

MEGII実験での $\mu \rightarrow e\gamma$ 探索解析の現状 -ガンマ線再構成の改良と2022年データ解析の見通し-

山本健介(東大理)

他MEG IIコラボレーション

2024年3月18日(月)-21日(木) 日本物理学会2024年春季大会

18aT2-7

$\mu \rightarrow e\gamma$ search in MEG II

- MEG II experiment in a search of $\mu \rightarrow e\gamma$ started physics run in 2021
 - $BR < 7.5 \times 10^{-13}$ (90% C.L.) with the 2021 dataset
 - Target sensitivity: 6×10^{-14}

LXe photon detector

Photon detector with 900 L liquid xenon

- VUV-sensitive 4092 MPPCs & 668 PMTs
- LED and lpha-ray sources installed for calibration

Performance in 2021

Position resolution	2.5 mm
Time resolution	65 ps
Energy resolution	2.0 % / 1.8 %
Efficiency	67%

Photon reconstruction in LXe

LXe photosensor calibration

• WIP; To be completed in a month

Photon reconstruction in LXe

BG γ source & pileup analysis

Spatial distribution

Pileup analysis in 2021

- Performance in 2021
 - 35% BG reduction at $5 \times 10^7 \,\mu/s$
 - 92% signal efficiency
 - Inefficiency comes from
 - Fake peak in spatial distribution
 - Waveform fitting failure
- Before unblinding, some pileupmissed events found
- Update pileup analysis

0

-600

-800

-1000

Raw Fit

0.2

Main Gamma

0.4

×10⁻⁶

Time (s)

Simultaneous fit with MPPC and PMT

- MPPC and PMT summed waveforms fitted independently so far
- PMT waveform sharper than that of MPPC
- ➡ Better time determination by simultaneous fit

Pileup analysis performance

- Minimise both signal inefficiency and # background events
- No clear performance improvement observed with 2021 data & MC
 - (Analysis reliability improved)
- ➡ Further data-driven studies planned

Signal inefficiency

- 4.9% vs 5.3%
- χ^2 underestimated in conventional method

Background reduction

- Fitting-failed events reduced
- But, BG reduction (35%) and E_{γ} spectrum not improved
 - Main γ in fitting-failed events might have smaller energy than analysis region (48 MeV)

Radiative Decay Counter

- Detect low-energy e from $\mu \rightarrow e\nu\nu\gamma$ to tag high-energy γ detected in LXe detector
 - Distribute around beam axis due to magnetic field for spectrometer
- Hit reconstructed by
 - Pulse detection from waveform
 - Pulse clustering

Pulse detection improvement

- Pulse search threshold was high to avoid reconstructing noise as *e* hit
- Lower threshold by freq. cutoff filter
- ➡ Efficiency increased by 15%

Template waveform fit for unfolding

- Template waveform fit introduced to reduce inefficiency due to pileup
- Dip due to pileup inefficiency disappeared

2021+2022 combined sensitivity

- Branching ratio $BR = N_{\rm sig}/k$
 - # effectively measured μ decays: $k_{2021+22} = 1.32 \times 10^{13}$
- Sensitivity *S*: Median 90% C.L. upper limits on *BR* for BG-only hypothesis
 - Median 90% C.L. upper limit on $N_{\rm sig}$: 2.49
- → $S_{2021+22} = 1.9 \times 10^{-13}$ (preliminary)
 - c.f. $S_{2021} = 8.8 \times 10^{-13}$
 - c.f. $S_{\rm MEG} = 5.3 \times 10^{-13}$
- Assume 2021 detector performance
 - Reconstruction updates not included
 - Further sensitivity improvement expected

2023 run

- Most successful physics-data-taking year
 - 1.6 times larger statistics than the 2022 run
 - Stable operation for all the detectors and targets
 - LXe detector operation to be presented by S. Ban (18pT3-6)
 - Beam intensity optimised to $4 \times 10^7 \, {
 m s}^{-1}$ to maximise the sensitivity
- 2023 data analysis gets started

Towards 2024 run

- Detector maintenance in progress
 - LXe: MPPC annealing for PDE recovery
 - To be presented by S. Ban (18pT3-6)
 - Timing Counter: Pixel counter replacement
 - To be presented by T. Yonemoto (21aT1-1)
 - Cylindrical drift chamber: Electronics maintenance

Towards 2024 run

- Detector maintenance in progress
 - LXe: MPPC annealing for PDE recovery
 - To be presented by S. Ban (18pT3-6)
 - Timing Counter: Pixel counter replacement
 - To be presented by T. Yonemoto (21aT1-1)
 - Cylindrical drift chamber: Electronics maintenance

Towards 2024 run

- Detector maintenance in progress
 - LXe: MPPC annealing for PDE recovery
 - To be presented by S. Ban (18pT3-6)
 - Timing Counter: Pixel counter replacement
 - To be presented by T. Yonemoto (21aT1-1)
 - Cylindrical drift chamber: Electronics maintenance

Conclusions

- MEG II started physics data-taking in 2021 and operated stably until 2023
 - $BR(\mu \to e\gamma) < 7.5 \times 10^{-13}$ (90% C.L.) only with 2021 dataset
 - $BR(\mu \rightarrow e\gamma) < 3.1 \times 10^{-13}$ (90% C.L.) with MEG final + MEG II 2021
- 2021+22 combined analysis ongoing
 - Positron reconstruction performance comparable with 2021
 - LXe detector calibration for 2022 data ongoing
 - Reconstruction algorithm updates
 - Pileup analysis in LXe, Pulse search in RDC
 - Preliminary sensitivity $S_{2021+22} = 1.9 \times 10^{-13}$
- Maintenance work ongoing towards 2024 run

Prospects

- Aim to publish 2021+22 combined result this summer
- MEG II prospects
 - Long shutdown at PSI πE5 beamline planned in 2027-28
 - Beamtime to be shared with Mu3e experiment in 2025,26?
- Maximise DAQ time and efficiency
- → $(5-6) \times 10^{-14}$ sensitivity will be reached

Backup

PMT gain calibration

MPPC gain calibration

A. Matsushita, 78th annual meeting (17aRA81-1) MPPC Gain and ECF calibration ₽ 70 • MPPC gain is calculated from 0 p.e. and 1 p.e. peak using LED data. 60 F 50 Charge is calculated in multiple integration ranges 40 30 $G(t) = G \times \left(1 - \exp\left(-\frac{t - t_0}{\tau_{\text{fall}}}\right)\right)$ 20 10 0 ٥ 0.1 τ_{fall} : time constant example of charge distribution (integration range 70 ns) Excess Charge Factor (ECF) Charge increase due to cross-talk or after-pulse. gain fit (PM260, run430417) Calculated assuming the LED light is Poisson light. $ECF = \frac{\mu}{\lambda}$ $\mu = \frac{Q_{measured}}{C}$: Net average number of photoelectrons 0.04 $\lambda = -\log \frac{N_{pedestal}}{N_{total}}$: mean of Poisson distribution 0.02integrationrange [ns] 10

MPPC PDE/PMT QE calibration

• Definition of PDE/QE

$$\epsilon_{i} = \epsilon_{i}^{\text{MC}} \times \frac{\bar{N}_{\text{phe},i}}{\bar{N}_{\text{phe},i}^{\text{MC}}} \times F_{\text{LY}}$$

- ϵ_t : PDE/QE of *i*-th sensor
 - ϵ_i^{MC} : 12% PDE, 16% QE
- $\bar{N}_{\mathrm{phe},i}$: mean of the number of photoelectrons
- *F*_{LY}: Light yield correction
- Calibration source: α -ray from ²⁴¹Am
 - Comparison b/w MC and data needed
 - Reflectivity of PMT holder in MC is 50% based on absorption curve
- Averaged PMT QE fixed at 16%
 - Supplied from Hamamatsu
 - $N_{\rm PMT}$ history interpreted as relative light yield history $F_{\rm LY}$

RDC performance

• Tagged RMD fraction

coincidence positron with γ # background photons in LXe

- Efficiency improved
- But, there is still a discrepancy
 - Under investigation

Tagged RMD fraction with $3 \times 10^7 \,\mu/{ m s}$ data in 2021

