MC simulation of LXe detector

(presented by) Giovanni Signorelli

INFN sez. di Pisa and Scuola Normale Superiore di Pisa

•The simulation of the calorimeter is embedded in the GEANT 3 simulation of the full detector

•All major characteristics of all sub-detectors are included

•Many kinds of events can be generated

Type of event	ITYPE Code	Routine		
	1	FIFTOLO		
e' - gamma sıgnal	I	EVESIG		
e ⁺ - gamma radiative decay	2	EVERDE		
e ⁺ - gamma accidental background; 1st kind	3	EVEACC		
e ⁺ - gamma accidental background; 2nd kind	4	EVEACC		

[...]

•A simulation of the Large Prototype exists

(http://meg.psi.ch/subprojects/pisamc/doc/doc.html)

An example of the $\mu \rightarrow e \gamma$ decay

MC simulation of the LXe calorimeter

There exist at present two simulation codes which agree

Proposed detector

- •0.8 m³
- •848 PMTs (312 FF)
- •65 < r < 112 cm
- $|\cos\theta| < 0.35$
- • $|\phi| < 60^{\circ}$

•PMT coverage as high as possible on the FRONT FACE

•Complete material simulation (efficiency)

A view of all 848 photomultipliers

Coverage ~ 30 % \Rightarrow PMT positions not definitive

It is necessary to understand the basic characteristics of a 52.8 MeV photon shower in LXe

•GEANT 3.21 and tracked secondaries down to 10 keV

•Properties of LXe:

Density	3 g/cm^3
Light yield	42,000 ph/MeV
$\lambda_{ extsf{Rayleigh}}$	30 cm (variable)
$\lambda_{ extsf{Absorption}}$	100 cm (variable)
X ₀	2.77 cm

•PMT characteristics

Radius	2.54 cm
Window	fused silica
Q.E.	$10\% \rightarrow 5\%$

What are the main characteristics of the simulated showers in LXe?

Average over 1,000,000 events

- •Relative to conversion point
- •Longitudinal spread ~ 5 cm
- •Max energy deposit after 1 cm
 - •Lateral spread ~ 1 - 2 cm
- •Relative to conversion point

Energy deposited in LXe by a 52.8 MeV γ

despite those mean properties...

... There are large fluctuations

Center of energy INTERACTION POINT

Giovanni Signorelli

 $\sigma \approx 1 \text{ cm!}$

Position reconstruction

We want \mathbf{x}_{int} not \mathbf{x}_{CoE}

\Rightarrow Use the information of the **FRONT FACE**

1st method: Weighted average (bias)

•Use only PMT in a circle and iterate

Position resolution as a function of the photon hit position

Nice recontruction but tends to "collapse" on certain points

~ 10 % of the photons interact before reaching the xenon

<u>(xjwa)</u>

All results shown are obtained shooting a 52.8 MeV photon normally on a 2 x 2 PMT window, uniformly

Results of **CIRCLE AVERAGE**:

Which corresponds to an angular resolution of 8.3 mrad.

2nd method:

•Fit of the expected-observed light from a point-like source

• $Q_{exp} \propto$ solid angle

•Minimize

$$\chi^{2} = 2 \sum_{i=1}^{N} \frac{\left(Q_{i}^{exp} - Q_{i}^{meas}\right)^{2}}{\left(Q_{i}^{exp} + Q_{i}^{meas}\right)}$$

•Works also with missing/broken PMTs

next

Results of **FRONT FIT**:

Angular resolution = 8.1 mrad (sigma)

(Slightly different from the previous note because of different Q.E.)

The fit reconstruction has a better behaviour (though not perfect)

Result of the **FRONT FIT** on a **CIRCLE**:

Angular resolution = 7.5 mrad (sigma) (z constant from FRONT FIT)

Peaks....

The resolution is limited by

- 1. Shower fluctuations
- 2. PMT dimensions

In fact:

1. Pointlike source and 2'' PMTs

 \Rightarrow 1.0 mm sigma (1.5 mrad)

2. Real event and 1" PMTs

 \Rightarrow 3.5 mm sigma (5.4 mrad)

From the FRONT FIT one gets also the depth (*z*-coordinate) of the conversion point.

Corresponding to ~ 85 psec intrinsic FWHM

Converted before xenon

Rough evaluation of timing performance

Minimum time on the front face corrected with the reconstructed z

~ 150 ps FWHM but uses only one PMT

Energy reconstruction

•The *ideal* case is simple:

$$E \propto \sum_{i} Q_{i} w_{i} = Q_{\text{sum}}$$

~ 2.5 % FWHM w_{i} = density of PMTs
on various faces

•Physics effects ($\lambda_{Ray} < \infty$, $\lambda_{Abs} < \infty$) worsen the energy resolution:

Energy resolution using Q_{sum} worsens rapidly with increasing absorption (not corrected for z_{int})

 \Rightarrow We need different algorithms to guarantee a good resolution in presence of absorption

Two lamps of relative position and intensity fixed, to mimic the true shower.

- •MINUIT reconstruction
- • $(\theta, \phi) \sim 10 \text{ mrad}$
- •Better than $Q_{sum}u$ at small λ_{Abs}

•FWHM 8% for
$$\lambda_{Abs}$$
 50
6.5% for λ_{Abs} 300 cm

Principal component analysis

- •A vector of parameters $\{p_i\} = E, \theta, \phi, z...$
- •A vector of observables $\{q_i\} = PMT$ charges

 $\{q_j\} \to \{p_i\}$

All in a linearised way \Rightarrow fast

Linearisation

Here are the formulas:

$$p_i = w_{ij}(q_j - q_j^0) + c_i$$

Generate a sample of MC events and find the best hyper-plane:

Minimize (analytically) the deviation between the linear approximation and the true p_i values (ONCE AND FOR ALL)

Algorithms details: CERN EP 81-12/ReV

CDF/DOC/TRIGGER/PUBLIC/3108

SVT

Silicon Vertex Tracker

TECHNICAL

DESIGN REPORT

Version 2.1 – November 22, 1994

The following people have contributed to the development of the SVT

Project and to the writing of this document:

S. Belforte, M.Dell'Orso, S.Donati, G.Gagliardi, S.Galeotti, P.Giannetti, N.Labanca, F.Morsani, D.Passuello, G.Punzi, L.Ristori, G.Sciacca, N.Turini, A.M.Zanetti

INFN - Pisa

Results for energy:

•
$$\lambda_{Ray} = 30 \text{ cm}$$

• $\lambda_{Abs} = 100 \text{ cm}$

•One set of constants for all the detector

Knowing the interaction point (from INNER FIT)

square of 5- σ edge around the reconstructed position

Background reconstruction:

- •Radiative decay
- •Constants computed using signal events

 $\lambda_{Abs} = 100$

Absorption dependence

39

Expected Performance

• Detector Efficiency

				100					
Detector		Radiation thickness X ₀	cy (%)	90 80		74%			
Magnet	Coil	0.153	cien	80 70		+			
	Cryostat	0.048	Effi	60					IIII
Photon Detector	Outer wall	0.03	ction	50 40		/			IIII
	Honeyco mb	0.068	Dete	30					
	PMT+hol der	0.21	γ]	20 10					- IIII
Total		0.482		10 0	Ē				
					U	2 4	4 6	8	10
								$\Delta E/E($	%)

- 74% with ±4% energy cut
- Reconstruction efficiency is not know yet.
- A possible inefficiency may result from gamma conversions very close to the PMT surface.

SUMMARY

•A MC simulation of the final calorimeter is embedded in the simulation of the complete detector

•We studied γ shower in LXe

•The position can be reconstructed on the whole detector with a resolution

FWHM ~ 4/5mm - 6/7.5 mrad

•The energy can be reconstructed on the whole detector with a resolution

FWHM $\sim 4~\%$

(Conservative values, $\lambda_{abs} = 1$ m, QE=5%)

End of presentation

Giovanni Signorelli

