

Photon Detector

Satoshi Mihara ICEPP, Univ. of Tokyo

- 1. Large Prototype Study
 - 🖉 Gamma beam test
 - ∠ Xenon purification
 - *Absorption length measurements*
- 2. Other related R&D
 - MT development
 - 💉 🛛 Purity monitor
- **3.** Final Photon Detector
 - ✓ Expected performance (MC) ≤ Giovanni
 - Calibration methods
 - Cryogenics design
- 4. Schedule

Gamma beam test

? beam at TERAS
 Analysis

40MeV Compton Gamma

- Electron Energy:762MeV.
- Max. current 200mA.
- 40 MeV (20MeV, and 10MeV) Compton ? provided.
- Beam test in Feb. 2002 for 2 weeks

Energy Spectrum

• ?² depth parameter:

$$\sigma^{2} = \frac{\sum n_{pe}(i)x(i)^{2} + n_{pe}(i)y(i)^{2}}{\sum n_{pe}(i)} - \left(\frac{\sum n_{pe}(i)x(i) + n_{pe}(i)y(i)}{\sum n_{pe}(i)}\right)^{2}$$

Elist Conversion Point in Z depth (cm)

- In the region of 50<?²<55 34.8%(FWHM) including the energy spread of Compton ?

Comparison with MC with

absorption

- Strong correlation between the ?² and N_{pe} can be explained by introducing absorption effect into MC.
- MC with 7cm ?_{abs} can explain the data.
- According to MC, ?_{abs} longer than 1m is necessary to achieve the resolution of a few % order.

ullet

• Data 40MeV Compton ?

Satoshi Mihara for the ?7 e? collaboration, review meeting at PSI, Jul 2002

Comparison with MC

- MC
 - ?_{abs}=5,10,100,**8** cm
 - ?_{abs}=30cm
- Obtained resolutions agree with MC predictions including 5<?_{abs}<10cm.
- Further improvement expected with longer absorption length.

Xenon Purification

<u>RGA</u> with a mass spectrometer

- Remaining Gas
 Analysis (RGA) for
 investigating what
 causes short
 absorption length in
 gamma beam test.
- Remaining gas in the chamber was sampled to the analyzing section.

- Vacuum level
 - LP Chamber 2.0x10⁻²Pa
 - Analyzing section 2.0x10-³Pa

Purification System

- Xenon extracted from the chamber is purified by passing through the getter.
- Purified xenon is returned to the chamber and liquefied again.
- Circulation speed 10-12cc/minute

of the purification

• Modeling: $N(r,t) = N_{\infty} exp(\frac{r}{\lambda_0} exp(\frac{t}{\tau}))$

if no continuous outgassing

Satoshi Mihara for the ?7 e? collaboration, review meeting at PSI, Jul 2002

After 600 hours...

- Light yield increased by factor of 4.
- Comparison with MC prediction \ll ?_{abs} > 1m

Absorption Length Measurements

before purification after purification

X3D Viewe

Estimation of Absorption Length

- ? & cosmic-events.
 - Relation between the light yield and distance from the light source to PMTs.

Satoshi Mihara for the ?7 e? collaboration, review meeting at PSI, Jul 2002

Satoshi Mihara for the ? 7 e? collaboration, revi

PMT-Source distance (cm)

0.4719

Absorption Length (CR) before purification

- Data distribution is steeper near the face and falls less violently for large z.
- The discrepancy can be explained by introducing wavelength-dependent absorption effect by water.
- Absorption length: 5~10cm

Absorption Length after purification

- Fit the data with a function : $A \exp(-x/?_{abs})$
- ?_{abs} >100cm (95% C.L) from comparison with MC.
- (?_{abs}>80cm from comparison with cold gas data which however includes diffusion effect)
- CR data indicate that $?_{abs} >$ ٠ 100cm has been achieved after purification.

Other related R&D

PMT Purity monitor

Satoshi Mihara for the ?7 e? collaboration, review meeting at PSI, Jul 2002

PMT Development

- The previous model used a Mn layer to keep the surface conductivity of the photocathode at low temperature.
- The new model uses Al strip instead of the Mn layer.
- QE is expected to improve and PMT production in more constant quality.

<u>PMT test in gas/liquid xenon</u>

- Tests in cold gas and in liquid xenon performed.
- QE improved by factor of 2-3.
- Rate dependence is similar or slightly better. (need careful check)

Purity Monitor

I. By measuring concentration of electro-negative impurities

•Other possibilities Direct observation of laser light through xenon (Exima laser is a candidate, under investigation).

Final Detector

calibration expected performance cryogenics design

Satoshi Mihara for the ?7 e? collaboration, review meeting at PSI, Jul 2002

Satoshi Mihara for the ? 7 e? collaboration, review meeting at PSI, Jul 2002

<u>Schedule</u>

Jul/02	Jul/02	Aug/02	Sep/02	Oct/02	Nov/02	Dec/02	Jan/03	Feb/03	Mar/03
Large Prototype R&D	+	+	+		+	+	+	+	+
Purification R&D									
1 st Purification test	>								
Purity monitor		<		>					
2 nd purification test		<	>						
PMT R&D			>						
3 rd ? beam test			<	>					
(Electron beam test)				<	>				
Analysis				<		>			
Final detector constructio	n								
Cryostat design>	>								
Honeycomb -									
R&D, construction		<			>				
Cryostat construction						<			>
PMT delivery				<					

Satoshi Mihara for the ? 7 e? collaboration, review meeting at PSI, Jul 2002

<u>Summary</u>

- 2nd ? beam test in Feb. 02
 - Worse resolutions than our expectation due to short absorption length caused by contaminant impurity.
- Purification system has been developed and 1st test was successfully done.
 - Recent CR and alpha data indicate $?_{abs}$ >1m.
 - Increasing purification speed is the next step for quick start of the detector operation.
 - Development of purification monitor is an important issue.
- Another tests are planed with purified xenon using ? and e beams in autumn.
- Other R&D works are going.