MEG : search for $\mu \rightarrow e\gamma$ with a 10^{-13} sensitivity

A. M. Baldini (INFN Pisa)

for the MEG collaboration
$\mu \rightarrow e \gamma$ search: experimental method
A “significant” result before any LHC discovery

Mirror Leptons can enhance LFV by 25-30 orders of magnitude
e.g. Br (\mu \rightarrow e\gamma)_{\text{LHT}} \sim 10^{-12\pm2}
could be tested by MEG(2007)

Full data taking in 2007

Start data taking in 2006
to fully test the whole experiment

Published in 2008

Presented last year

PSI: February 14th 2007
Detector Installation

Drift Chambers (8 out of 16)

Timing Counters (bars, not fibers)

No LXe

2006: run in December

Stopping Target

Gas Control System
(Cobra+DC)

N₂ Bag
Full MEG Beam Line
11 Main Components
All now Implemented
Commissioning Run Provisional Results

Data still under Analysis PROVISIONAL

Rate at Entrance COBRA $1.15 \times 10^8 \mu^+ s^{-1}$ at 1.8mA, 4cm Tg
Rate at COBRA centre $> 6 \times 10^7 \mu^+ s^{-1}$ at 1.8mA, 4cm Tg (under investigation)
Beam Spot $\sigma \sim 10.8$ mm (as expected)

Collimator transmission $\varepsilon = 95\%$

SMH41 SMV41 Correction
at Centre of COBRA
~ 2 mm Horizontally
~ 7 mm Vertically
CORRECTION WORKS !!!

Separation Quality
High Intensity (slits open) 7.4σ
Low Intensity 8.1σ

Expected muon stopping rate in target = .62 of muons rate entering COBRA

Must correct for material in front of measuring device
Trigger, DAQ, Logging and Central MIDAS

Trigger
- 36 Type 1 boards
- 5 Type 2 boards
- 4 Ancillary boards
- all cabling
- Firmware version 0

DAQ
- DRS chips + cables for:
 - DC: 864 channels
 - TC: 60 channels
 - NaJ: 9 channels

Logging and Central MIDAS
- installed and operational (except for dc_trigger)
- data taking with all channels of installed sub-detector components

- 2 weeks of data taking at the end of december
- 285 runs taken at different beam intensities and HV settings
- in total ~600 GB recorded
MEG status report

TC: waveforms: 2 digitizers

Trigger@100 MHz

DRS @ 500 MHz or 2 GHz

PSI: February 14th 2007
Timing Counter: first results

Run 236 High Intensity (6 10^7 muons/s stopping in target)

Data

MC

n. of hit bars/event

Hit rate / bar

Down stream

Up stream

Data

MC

Entries 678

Mean 1.639

RMS 1.053

Entries 1937

Mean 15.89

RMS 7.184

PSI: February 14th 2007
DRS charge vs Trigger WFM Charge
DCH: waveforms; DRS @ 500 MHz
Timing

Positrons spiralling in the chambers and hitting the TCs
MEG status report

DCH: first results; Hit rate / wire

DATA
RUN#156~#163
FS41=100 (~25% intensity)
primary proton : 1.4mA
DAQ pre-scale = 10
of trigger ~ 10k

MC
RUNCONFIG = 1
(RUN2006)
event mode = 30 (muon)
of generation = 1M

-> Very rough normalization
-> No efficiencies included

Run configuration

Rate of wire coincidences on chamber 11

Plane A
Plane B

Data
MC

PSI: February 14th 2007
MEG status report

DCH: Anode Asymmetry

MC: Use z-coordinate

Data: Use Anode asymmetry

\[A = \frac{Q_u - Q_d}{Q_u + Q_d} \]

Rate map on chamber 11 (Monte Carlo)

Rate map on chamber 11

DS

US

PSI: February 14th 2007
Set to 100% the maximum intensity, scale the rest accordingly.

- Expected
- DCH Measured
- TICP Measured
LXe calorimeter construction status

PMT supporting structure → inside → Cold (LXe) vessel → inside → Warm vessel (vacuum)

PSI: February 14th 2007
Cryostat delay 1: cold vessel deformation (oct. 2006)

- Several mm gap
- LXe R.L.: 2.89 cm
- Support structure could not fit in ~6mm
Cold vessel re-machining

- The welded thin window was removed for this procedure
- Scrapped away the inner wall by 5mm at maximum
- PMT support successfully installed
- Checked with a gap gauge of 200 µm with the supporting structure installed on 22/Jan/2007
The 1st panel broke down in pressure test in June 2006

New (2nd) panel was designed
 - Honeycomb thickness 19mm → 26.5mm
 - High module prepreg 0.75mm → 1mm
 - Transition with fabric only → Taper Transition
 - Also this one broke on Aug. 21° 2006 in pressure tests
The 3rd Panel

- Internal reinforcement at the edges.
- Fiber with lower module but with a better Elongation (T300, used in aerospace applications with over 20 year service history).
 - 1.5mm prepreg thickness with 8 piles (1mm in the 2nd panel)
- Space-approved Resin epoxy (Hysol EA9361)
Construction Status of the 3rd Panel

- Project + Construction = 6 months
- Delivery to Pisa in this week
- Pressure and low temperature test next week: crucial test
Updated Construction Schedule

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
<th>Pre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test vuoto</td>
<td>8 days</td>
<td>Thu 06/12/14</td>
<td>Thu 06/12/14</td>
<td></td>
</tr>
<tr>
<td>Check INFIN</td>
<td>0 days</td>
<td>Thu 06/12/14</td>
<td>Thu 06/12/14</td>
<td></td>
</tr>
<tr>
<td>Test pressione e vuoto</td>
<td>5 days</td>
<td>Thu 06/12/21</td>
<td>Thu 06/12/21</td>
<td>3</td>
</tr>
<tr>
<td>INFIN check</td>
<td>0 days</td>
<td>Thu 06/12/21</td>
<td>Thu 06/12/21</td>
<td></td>
</tr>
<tr>
<td>Smontaggio finestra soffitti</td>
<td>2 days</td>
<td>Thu 06/12/22</td>
<td>Thu 06/12/23</td>
<td>4</td>
</tr>
<tr>
<td>Lavorazione camera fredda</td>
<td>10 days</td>
<td>Wed 07/01/13</td>
<td>Thu 07/01/18</td>
<td>5</td>
</tr>
<tr>
<td>INFIN Check</td>
<td>0 days</td>
<td>Wed 07/01/16</td>
<td>Wed 07/01/16</td>
<td>6</td>
</tr>
<tr>
<td>Costruzione nuova finestra soffitti</td>
<td>5 days</td>
<td>Wed 07/01/17</td>
<td>Wed 07/01/22</td>
<td>7</td>
</tr>
<tr>
<td>INFIN Check</td>
<td>0 days</td>
<td>Wed 07/01/23</td>
<td>Wed 07/01/23</td>
<td>8</td>
</tr>
<tr>
<td>Istallazione struttura supporto PMT</td>
<td>4 days</td>
<td>Wed 07/01/24</td>
<td>Mon 07/01/28</td>
<td>9</td>
</tr>
<tr>
<td>INFIN Check</td>
<td>0 days</td>
<td>Mon 07/01/28</td>
<td>Mon 07/01/28</td>
<td>10</td>
</tr>
<tr>
<td>Installazione nuova HC</td>
<td>5 days</td>
<td>Mon 07/01/30</td>
<td>Mon 07/02/05</td>
<td>11</td>
</tr>
<tr>
<td>Saludatura nuova finestra soffitti</td>
<td>3 days</td>
<td>Mon 07/02/06</td>
<td>Mon 07/02/08</td>
<td>12</td>
</tr>
<tr>
<td>Test taglio saldatura finestra soffitti</td>
<td>1 day</td>
<td>Fri 07/02/09</td>
<td>Fri 07/02/09</td>
<td>13</td>
</tr>
<tr>
<td>Controlli dimensionali</td>
<td>1 day</td>
<td>Mon 07/02/12</td>
<td>Mon 07/02/12</td>
<td>14</td>
</tr>
<tr>
<td>Check INFIN</td>
<td>0 days</td>
<td>Mon 07/02/12</td>
<td>Mon 07/02/12</td>
<td>15</td>
</tr>
<tr>
<td>Montaggio fascce</td>
<td>1 day</td>
<td>Tue 07/02/13</td>
<td>Tue 07/02/13</td>
<td>16</td>
</tr>
<tr>
<td>Installazione superinsulation</td>
<td>5 days</td>
<td>Wed 07/02/14</td>
<td>Wed 07/02/19</td>
<td>17</td>
</tr>
<tr>
<td>INFIN Check</td>
<td>0 days</td>
<td>Wed 07/02/20</td>
<td>Wed 07/02/20</td>
<td>18</td>
</tr>
<tr>
<td>Assemblaggio camere</td>
<td>0 days</td>
<td>Wed 07/02/21</td>
<td>Wed 07/02/21</td>
<td>19</td>
</tr>
<tr>
<td>Check INFIN</td>
<td>0 days</td>
<td>Fri 07/03/02</td>
<td>Fri 07/03/02</td>
<td>20</td>
</tr>
<tr>
<td>Saludatura coperchi</td>
<td>3 days</td>
<td>Mon 07/03/08</td>
<td>Mon 07/03/08</td>
<td>21</td>
</tr>
<tr>
<td>Test colla saldatura coperchi</td>
<td>1 day</td>
<td>Thu 07/03/08</td>
<td>Thu 07/03/08</td>
<td>22</td>
</tr>
<tr>
<td>Lucidatura interno camera fredda</td>
<td>2 days</td>
<td>Fri 07/03/08</td>
<td>Mon 07/03/12</td>
<td>23</td>
</tr>
<tr>
<td>Pulizia camera fredda</td>
<td>3 days</td>
<td>Tue 07/03/13</td>
<td>Tue 07/03/18</td>
<td>24</td>
</tr>
<tr>
<td>INFIN check</td>
<td>0 days</td>
<td>Thu 07/03/16</td>
<td>Thu 07/03/16</td>
<td>25</td>
</tr>
<tr>
<td>Assemblaggio e integrazione finale</td>
<td>5 days</td>
<td>Fri 07/03/16</td>
<td>Thu 07/03/22</td>
<td>26</td>
</tr>
<tr>
<td>Preparazione test criogenico</td>
<td>3 days</td>
<td>Fri 07/03/23</td>
<td>Tue 07/03/27</td>
<td>27</td>
</tr>
<tr>
<td>Test criogenico</td>
<td>5 days</td>
<td>Wed 07/03/28</td>
<td>Tue 07/04/03</td>
<td>28</td>
</tr>
<tr>
<td>Test taglio camera fredda dopo test</td>
<td>5 days</td>
<td>Wed 07/04/04</td>
<td>Tue 07/04/10</td>
<td>29</td>
</tr>
<tr>
<td>Inbluaggio e trasporto</td>
<td>2 days</td>
<td>Wed 07/04/11</td>
<td>Thu 07/04/12</td>
<td>30</td>
</tr>
</tbody>
</table>

Now: superinsulation installation
Assembling the cold chamber inside the warm one + cleaning (5 weeks)

Final Cryogenic Test (2 weeks)

Shipping to PSI
Xenon Storage

- ~900L in liquid, largest amount of LXe ever liquefied in the world
- Very stable
 - Pressure raise 0.003MPa/h w/o cooling
 - 0.111 MPa → 0.2 MPa in 44 hours
Proton Acc

- **Li(p,γ)Be**
 - LiF target at COBRA center
 - 17.6MeV γ
 - ~daily calib.
 - Can be used also for initial setup

Nickel γ Generator

- **K**
- **Bi**
- **Tl**
- **F**

Xenon Calibration

- Laser
 - (rough) relative timing calib.
 - < 2~3 nsec
- LED
 - PMT Gain
 - Higher V with light att.
 - Can be repeated frequently
- **π^0 \rightarrow γγ**
 - \(π^0 \rightarrow γγ \) (55MeV, 83MeV)
 - \(π^0 \rightarrow γ + n \) (129MeV)
 - 10 days to scan all volume precisely
 - (faster scan possible with less points)
 - LH\(_2\) target

μ radiative decay

- Lower beam intensity < 10\(^7\)
 - Is necessary to reduce pile-ups
 - Better \(σ_μ \) makes it possible to take data with higher beam intensity
 - A few days ~ 1 week to get enough statistics

α

- PMT QE & Att. L
 - Cold GXe
 - LXe

NaI

- 3 cm 20 cm
- Source (Cf) transferred by comp air \(\rightarrow \) on/off
- 9 MeV Nickel γ-line
- 0.25 cm Nickel plate

µ radiative decay

\[\mu \rightarrow e + γ + ν_μ \]

\[π^- + p \rightarrow π^0 + n \]

\[π^0 \rightarrow γγ \] (55MeV, 83MeV)

\[π^0 \rightarrow γ + n \] (129MeV)

10 days to scan all volume precisely

(faster scan possible with less points)

LH\(_2\) target

NaI

- 3 cm 20 cm
- Source (Cf) transferred by comp air \(\rightarrow \) on/off
- 9 MeV Nickel γ-line
- 0.25 cm Nickel plate

µ radiative decay

\[\mu \rightarrow e + γ + ν_μ \]

\[π^- + p \rightarrow π^0 + n \]

\[π^0 \rightarrow γγ \] (55MeV, 83MeV)

\[π^0 \rightarrow γ + n \] (129MeV)

10 days to scan all volume precisely

(faster scan possible with less points)

LH\(_2\) target

Laser

- (rough) relative timing calib.
- < 2~3 nsec

α

- Cold GXe
- LXe

NaI

- 3 cm 20 cm
- Source (Cf) transferred by comp air \(\rightarrow \) on/off
- 9 MeV Nickel γ-line
- 0.25 cm Nickel plate
Machine Status

• original Completion Date:
 ~ mid-May 2007

• NEW Completion Date:
 ~ end-February & expected Ready for testing mid-April ~ 2007
Cockcroft-Walton Area

Constraints
- Safety System + Electrical Infrastructure unaltered
- Permanent Access from outside

πE5 Zone

πE5 Shielding Wall needs modifying

πM3 Shielding Must be MODIFIED

Approx. form C-W Area
Tasks & Problems

- **DC**
 - gas leakage
 - build / rebuild the chambers
 - track reconstruction code still missing

- **TC**
 - fiber detectors (APD electronics) & laser system
 - redesign & build N2 bags
 - further tests/calibration at Frascatti
 - matching with DC tracks

- **LXe**
 - honeycomb window ready this week - pressure test
 - C-W will arrive earlier! - testing mid-April

- **Trigger/DAQ**
 - data rate limited at 5Hz (full detector) - toward 100Hz?
 - DRS3 probably not for 2007

- **Computing**
 - data size reduction (9MB/event)

Ready in mid-June
(Ready in mid-May: N2 bag by April)
Cryostat delivery in mid-April
MEG status report

Other (possible) users at the earliest possible time...

PSI: February 14th 2007
Conclusions

First result: very good agreement of rates predicted by MC \Rightarrow no significant unwanted backgrounds !!

Publish in 2008 the “significant” result

Hopeful for full data taking in 2007

Started “data taking” in 2006 without LXe detector

Background and Sensitivity

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measured</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma Energy (%)</td>
<td>4.5-5.0</td>
<td></td>
</tr>
<tr>
<td>Gamma Timing</td>
<td>-0.15</td>
<td></td>
</tr>
<tr>
<td>Gamma Position (mm)</td>
<td>4.5-9.0</td>
<td></td>
</tr>
<tr>
<td>Gamma Efficiency (%)</td>
<td>>40</td>
<td></td>
</tr>
<tr>
<td>e+ Timing (nsec)</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>e+ Momentum (%)</td>
<td>0.8</td>
<td>10.5</td>
</tr>
<tr>
<td>e+ Angle (mrad)</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>e+ Efficiency (%)</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>Muon Decay Point (mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muon Rate (10^8/sec)</td>
<td>0.25-0.35</td>
<td>4.0</td>
</tr>
<tr>
<td>Running Time (10^7sec)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accidental Rate (10^{-14})</td>
<td>1.9-3.0</td>
<td></td>
</tr>
<tr>
<td># Accidental Events</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>90% CL Limit (10^{-13})</td>
<td>0.9-1.4</td>
<td></td>
</tr>
</tbody>
</table>

Updated number should be available after Physics Meeting in Tokyo, March 29-30