ev}	0.94×10^{-14}	$(3.8-5.6)\times10^{-14}$
B_{acc}	0.5×10^{-14}	$(2.2-3.5)\times10^{-14}$
N_{acc}	0.5	0.6
S_{90}	2.9×10^{-14}	$(1.0-1.6)\times10^{-13}$



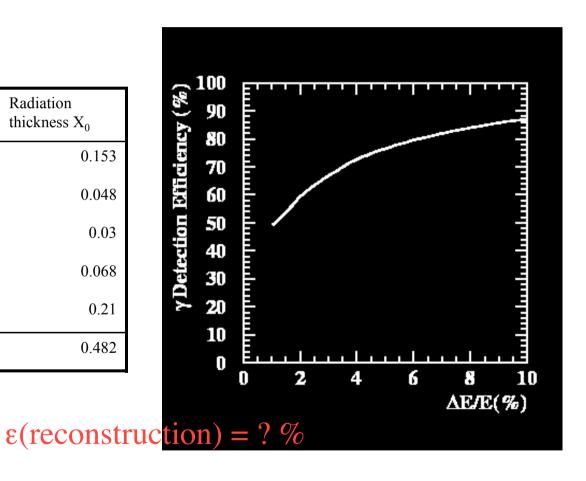

	proposal	
$\delta E_{\gamma} \ (\%)$	1.4(2.0)	4.0 – 4.5
$\delta p_{ m e} \ (\%)$	0.7	0.7 – 0.9
$\delta t_{\mathrm{e}\gamma} \; \mathrm{(nsec)}$	0.15	0.15
$\delta t_{ m e} \; ({ m nsec})$	0.1	0.1
$\delta t_{\gamma} \text{ (nsec)}$	0.1	0.1
$\delta z_{\gamma} \; (\mathrm{mm})$	16	16 - 18
$\delta\theta_{\mathrm{e}\gamma} \; \mathrm{(mrad)}$	12 (14)	17 - 20.5
$\cdot \delta \theta_{ m e} \; ({ m mrad})$	9	9 - 12
$\cdot \delta d_{ m e} \ ({ m mm})$	2.1	2.1 - 2.5
$\delta x_{\gamma} \; (\mathrm{mm})$	4 (7)	9-10.5
$\Omega/4\pi$	0.09	0.09
$\epsilon_{ m e}$	0.95	0.9
ϵ_{γ}	0.7	0.6
ϵ_{sel}	0.8	0.7
R_{μ}/sec	1.0×10^{8}	$(0.2 – 0.3) imes 10^8$
T sec	2×10^{7}	$2.6 imes10^7$
S_{1ev}	0.94×10^{-14}	$(3.8-5.6)\times10^{-14}$
B_{acc}	0.5×10^{-14}	$(2.2-3.5) \times 10^{-14}$
N_{acc}	0.5	0.6
S_{90}	2.9×10^{-14}	$(1.0-1.6)\times10^{-13}$

Small Prototype Tests


Conversion Point Resolution

	proposal	
$\delta E_{\gamma} \ (\%)$	1.4 (2.0)	4.0 – 4.5
$\delta p_{ m e} ~(\%)$	0.7	0.7 – 0.9
$\delta t_{\mathrm{e}\gamma} \; \mathrm{(nsec)}$	0.15	0.15
$\delta t_{ m e} \; ({ m nsec})$	0.1	0.1
$\delta t_{\gamma} \; (\mathrm{nsec})$	0.1	0.1
$\delta z_{\gamma} \; (\mathrm{mm})$	16	16–18
$\delta heta_{\mathrm{e}\gamma} \; \mathrm{(mrad)}$	12 (14)	17-20.5
$\cdot \delta \theta_{ m e} \ ({ m mrad})$	9	9-12
$\cdot \; \delta d_{ m e} \; ({ m mm})$	2.1	$2.1 \mathbf{-2.5}$
$\delta x_{\gamma} \ (\mathrm{mm})$	4 (7)	9-10.5
$\Omega/4\pi$	0.09	0.09
$\epsilon_{ m e}$	0.95	0.9
ϵ_{γ}	0.7	0.6
ϵ_{sel}	0.8	0.7
$R_{\mu}/{ m sec}$	1.0×10^{8}	$(0.2 ext{-}0.3) imes10^8$
$T \sec$	2×10^7	$2.6 imes10^7$
S_{1ev}	0.94×10^{-14}	$(3.8-5.6)\times10^{-14}$
B_{acc}	0.5×10^{-14}	$(2.2-3.5)\times10^{-14}$
N_{acc}	0.5	0.6
S_{90}	2.9×10^{-14}	$(1.0-1.6)\times10^{-13}$

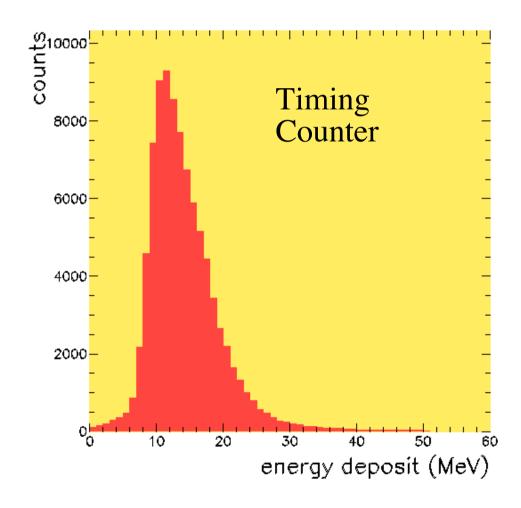
$\Delta E > 5$ MeV energy deposit on adjacent ϕ -cells to achieve 100 ps FWHM resolution


Resolution vs position

	proposal	
$\delta E_{\gamma} \ (\%)$	1.4 (2.0)	4.0 - 4.5
$\delta p_{ m e}~(\%)$	0.7	0.7-0.9
$\delta t_{\mathrm{e}\gamma} \; \mathrm{(nsec)}$	0.15	0.15
$\delta t_{ m e} \; ({ m nsec})$	0.1	$\boxed{0.1}$
$\delta t_{\gamma} \text{ (nsec)}$	0.1	0.1
$\delta z_{\gamma} \; (\mathrm{mm})$	16	16–18
$\delta\theta_{\mathrm{e}\gamma} \; \mathrm{(mrad)}$	12 (14)	17-20.5
$\delta \theta_{ m e} \; ({ m mrad})$	9	9-12
$\delta d_{ m e} \ ({ m mm})$	2.1	2.1-2.5
$\delta x_{\gamma} \ (\mathrm{mm})$	4 (7)	9-10.5
$\Omega/4\pi$	0.09	0.09
$\epsilon_{ m e}$	0.95	0.9
ϵ_{γ}	0.7	0.6
ϵ_{sel}	0.8	0.7
R_{μ}/sec	1.0×10^{8}	$(0.2 – 0.3) imes 10^8$
$T \sec$	2×10^{7}	$2.6 imes10^7$
S_{1ev}	0.94×10^{-14}	$(3.8-5.6)\times10^{-14}$
B_{acc}	0.5×10^{-14}	$(2.2-3.5) \times 10^{-14}$
N_{acc}	0.5	0.6
S_{90}	2.9×10^{-14}	$(1.0-1.6)\times10^{-13}$

$$\varepsilon(\gamma) = 60\%$$

Detector		Radiation thickness X_0
Magnet	Coil	0.153
	Cryostat	0.048
Photon Detector	Outer wall	0.03
Detector	Honeyco mb	0.068
	PMT+hol der	0.21
Total		0.482



$$\varepsilon(e^+) = 90\%$$

 $\varepsilon(\text{trig}) > 97\%$

 $\epsilon(100ps)=94\%$ $\epsilon(140ps)=99\%$

ε(tracking)= ?%

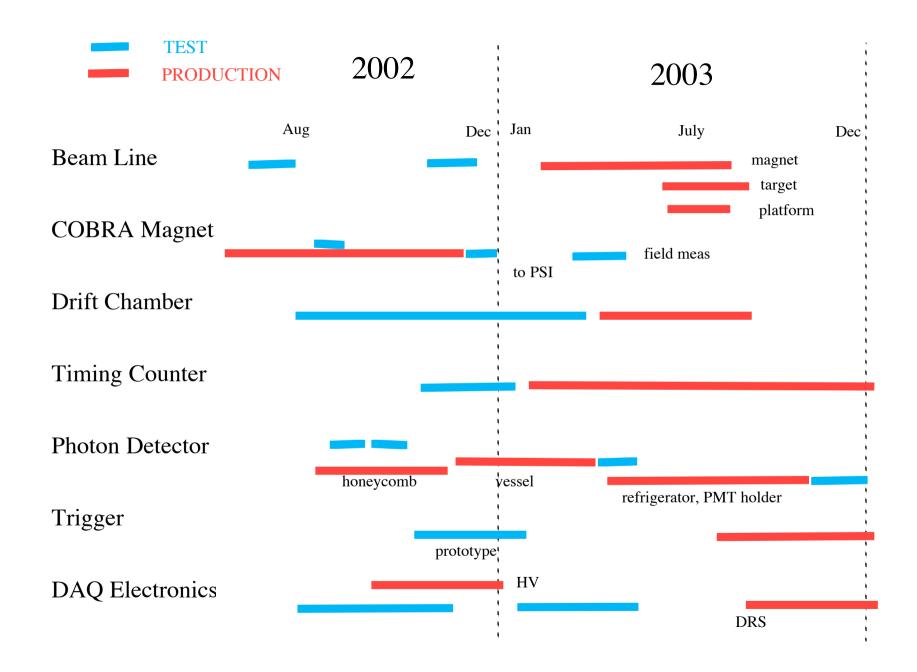
	proposal	
5.77 (64)		
$\delta E_{\gamma} \ (\%)$	1.4 (2.0)	$oxed{4.0-4.5}$
$\delta p_{ m e}~(\%)$	0.7	0.7 - 0.9
$\delta t_{\mathrm{e}\gamma} \; \mathrm{(nsec)}$	0.15	0.15
$\delta t_{\rm e} \; ({\rm nsec})$	0.1	0.1
$\delta t_{\gamma} \text{ (nsec)}$	0.1	0.1
$\delta z_{\gamma} \ (\mathrm{mm})$	16	16-18
$\delta\theta_{\mathrm{e}\gamma} \; \mathrm{(mrad)}$	12 (14)	17-20.5
$\delta \theta_{ m e} \ ({ m mrad})$	9	9-12
$\delta d_{ m e} \ ({ m mm})$	2.1	2.1-2.5
$\delta x_{\gamma} \text{ (mm)}$	4 (7)	9-10.5
$\Omega/4\pi$	0.09	0.09
$\epsilon_{ m e}$	0.95	0.9
ϵ_{γ}	0.7	0.6
ϵ_{sel}	0.8	0.7
R_{μ} / sec	1.0×10^{8}	$(0.2 – 0.3) imes 10^8$
T sec	2×10^7	$2.6 imes10^7$
S_{1ev}	0.94×10^{-14}	$(3.8-5.6)\times10^{-14}$
B_{acc}	0.5×10^{-14}	$(2.2-3.5)\times10^{-14}$
N_{acc}	0.5	0.6
S_{90}	2.9×10^{-14}	$(1.0-1.6)\times10^{-13}$

	proposal	
$\delta E_{\gamma} \ (\%)$	1.4 (2.0)	4.0 – 4.5
$\delta p_{ m e} \; (\%)$	0.7	0.7 - 0.9
$\delta t_{\mathrm{e}\gamma} \; \mathrm{(nsec)}$	0.15	0.15
$\delta t_{ m e} \; ({ m nsec})$	0.1	0.1
$\delta t_{\gamma} \; (\mathrm{nsec})$	0.1	0.1
$\delta z_{\gamma} \ (\mathrm{mm})$	16	16-18
$\delta\theta_{\mathrm{e}\gamma}$ (mrad)	12 (14)	17-20.5
$\delta \theta_{\mathrm{e}} \; (\mathrm{mrad})$	9	9-12
$\cdot \delta d_{ m e} \ ({ m mm})$	2.1	2.1-2.5
$\delta x_{\gamma} \ (\mathrm{mm})$	4 (7)	9 - 10.5
$\Omega/4\pi$	0.09	0.09
$\epsilon_{ m e}$	0.95	0.9
ϵ_{γ}	0.7	0.6
ϵ_{sel}	0.8	0.7
R_{μ}/sec	1.0×10^{8}	$(0.2 – 0.3) imes 10^8$
T sec	2×10^{7}	$2.6 imes10^7$
S_{1ev}	0.94×10^{-14}	$(3.8-5.6)\times10^{-14}$
B_{acc}	0.5×10^{-14}	$(2.2-3.5)\times10^{-14}$
N_{acc}	0.5	0.6
S_{90}	2.9×10^{-14}	$(1.0-1.6)\times10^{-13}$

Schedule

Obtain the Result (Discovery or Limit):

Before the LHC Experiments (>2007)


and

Before the MECO Experiment (still waiting to be funded)

We foresee:

- Start beam tuning with the COBRA toward the end of 2003
- Engineering runs to start in 2004

Depends on budget approval

Requests to PSI

Understanding a new postdoc will be appointed to work on the DC this fall, we request the PSI:

- to support at least 2 students from outside institutes to stay at PSI, and
- to secure a budget of order of \$1.3M so that the collaboration can proceed and complete the construction of the detectors in a timely fashion.

Conclusion