Result from June Frascati test beam

Data taken with a narrow ($\sigma \approx 0.5cm$) electron beam.

In each run the beam impinged at fixed z along a single bar.

Data read with a digital oscilloscope at sampling time $\Delta t = 400 ps$.

Pos.(cm)	-36	-26	-16	-6	4	14	24
14d	•	•	•	•	•	•	•
15d	•	•	•	•	•	●	●
16d	•	•	•	•	•	●	●
17d	•		•		•	●	•
17dnew	•	•	•	•	•	●	•
18d					•	●	•
19d	•	•	•		•	●	•
20d		•	•	•	•	●	•
2d				•		●	
8dnuda					•	●	

Analysis topics

- PMT transfert function (laboratory measurement)
- Attenuation length measurements
- Position measurements with $\ln(Q_1/Q_2)$
- Effective velocity v_{eff} measurement

PMT transfert function

A preliminary measurement is the PMT transfert function. In laboratory PMT output response to a δ pulses (500ps) are sampled with a digital oscilloscope.

The easiest approach is to measure the rise time τ_r , the τ_f and the fwhm.

A careful analysis leads to a two parameters functions for the PMT transfert function.

$$f(t;\tau_{RC},n_{RC}) = \frac{1}{\Gamma(n_{RC}+1)} \left(\frac{t}{\tau_{RC}}\right)_{RC}^{n} e^{-\frac{t}{\tau_{RC}}}$$

This function gives a good fit the PMT transfert function for different HV.

Attenuation length measurements

The effective bar attenuation length λ_{eff} can be estimated using the log of the charge ratio between opposite side PMT. Defining z as the longitudinal coordinate, L the bar length and G_n the gain factor

$$Q_{1} = G_{1}E_{0}\exp(-(L/2 - z)/\lambda_{eff})$$

$$Q_{2} = G_{2}E_{0}\exp(-(L/2 + z)/\lambda_{eff})$$

$$\ln(Q_{1}/Q_{2}) = \ln(G_{1}/G_{2}) + z\frac{2}{\lambda_{eff}}$$

The linear fit is generally as good or better as for bar 19d.

Bar	$\lambda_{eff}(\mathrm{cm})$	Bar	$\lambda_{eff}(ext{cm})$
15d	93.96±0.25	16d	$79.95 {\pm} 0.17$
17d	72.38 ± 0.13	19d	98.91±0.20
20	73.57±0.23	2d	100.02 ± 0.31
8d	70.32 ± 0.80	Ave	84.24±12.0

 λ_{eff} is not the bulk attenuation length $\lambda = 140 \, cm$ reported in the data sheets. They are related by

$$\lambda = \frac{\lambda_{eff}}{\langle \cos\Theta \rangle}$$

where $\langle \cos\Theta \rangle = (1 + 1/n_{sc})/2 = 0.81$ is averaged over the incident angles.

That gives an average

$$\overline{\lambda} = \frac{\overline{\lambda}_{eff}}{\langle \cos\Theta \rangle} = 103.49 \pm 14.74cm$$

There is a significant different from the expected value and there is a spread difficult to understand.

Influence of reflection loss on λ

An effect not yet included neither in MC nor in analysis is the reflection loss at the surface.

Defining R_2 the reflection efficiency below the critical angle and a the bar thickness, the number of reflections for photons travelling at angle Θ for a distance x is

$$N_R = \frac{x}{a} \tan \Theta$$

This effect gives a reflection absorption length as

$$\lambda_R = \frac{a}{<\tan\Theta > \frac{1}{\ln\frac{1}{R_2}}}$$

Therefore λ_{eff} can be defined as

$$\frac{1}{\lambda_{eff}} = \frac{1}{\lambda < \cos \Theta >} + \frac{1}{\lambda_R}$$

If $R_2 = 1 - \epsilon$ for $\epsilon \ll 1$

$$\lambda_R = \frac{a}{<\tan\Theta > \epsilon}$$

Estimating R_2 from λ_{eff} measurements

Bar	15d	16d	19d	20	2d	8d	Ave
0.60	1.21	1.63	0.43	1.56	0.40	1.76	1.00

If the difference between λ_{eff} and the bulk value is due to reflection losses, ϵ can be obtained for each bars. A spread in ϵ that depends on the surface quality is more credible that the same spread in bulk property.

Position measurements

Using λ_{eff} we can obtain a position measurement from

$$\ln(Q_1/Q_2) = \ln(G_1/G_2)_{fit} + z \frac{2}{\lambda_{eff,fit}}$$

Averaging all measurements on a bar, the position resolution is $\sigma(z) = 2.6cm$.

This error does not depend on the hit position except when its distance is comparable to PMT diameter.

In this case the linear relation between $\ln(Q_1/Q_2)$ and z breaks down because photons at $|\cos \Theta| < \frac{1}{n_{sc}}$ can reach the PMT without reflection.

Effective velocity v_{eff} measurements

The formulae for the timing are

$$\begin{split} t_1 &= t_0 + (\frac{L}{2} - z) \frac{1}{v_{eff}} \\ t_2 &= t_0 + (\frac{L}{2} + z) \frac{1}{v_{eff}} \\ t_2 - t_1 &= \frac{2}{v_{eff}} z \end{split}$$

Important: the timing $t_1 t_2$ depends on the algorithm.

We used amplitude normalized threshold, the timing fires when the signal cross $\alpha\%$ of the maximum amplitude: 10%,50%,90%.

The time profile of the signal is due to different components:

- Transfer function of the PMT
- Photon time distribution due to the scintillation process
- Photon propagation in the bar

The last contribution depends on hit position, that implies that v_{eff} depends on the fraction of photons ϵ contributing to the timing.

Different ϵ corresponds approximately to different α .

Different ϵ correspond to different $\cos(\Theta_{\epsilon})$, where $\cos(\Theta_{\epsilon})$ is the angle within which the fraction ϵ is emitted.

$$(1 - \cos(\Theta_{\epsilon})) = (1 - \frac{1}{n_{sc}})\epsilon$$

 v_{eff} is established by the formulae

$$\begin{aligned} t(x,\cos(\Theta)) &= \frac{z}{\cos(\Theta)} \frac{n_{sc}}{c} \\ t_{\epsilon}(x) &= t(x,\cos(\Theta_{\epsilon})) = \frac{z}{\cos(\Theta_{\epsilon})} \frac{n_{sc}}{c} \\ v_{eff,\epsilon} &= \frac{x}{t_{\epsilon}(x)} = \frac{c}{n_{sc}} \cos(\Theta_{\epsilon}) = \frac{c}{n_{sc}} (1 - (1 - \frac{1}{n_{sc}})\epsilon) \end{aligned}$$

Therefore for $\epsilon \to 0$ ($\alpha \to 0$) $v_{eff,0} \to \frac{c}{n_{sc}} = 18.87 \frac{cm}{ns}$. For $\epsilon \to 1$ ($\alpha \to 1$??) $v_{eff,0} \to \frac{c}{n_{sc}^2} = 11.87 \frac{cm}{ns}$. These two values constrain the range of values of v_{eff} . In the test beam the relation between z and $t_2 - t_1$ is measured for several bars and it is very linear.

Bar	$v_{eff,0.1}(\frac{cm}{ns})$	$v_{eff,0.5}(\frac{cm}{ns})$	$v_{eff,0.9}(\frac{cm}{ns})$
15d	14.81 ± 0.05	14.17 ± 0.02	13.76 ± 0.05
16d	15.03 ± 0.04	14.31 ± 0.02	13.85 ± 0.03
17d	15.42 ± 0.02	14.62 ± 0.02	14.31 ± 0.02
19d	14.98 ± 0.02	14.24 ± 0.01	13.82 ± 0.02
20	15.26 ± 0.03	14.38 ± 0.02	13.62 ± 0.04
2d	15.13 ± 0.04	14.33 ± 0.03	14.06 ± 0.05
8d	15.06 ± 0.33	14.33 ± 0.25	13.82 ± 0.21

The trend of increasing $v_{eff,\alpha}$ with decreasing α is confirmed.