The MEG Experiment

The $\mu \rightarrow e\gamma$ experiment at PSI

T. Mori

What is MEG going to do?

What is $\mu \rightarrow e$?

Clear 2-body kinematics

Background dominated by Accidental coincidence

- \rightarrow lower μ rate is better
- \rightarrow DC μ beam is best

"surface muon beam": 100% polarized

Good detector system Is essential

The MEG Collaboration

Japan, Italy, Switzerland, Russia, USA NFW

Spokespersons: T.Mori, A.Baldini Technical Coordinator: S.Ritt

Detectors:

- PSI P.-R.Kettle • Beam line:
- KEK/Tokyo W.Ootani • COBRA:
- Drift Chamber: PSI J.Egger
- Timing Counter: Genova/Pavia/Roma G. Cecchet
- Photon Detector: Tokyo/Pisa/KEK
 S.Mihara
- Trigger: Pisa M.Grassi PSI S.Ritt
- DAQ/Elec.:
- S.Yamada/F.Cei/R.Sawada/M.Schneebeli • Offline:

The MEG Detector

Beam: intensive focused DC muon beam (10⁸,~2cm ϕ) e⁺: COBRA(gradient B) + DC (p, ϕ , θ) + TC(t) Gamma: LXe scintillation detector

Background and Sensitivity

Gamma Energy (%) e+ Timing (nsec) Gamma Timing Gamma Position (mm) Gamma acceptance Muon rate (10⁸/sec) Running Time (10⁷sec) Accidental Rate (10⁻¹⁴) # Accidental Events 90% CL Limit (10⁻¹³)

Jan 2004	Jan 2005
4.5-5.0*	
0.1*	
<0.23*	~0.15**
4.5-9.0*	
>0.4*	
0.2-0.3	0.25-0.35
4.0	
2.3-3.5	1.9-3.0
0.6	0.6
1.2-1.7	0.9-1.4

* Measured **w/ new PMTs

More detailed calculations are coming! (Physics Meeting in Tokyo, this March)

People getting more & more serious about MEG:

A number of theoretical studies under way

a year long workshop: **"Flavour in the Era of the LHC"** interplay of flavour and collider physics

e.g. SUSY benchmark point study w/ MEG & LHC, Extra D theory w/ neutrino oscillation (LFV) MEG's importance emphasized at Open Symposium on European Strategy for Particle Physics Research by CERN Council Strategy Group

MEG is now CERN's "Recognized Experiment" RE12

Summary of my talk

What have happened since the last BVR

• Steps to take toward $\mu \rightarrow e$ discovery

Highlights during the last one year

Beamline:

Muon beam successfully tuned down to the target region

COBRA magnet:

All problems about the fringing field have been solved

LXe Detector:

More than 800 phototubes have been tested; more to come Cryostat & PMT support are being (slowly) constructed

Drift Chamber:

The first chamber has been assembled for various tests **Timing Counter:**

Production getting underway

DAQ & Electronics:

Prototypes successfully tested; getting into production soon Offilne:

Framework & new organization established

COBRA Injection Test Setup

LHe From Cryo. Plant

Improvised +He-Bag DS

sandwich

Provisional Results Centre COBRA

COBRA Axial z-scan (No Degrader)

BTS-Excitation Curve to focus beam in COBRA "unlike -+" Polarity

ŵ

More than enough or M

Very similar to GEANT Predictions

Measured Rate at Centre COBRA (Dependent on mode) **R**_µ~ (1.15 - 1.19)·10⁸ µ⁺ s⁻¹ at 1.8mA & 4 cm

Tg.E

Target system

Various solutions under study: UCI/PSI/KEK

Permanent Muon Target

- Rohacell foam/CH₂ combination
- Complete Rohacell
- CH₂ or polystyrene Target + wire frame <u>Support</u>
- from DC frame- rotatable or translational
 - Prototypes be investigated at UCI

Position monitoring

Idea of using several holes in target⇒ x,y,z

Monte-Carlo simulations: - underway

- check of optimum target inclination wrt. Energy-loss, multiple scattering, high/low-energy photon generation, momentum resolution, DC/TC-efficiency
- effect of thicker solid Rohacell target as well as support structute on vertex & angular reconstruction resolution + timing resolution and background generation

Others: Polarization data Rohacell

Insertion System

Insertion System:

- telescopic triple-rod system with NBR rubber bellows 1mm thick outer dia. ~ 270 mm inner dia 170 mm
- attached to DS-end-cap & retractable into end-cap flange
- allows insertion up to z = -150 mm
- allows proton beam-pipe, LH₂-target, beam

monitor as well as possible future devices to be inserted with minimal disturbance of COBRA He-environment

motor driven via accelerator bellows motor

hand driven possibility via friction drive

Rubber Bellows retracted Couples to Accelerator Bellows

necessary for calibration targets

COBRA magnet

Ready for ~2 years

Fringe Field Shielding in TTE3

- The side wall and the floor in the E3 are tiled with 10mm-thick soft iron plates.
- The shield plates are mobile.
- It worked as expected.
 - The residual field around the detector was measured to be 2Gauss with the shieldings. (cf. 4-5Gauss without the shieldings)
- Stray field problem is fixed, finally.

Power Supply Trouble

Power supply for the compensation coils was burned. Fire brigade and (even) police came to the area. Relatively big incident. Any interlock protection system in the power supply didn't work.

Problems solved; Necessary measures to take for a long, stable run

Plan for Field Measurement

- The field measurement is delayed by two weeks because of the PS trouble. Plan for the measurement
 - Surveying+calibration: 1week
 - Measurement: 2-3 weeks
 - Measuring step: $\Delta Z=2$ cm $\Delta R=2$ cm $\Delta \Phi=20$ deg
 - Possibly with finer mesh for the central region
 - Independent measurement of the BTS fringe field
 - Measure long term stability of the field using NMR

We are starting the field measurement this week. Supposed to complete within February.

Xenon Detector

Cryostat Construction

- Construction at SIMIC http://www.simic.it
- Stainless steel raw material, sheets, tubes, flanges etc. are ready at SIMIC
- Several design modifications
 - Feedthru mounting, cover handling, platform extension, SIMIC request etc.

PMT mounts

PMT Mounts Assembly Test

Pisa PMT test

- 298 PMTs tested, total of 650 tests
- ~3PMTs/day, 2.5 hours for one test
- All data has been put into MySQL database

PSI PMT test

- PMT test in liquid xenon by using LP cryostat.
- Up to 238 PMTs can be tested at once in two months
- We performed three tests
 - Thanks to Students from Tokyo
 - June August, August October, November – December
 - We tested not only newly delivered PMTs but also PMTs tested in Pisa, PMTs used in the previous test etc.
 - Gain, QE, Linearity of PMT output measured.

PSI PMT test result

Gain, linearity ← LED

Gain Curve

• QE $\leftarrow \alpha$ sources on wires

	1st	2nd	3rd	total
New PMTs	188	184	144	516
PISA & PSI	30	19	30	79
Re-test	20	35	64	119

660 680 700 720 740 760 780 800 820 840

Special work for inner PMTs

•"Spacer" will be installed to the inner face PMTs to reduce the liquid xenon contamination to the back of PMTs

•So far, 427 spacers are installed to PMTs. Next, we will install the spacers for the PMTs which are selected for inner face, and those for 98 PMTs should be installed.

•10 days for this work

(5 PMTs/day/person) x 2 people

PMT Trouble

- About 8% PMTs delivered in April-July 2005 have undergone vacuum break at the window edge.
- HPK investigated this problem and found
 - Misalignment of the window during construction
 - Insufficient treatment to remove HCl after heat-sealing

	Electron Probe Micro Analyzer			HCI
	分析方法と測定条件 測定可能元素 EPMA(電子線微小部分析) C(6)~U(92) 電子線加速電圧 15KV ビーム電流 0.1 µ A	。 分析領域 深さ 横 表面層 (0~数μm) 50μmφ	Silica	<u>i</u>
	分析データ	(1. 		1
	No. 1	(WT%)		100
	NO. O AI TC1126 接触面底轴部 17.90 90.90	S CI Fe Mg	and the second se	
	接触面腐蝕部 31.93 56.80	9 19 2 09		
	接触面腐蝕部 24.62 74.93	0.12 0.28 0.05	1	The second se
	接触面腐蝕部 4.89 93.02	1.10 0.64 0.35		Sector States
	腐蝕部周辺 3.48 90.44	5.67 0.41	Car Hold Tar	Motal Tuba
	接触面光沢部 ハクリ不可	(ガラスか運かに残る)		Ivicial Tube
			Al	
•	分析データの評価			V711-
	・接触面腐蝕部を4占測定したが、何れからもCIが検	3出された	HAN IS THE WORK OF THE PARTY OF	vacuum break

HCI Metal Tube uum break

・接触面腐蝕部を4点測定したが、何れからもCIが検出された。 →コパール研磨前の塩酸処理による腐蝕か?

PMT trouble summary

- About 8% of delivered PMTs suffered from vacuum break.
- Hamamatsu investigated the problem and found that this was caused by remaining HCI that could not be removed due to window tilt.
- They introduced in their production
 - Guiding tool
 - Ultra-sonic cleaning after HCI wash
- They will deliver > 150PMTs soon for replacement and spares. Those will be tested in PSI (4th LP test) and Pisa.
- We should not use PMTs with very large tilt (d > 0.35~0.4mm).
- This new PMT selection criteria is expected to suppress the problem during detector operation.

Some delays, but will be in time

Neutron Background Measurement

- Measurements of neutron flux and energy spectrum in the πE5 area
- Evaluation of the effects on the detector
- Setup
 - Nal detector (4 inch x 4inch)
 - Bonner sphere system with a ³He detector
- Two measurements
 - Aug/2004 (w/o BTS)
 - Dec/2005 (w/ BTS)

Neutron Background (preliminary)

- 1.8mA proton current, $1.2x10^8 \mu^+/s$
- Location A (by Bonner Sphere in Dec/2005)
 - Thermal neutron flux: 1-1.2 n/s/cm²
 - Total neutron flux: 4-4.5n/s/cm²
 - Consistent with Aug/2004 measurement
- Location B (by Bonner Sphere in Dec/2005)
 - Thermal neutron flux: 3.7-5.4 n/s/cm²
 - Total neutron flux: 10-10.5 n/s/cm²
- Nal activation (¹²⁸I activation) method (Location B)
 - Thermal neutron flux: 1.8+/-0.3 n/s/cm²
 - A bit lower but compatible with a factor of 1.5
 - Nonthermal neutron flux: ~10 n/s/cm²
 - Large uncertainty. Good agreement with He3 measurements
- PMT background current due to neutron
 - IPMT < 1 μ A
 - PMT response is linear far above this level
 - No need of neutron shielding

No shielding necessary for operation

Gamma line measurements

Main method to check the energy scale and stability of the calorimeter on almost-daily basis

We tested the calibration method by means of $p(N,\gamma)N'$ reactions with the Legnaro VdG accelerator coupled to a custom target tube with different home made targets:

Reaction	Resonance energy	σ peak	γ-lines
Li(p,y)Be	440 keV	5 mb	17.6 MeV, 14.6 MeV
$B(p,\gamma)C$	163 keV	2 10 ⁻¹ mb	4.4 MeV, 11.7 MeV, 16.1 MeV

We studied the reliability of the method paying attention to:

- Reactions rates at different energies
- Different target thickness
- Quality of the γ -lines

LXe calibration method verifed at Legnaro VdG

LiF target excitation curve

- Number of collected photons in *Li* peak as a function of the proton energy
- We checked the energy scale and resolution of Legnaro VdG!

Thick target: during slowing down in target all protons eventually reach the resonance Thickness = $1.34 \ \mu m$

The 17.6 MeV _γ-line

 Gamma lines from natural radioactivity are used to calibrate the energy scale ⁴⁰K (1.460 MeV) ²¹⁴Bi (1.764 MeV) ²¹⁴Bi (2.204 MeV) ²⁰⁸TI (2.601 MeV)

Rate(17.6 MeV) on LXe = $1.8 \text{ kHz} / \mu \text{A}$

B(p,γ)C reaction

- From the de-excitation of Carbon ~ 94% of the times the 16.1 level decays in two photons
- Three energetic gamma lines
- Powerful tool to explore the capability of the MEG calorimeter to reject pile-up events.

SORAD α -source Photos

- Am sources much larger half-life (kyears instead of 130 days)
- Difficult to prepare
 - ²¹⁰Po electrodeposited
 - Not possible for ²⁴¹Am
- Clipping of Au foils on thin wire

Reconstructed alpha sources in LXe

Properly simulated by our MC

- Our MC simulation is good!
- An investigation with the • factory is in progress to improve the symmetry.

100 μm thick tungsten wire

200 µm

50 µm thick gold

around the wire

plate clipped

Drift Chambers

The first Drift Chamber has been assembled

0.1 mm precision to frame reference points reached for anode, cathode and hood

Various tests scheduled toward final installation

Timing Counter

A sample of BC404 bar and the plastics housing

Production scheme of Scintilating Fibers tested:

- Hot forming with and without jacket. √
- Test for light losses, i.e., trapping efficiency. √
- Test of several diffusing or reflecting jacket. √
- Coupling to the APD via EPOTEK H301-2. √

N2 bag

0.25 mm tick EVAL T foil in a sandwich of two PE foils
The foils will be formed on the mockup and assembled by thermo-welding or epoxy: these joints are successfully tested
Construction will start after the completion of the first TC (middle of march)

Trigger, DAQ and Electronics

Type1

Type2

DRS2 - new CMC card

Noise level with the new CMC

- Better analog design (lower crosstalk and noise
- Moved chips more to front
- Dedicated clock input
- Dual FADC
- Temperature sensor
- 1k EEPROM

128 DRS2 channels ready

Issue	Solution	DRS2	DRS3
Voltage nonlinearity	Calibration with cubic splines in Front-end	\checkmark	
Clock nonlinearity	Time calibration & frequency regulation	\checkmark	
Cross talk 1% @ 7ns risetime	Redesign of CMC card with ERNI 68-pin connector and interleaved ground lines	✓	
Temperature dependence	 Calibration maybe possible to some extend Keep electronics temperature constant On-chip temperature compensation 	? (✓)	~
Self-heating of cells	 Only use small signals (<0.5 V) On-chip temperature compensation 	(*)	\checkmark
Ghost pulses	 Veto trigger ~5us after cosmic or LED event Veto trigger after other calorimeter hits? Record 2us calorimeter history in each event? Redesign sampling cell 	✓ ? ?	✓

DAQ

Readout speed

- Struck SIS3100
- VPC board with CMC
- 2eVME transfer protocol
- Desktop PC (2.6 GHz P4)

T = 125us + size/84 MB/sec

25 ms/event at full readout

DAQ computers

Producer: www.thomas-krenn.com Cost: 1800€

- Hot-plug cooler
- Redundant power supply
- Hot swap hard disks
- Remote management card

Electronic chain

DAQ and control

New Software Organization

Simulation	DC	H. Nishiguchi		
	TC	P. Cattaneo		
	XE	F. Cei + S. Yamada		
	Beam/Target	W. Ootani + K. Ozone + V. Tumakov		
	Calibration	F. Cei		
	DC digitization	on P. Huwe		
	TC digitization	F. Xiao + TBA		
	XE digitization	Y. Uchiyama		
	Trigger simulation	D. Nicolo' + Y. Hisamatsu		
Analysis	Framework	M. Schneebeli		
	Database	R. Sawada		
	DC	H. Nishiguchi + M. Schneebeli		
	ТС	D. Zanello		
	XE	G. Signorelli + R. Sawada		

ROME based analysis tool

- MegRoot was rejected
- Analysis tools based on ROME was approved
 - megbartender : event cocktail & digitization
 - meganalyzer : reconstruction (was called gemframework)
- New software coordination
 - Repository : Fabrizio Cei, Shuei Yamada
 - MC : Fabrizio Cei, Shuei Yamada
 - Offline : Matthias Scheebeli, Ryu Sawada
 - Online : Stefan Ritt

Procedure of Analysis

Event Display

 Both for online & offline

Ongoing Studies Using MC

- Background Source Study
 - Optimize end cap, target system and Rohacell tube design
- "Annihilation in Flight" (AIF) background in LXe
 - Source of AIF gammas
 - AIF gammas' spectrum & yield
 - AIF Rejection
- LXe Waveform
 - Waveform simulation
 - Pile-up rejection

BG Source Study

BG from End Cap

BG from DC cable duct

AIF study using MC

- 1. Generate Michel e+ in target, emit them for 4π
- At the each GEANT tracking step, calculate annihilation probability by material information and Michel e+ momentum information
- 3. Generate 2 γ at each step weighted by this probability

4. Trace 2γ , if it enters Xe cryostat

AIF probability map

X_V View

No Cut

×e

Xe events Egam>45MeV

events

Z-Y View

Z-X View

150

10

10

10

40 50

AIF Spectrum & Photon Yield

AIF Event Identification in LXe

distance between 2 incident gama rays

mostly easily identified
Data Storage Resource & Needs

	PSI Tapes	PSI Disks	MEG Needs
	30-40 TBytes (free) +	4TBytes (backuped) +	~10TBytes/yr (read data)
	by back up (to be	backuped)	~40-50 I Bytes/yr (MC Production)
			\sim 10TB/yr
			(overheads, DSTs)
total	70-80 TBytes	10TBytes	60-70TBytes/yr

- MEG Needs \sim 5 TBytes/year of Disk Space for DATA
 - Assuming 1/2 of the data collected in one year reside on disk for monitoring, calibrations, faster analysis, etc...

likely need investment for more storage space in the future

CPU Resource & Needs

	PSI Nodes	MEG Needs (CPUs/yr)	
	264 128 CPUs	~3 CPUs (real data, w/o Waveform fitting) < 1 CPU	
		(selected data w/ Waveform fitting) ∼20 CPUs	
		(MC production & bartender) ~10 CPUs	
		(MC reconstruction = 3x data, w/o WF fitting)	
	128 CPUs	< 1 CPU (MC selected sample w/ WF fitting)	
Total	64 CPUS	~33 (+20 per 10 repr.) CPU/yr	

resources available at PSI ~ probably sufficient

Data Access Resource & Needs

PSI Link Speed	MEG Needs
25MBytes/s to tapes via FTP 1Gbits/s to disks from CPUs	 1MBytes/s (w/ Waveform compression) 10MBytes/s (w/o Waveform compression)

resources available at PSI ~ sufficient

Analysis Compute Cluster

Standard Cluster HW for different experimental groups. Store data on disk with fast access from CPU cluster over Gbit network. Evaluation is ongoing.

- Rackmounted, Remote controllable
- Probably Opteron Processors
- CPU + Disk Storage, Global FS

Pricing Proposal: 50% of dedicated clusters are paid by the experiment

What is the expected size of the cluster in terms of CPU and storage requirements ?

Tape Archive System

Access via FTP (for user looks like a big FTP server)

Located in PSI East and West, in total 6 LTO2 drives 30 MB/s write speed. Mirroring optional. 200GB uncompressed per LTO2 tape

FTP server today can accept about 25 MB/s input data rate sustained, new server HW planned

Current size 75 TB, free slot space for about 30-40TB (depends on compression), can be extended by freeing space now occupied for backup which may yield another 40 TB. Further tape cabinets possible.

Experiment should pay the media costs of 50 CHF/Tape

For more details see https://archiv.web.psi.ch/docu.php

Simulation of LXe waveforms

1. Sum up single electron pulses for all photoelectrons.

- Summed according to each arrival time
- Gaussian whose spread is equal to TTS for single electron response.

fluctuations also properly simulated

Pulse shapes are not constant especially for small pulses because of statistics.

essentially important for pile-up study.

Quick identification of Pile-up

Peak search method simplest way but powerful in case of large ΔT

Resolutions from Waveforms

The MC study shows waveforms will provide resolutions similar to those obtained by the prototype using standard ADCs and TDCs

No events

Schedule 2006

final beam tuning + detector installation + commissioning the MEG experiment

Beam Line Commissioning & Associated Detector Schedules Version2, 22/01/2006

Definitions: Date format: ddmmyyyy d =1 working day w = 7 days

Updated Schedules associated with the Beam Line:

- Shutdown -→ until end March 2006
- BEAM START 6/4/2006 (6th April)
- Beam Commissioning + BTS Control System Testing Σ5weeks (4w + 1w contingency due to beam quality post shutdown) 5/4/2006 → 10/5/2006
- DC-Test 2w 11/5/2006 → 24/5/2006

final beam tuning DC test

- BTS Warm-up + Beam Line removal prior to TC-Insertion upstream (US) 5 days (5d) 25/5/2006 → 29/5/2006
- Upstream TC-Installation & testing 11d 30/5/2006 → 14/6/2006
- Upstream COBRA End-Cap delivery + setup (not confirmed yet but industry says not unreasonable) ~ 12/6/2006, +5d setup & assembly in PSI Workshops
 12/6/2006 → 16/6/2006
 Upstream TC installation
- Installation COBRA US End-Cap 5d 19/6/2006 → 23/6/2006
- Beam Time for either π-H Collaboration 6w (Gotta et al.) or μ-H Collaboration 8w (Kottmann et al.) (most likely is Kottmann et al.) → 8w 28/6/2006 → 23/8/2006 target + DC + TC installation
- Downstream COBRA End-Cap delivery + setup (not confirmed yet but industry says not unreasonable) ~ 24/7/2006, +5d setup & assembly in PSI Workshops 24/7/2006 → 28/7/2006
- Installation COBRA DS End-Cap + Insertion System 10d 31/7/2006 → 11/8/2006

- Re-Installation of MEG Beam Line Install Separator + Triplet II + BTS 24/8/2006 → 28/8/2006
- Survey Separator + Triplet II + BTS <u>29/8/2006 → 30/8/2006</u>
- Install Steering Magnet + Collimator System + Degrader System + Vacuum System 31/8/2006
- BTS Cryogenic Connections LHe + LN₂ + pumping-down 5d 26/8/2006 → 30/8/2006
- BTS Cool-down 3d 31/8/2006 → 3/9/2006

Beam Line Ready 4/9/2006

DC + TC data taking

to be joined by LXe

Approximate Production Schedules:

System	Design Phase	Manufacture Phase
US COBRA End-Cap	→ mid February	Mid Feb. → mid June
DS COBRA End-Cap	→ mid March	Mid March → mid July
Insertion System	→ End February	March → mid July
Target System	→ End February	Beg. March → beg. June

More detailed schedule available for each sub-project

Our goal remains the same:

A "significant" result before any LHC discovery

Publish in 2008 the "significant" result

Full data taking in 2007

Start data taking in 2006 to fully test the whole experiment