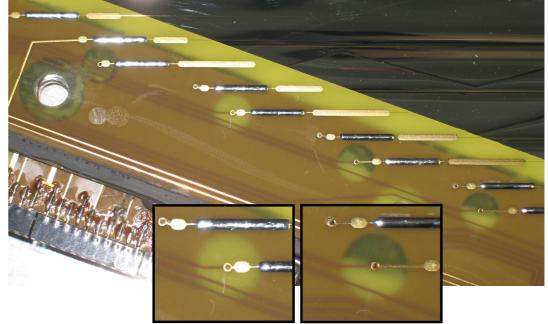
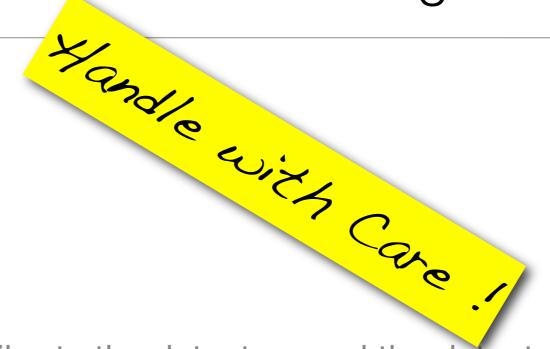

### MEG - Summary and Prospects

T. Mori


# We successfully started taking physics data in 2008

- Clear observation of the radiative decay events in our physics data demonstrates well that we are really sensitive to the µ→eγ events
- Various data samples sufficient to evaluate the detector performance and the background level were also successfully taken
- The LXe light yield continues to increase; the detector performance was accurately monitored by various means
- The TC operated stably with expected resolution ensured by the Dalitz decay and Boron calibrations
- The DC HV problem persists and caused inefficiency and poorer resolutions
- We're blind to the signal events




# Our Strategy for the DC Problem

- Eliminate all possible causes of the problem
- Build new DC modules immediately and start a long term test
- Carry out further tests to identify the cause of the problem while proceeding with the repair work and construction of the modules in parallel
- Start physics run in time to collect sufficient data this year with successful test results (hopefully)



# Provisional Sensitivities and Backgrounds 2008



- We still continue to calibrate the detectors and the detector performances keep improving on a daily basis
- Therefore the numbers given in the following slides are provisional and by no means indicate the final efficiencies and resolutions for the 2008 run

### CAUTION: All 2008 numbers are provisional

### Efficiencies

Still lots of things to learn from the data

- Blue numbers likely to change

- Grey numbers may vanish

| (%)                                              | "Goal"      | 2008<br>Provisional Lower Limits        | 2009<br>Provisional Prospects |
|--------------------------------------------------|-------------|-----------------------------------------|-------------------------------|
| Gamma                                            | > 40        | $> 50 \times (65 \times 85)$            | > 50 x 90                     |
| e+                                               | 65          | $\frac{DC}{30} \times \frac{DC-TC}{40}$ | 85 x 50                       |
| Trigger                                          | 100         | energy time direction<br>100 x 99 x 80  | > 99                          |
| Selection                                        | $90^4 = 66$ | $90^3 \times 95 = 69$                   | 69                            |
| DAQ                                              | ( > 90 )    | $> 80 \times 93$                        | > 90 x 99                     |
| Calibration Run etc                              | ( > 95 )    | ~70                                     | 90                            |
| Running Time (week)                              | 100*        | 11.5**                                  | 11.5                          |
| Single Event<br>Sensitivity (10 <sup>-13</sup> ) | 0.5         | < 30 - 50                               | < 3 - 5                       |

\*\* CEX runs not included

### Normalization

$$N(\mu \to e\gamma) = N_{\mu} \cdot Br(\mu \to e\gamma) \cdot (\Omega/4\pi) \cdot \epsilon_{\gamma} \cdot \epsilon_{e^+} \cdot \epsilon_{trig} \cdot \epsilon_{sel}$$

- The number of stopped muons is principally evaluated by counting the high momentum Michel positrons by DC + TC during the physics run
  - In the branching ratio calculation, the positron efficiency cancels out to the first order, and a rather precise evaluation should be possible in spite of the varying positron efficiency during the run
  - Other methods to estimate the normalization are available and can be cross-checked; Preliminary analyses indicate they reasonably agree
  - Systematic checks on correlations need to be carried out

### CAUTION: All 2008 numbers are provisional

# Resolutions

Resolutions are improving as we understand the detectors better.

| (in sigma)                      | "Goal"    | 2008 Provisional | 2009<br>Provisional Prospects |
|---------------------------------|-----------|------------------|-------------------------------|
| Gamma Energy (%)                | 1.2 - 1.5 | < 2.3            | < 1.7                         |
| Gamma Timing (ps)               | 65        | < 100*           | < 80                          |
| Gamma Position (mm)             | 2 - 4     | 5 - 6.5          | 5                             |
| e+ Momentum (%)                 | 0.35      | 1.5 - 2.0        | 0.7 - 0.8                     |
| e+ Timing (ps)                  | 45        | < 60 - 90        | 60                            |
| e+ Angle (mrad)                 | 4.5       | 9 - 18           | 11                            |
| mu Decay Point (mm)             | 0.9       | 3 - 4            | 2                             |
| Gamma - e+ Timing (ps)          | 80        | 150              | 100                           |
| Background (10 <sup>-13</sup> ) | 0.1 - 0.3 | _                | < 0.6 - 3                     |

\* clock error of ~60ps included

# Energy Scale Uncertainty

Linearity plot

Non linearity possible due to energy dependent shower development

Position dependence has not been completely corrected

theory + resolution

Pileup

In whole acceptance

40

35

AIF+RC

45

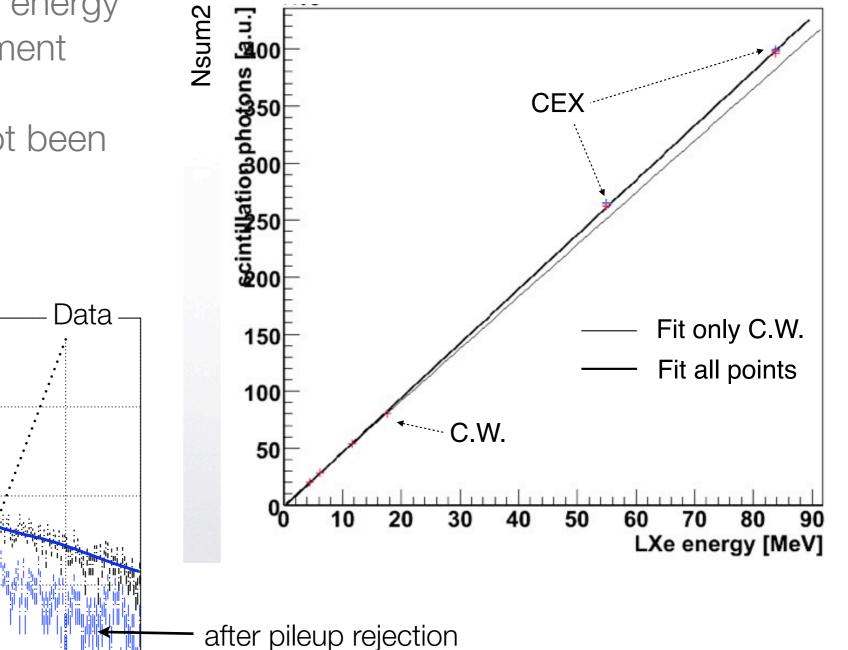
50

55

60

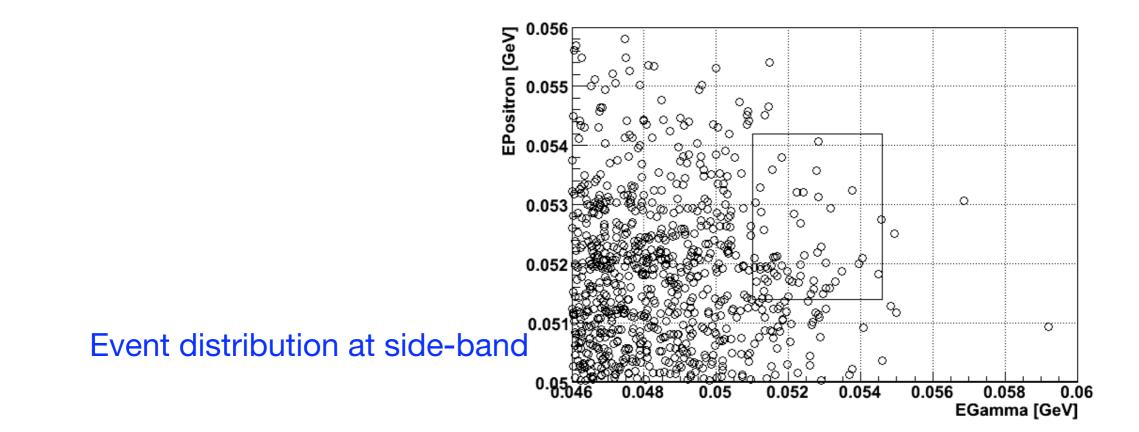
Energy [MeV]

All


**10**<sup>4</sup>

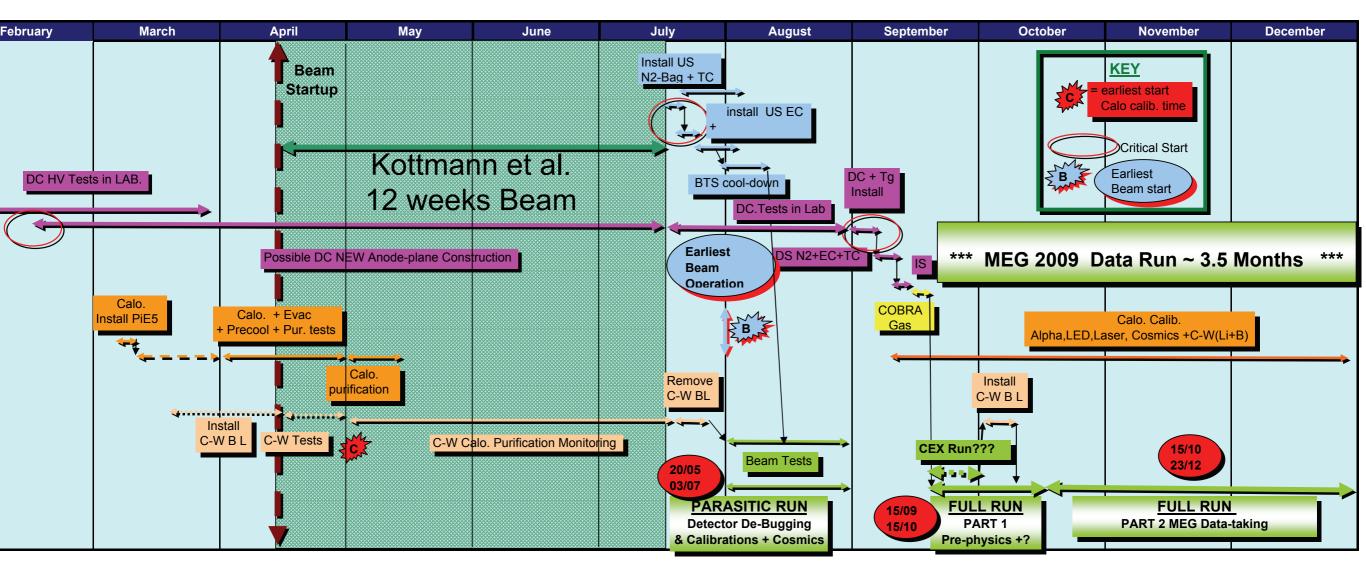
10<sup>3</sup>

10<sup>2</sup>


10

30




# "Old" and "New" Background Evaluations

- "Old" evaluation was based on scaling the background estimate from elaborate simulations at a very high rate (10<sup>8</sup>/sec) according to the resolutions. It is rather pessimistic concerning the pileup background.
- "New" evaluation is based on the actual distributions of data ("side bands"). Another estimate using the single distributions agree quite well; i.e., the background events look mostly accidental as expected.



### MEG Schedule 2009

#### Provisional MEG Beam Schedule 2009 P-R.K 14/02/09





# Conclusion

- With the data taken last year, we believe we can demonstrate that we are really capable of detecting the µ→eγ events
  - Analysis result of the 2008 data should be ready by the summer
- We make every single effort to eliminate all possible sources of the DC HV problem while preparing carefully for a successful physics run this year; We are confident that this is a most sound and efficient approach to the problem
- We need to continue to run the experiment through to the end of 2011 to achieve the target sensitivity
- The year 2009 will mark a significant step forward toward the goal of the MEG experiment; We are all looking forward to another challenging year!