MEG II 実験液体キセノン検出器用 VUV-MPPCの放射線耐性に関する研究 (Study on Radiation Damage of VUV-MPPC for the Liquid Xenon Detector in the MEG II Experiment)

Ryusei Umakoshi,

On behalf of the MEG II collaboration,

The University of Tokyo

Core-to-Core Program $\overbrace{V}^{\text{Core-to-Core Program}} = \overbrace{V}^{\text{Core-to-Core Program}} = \overbrace{V}^{\text{Core-to-Core-to-Core}} = \overbrace{V}^{\text{Core-to-Core-to-Core-to-Core}} = \overbrace{V}^{\text{Core-to-$

Introduction

- MEG II experiment
 - Searching for $\mu^+ \rightarrow e^+ \gamma$ as a probe for new physics
 - with the world's highest intensity muon beam (3-5×10⁷ $\mu/s)$
- For gamma-ray measurement
 - Liquid Xenon (LXe) detector
 - Measure the position, energy, timing of gamma-ray
 - Using VUV-MPPCs

Vacuum UltraViolet (VUV) light sensitive MPPCs (Today's topic)

18 Mar. 2024

JPS 2024 Spring / Ryusei Umakoshi

inside of LXe detector

Background of this study

- Photon detection efficiency (PDE) for VUV light rapidly decreases during physics run.
 - Found that PDE can recover by annealing (70 °C, 28h)
 - Annealing was performed in MEG II every shutdown period after 2021 run ->not crucial for experiment
 - But we still want to understand cause

 $N_{\rm photon} = 1.1 \times 10^{11} \, \rm photon/mm^2$

K. Afanaciev, et al., Eur. Phys. J. C 84 (2024), 190

Background of this study

- Radiation environment
 - Radiation from the muon stopping target: Gamma-ray
 - Radiation from LXe: VUV light (scintillation light from gamma-ray)
 - Radiation from the accelerator: Neutron
- PDE decrease at the center is larger
- Muon stopping target is centred with reference to LXe detector
 - Most likely to be caused by radiation from muon stopping target and LXe

Radiation candidates: gamma-ray, VUV light

VUV

Radiation damage of VUV-MPPCs

- Candidate for radiation damage: Surface damage
 - Caused by ionizing radiation (gamma-ray or VUV light)
- Previous lab tests
 - VUV-MPPCs were irradiated with VUV light at room temperature, low temperature (~165 K), in liquid xenon
 - Humidified VUV-MPPC was irradiated with VUV light in room temperature
 - VUV-MPPCs were irradiated with gamma-ray at room temperature, low temperature (~165 K)
- PDE degradation was not reproduced in laboratory

(PDE degradation was actually observed by VUV irradiation, but 10^4 slower)

picture of VUV-MPPC (S10943-4372)

K. leki, et al., Nucl. Inst. and Meth. A 1053 (2023), 168365

Motivation of this study

- It's known that VUV sensitivity of VUV-MPPC is worsened by absorbing moisture
 - Coming from VUV-MPPC has no moisture resistance layer on the surface
- 2. VUV-MPPCs in MEG II were exposed at ambient humidity during storage and installation

Combine the above two results

Hypothesis

Humidity duffused into the MPPCs might accelerate the radiation damage

Measure PDE of humidified VUV-MPPC during VUV irradiation

Condition: 60°C, 90% r.h. (89 times faster than 25°C, 60% r.h.) Measured by HPK

R. Yamada, et al., "Development of MPPC with high sensitivity in NUV or VUV," 2022 IEEE NSS/MIC/RTSD

Method

- Irradiate VUV-MPPC with scintillation light (VUV light, $\lambda = 175$ nm) from LXe
 - To test the humidified VUV-MPPC is damaged by VUV light or not
 - Irradiate enough to reproduce the speed of PDE decrease of the LXe detector
 - Continuous irradiation for 300 hours
- Install the VUV-MPPC, alpha-ray source (Am241) and LED in LXe
 - Alpha-ray is used for exciting LXe
 - LED is for the measurement of the gain
 - Sustain the temperature in LXe (168 K) during data taking

Setup

	ch0,1,4,5 (VUV-MPPC's chips for irradiation)	ch2,3,6,7 (VUV-MPPC's chips for reference)
Annealing (done before humidification)	150 °C x 16 hours baked (Assume humidity inside VUV-MPPC were removed)	not annealed
Humidity	60 °C x 250 hours, 90 % r.h. (89 times faster than 25°C, 60% r.h.)	not humidified
Note	for test of radiation damege	for reference of LXe stability

Result – Charge of alpha-ray and MPPC gain

- Calculated by gaussian peak
- MPPC gain
 - Calculated from dividing the difference between 0 p.e. and 2 p.e. peak by 2

Result – Stability of the gain

• Gain is stable during VUV light irradiation

Result – Calculation of radiation dose

• The number of irradiated VUV light is calculated below

Impinging photon per event

Trigger rate and charge of alpha-ray signal

• Trigger rate

alpha-ray

- Calculated by the mean of the first 10 data takings
 - Because the trigger rate was expected to decrease by VUV photon irradiation
- Average charge of alpha-ray
 - Calculated by the mean of first 10 data takings
 - Because the charge of alpha-ray was expected to decrease by VUV photon irradiation

Result – Estimation of initial PDE

K. leki, et al., Nucl. Inst. and Meth. A 925 (2019), 148-155

Result – ECF Transition

• Irradiation dose was calibrated by ECF (Excess Charge Factor)

Expected PDE decrease

The PDEs in 2017-2021 are measured from the VUV-MPPCs at the center of the LXe

Partially modified from S. Kobayashi, PhD thesis (2022) (https://www.icepp.s.utokyo.ac.jp/download/doctor/phD2022 kobayashi.pdf)

18pT3-7

15

Result – PDE decrease in this study

- The PDE decrease expected within the green region
- The normalized charge ratio seems decreased by irradiation as a whole
 - But the fluctuation of each point is too large comparing with the expected band
- Currently, we cannot conclude if the VUV light is the cause of the PDE decrease or not
- Systematic error can be reduced by further detailed analysis

Sammary & Outlook

- Summary
 - Rapid PDE decrease for VUV light was observed in the MEG II LXe detector
 - Studied effect of absorption of moisture inside the VUV-MPPC with VUV light irradiation
 - The charge signal of far chips makes large systematic error for the normalized charge ratio
- Next step
 - Analysis
 - to reduce the systematic error of PDE transition
 - to estimate PDE decrease speed in this test with smaller uncertainty
 - Experiment
 - Using a PMT for reference to reduce the systematic error
 - Irradiate VUV-MPPC with gamma-ray
 - in LXe
 - to test the effect of moisture inside the VUV-MPPC

Backup

	ch0,1,4,5 (VUV-MPPC's chips for irradiation)	ch2,3,6,7 (VUV-MPPC's chips for reference)
Annealing (done before humidification)	150 °C x 16 hours baked before accelerated test (Assume humidity inside VUV-MPPC were removed)	not annealed
Humidity	89 times accelarated (60 °C x 250 hours, humidity 90 %)	not accelerated
Note	for test of radiation damege	for reference of LXe stability

Control of cooling system and DAQ

- Cooling System
 - SCS2000 was used for control of the pressure and temperature inside the small chamber "automatically"
 - Control LN2 flow by setting upper and lower limit of the pressure
 - Took the data of pressure and temperature inside small chamber
- DAQ
 - Used WaveDREAM Board (WDB) as a waveform digitizer
 - Has HV and amplifier inside
 - Gain for alpha-ray run: 1 (ch0,1), 5 (ch4,5), 25 (ch2,3,6,7)
 - Gain for LED run: 70.15 (ch0,1,2,3)
 - Took the data of VUV-MPPC signal from alpha-ray and LED light every 1 hour

18pT3-7

Result – Number of photon entering near chips

	ch	0	1	
	trigger rate	37.7 event/sec	37.7 event/sec	
	mean charge	1.98 10 ⁹ e	2.19 10 ⁹ e	
	gain	2.064 10 ⁶ e	2.064 10 ⁶ e	
	expected PDE	~15%	~15%	
	ECF	1.273	1.263	
	Surface area of 1 chip	$5.95 \times 5.85 \text{ mm}^2$	$5.95 \times 5.85 \text{ mm}^2$	
	Irradiation time	300 hours	300 hours	
	ch		VUV light irradiation dose in 2017 4×10^{11} photon \cdot mm ⁻²	-2021:
		U		
	VUV light irradiation in this experiment	5.9×10^9 photon \cdot mm ⁻²	$6.6 \times 10^9 \text{ photon} \cdot \text{mm}^{-2}$	
8 Mar.	ratio of radiation dose of this experiment to that of 2017-2021	0.015	0.017	2

Normalized Charge Ratio

Result – Expected PDE decrease

- The one component (blue) of fitting function has similar time constant to that of 2022 physics run
- But the PDE decrease in 2022 physics run is measured from the average PDE of all VUV-MPPCs.
 - The VUV photon irradiation dose has position dependence to each VUV-MPPC (see page 4)
- In 2022 run, the VUV-MPPCs were annealed.
 - This is similar to the VUV-MPPC in this study
- It is better using the PDE history calculated from the VUV-MPPCs at the center of the LXe detector in 2021 physiscs run
 - To compaire with the PDE transition in this study
 - Now analysing. It will be done soon
 - In this presentation, including the effects of annealing and position dependence as expected PDE decrease

JPS 2024

23

https://indico.psi.ch/event/15204/contributions/47074/attachments/2651 8/49397/matsushita20231123.pdf

Alpha-ray charge history

Signal of DAQ

Result – Stability of LXe

Gain is stable during VUV light irradiation

Result – ECF (Excess Charge Factor) Transition

18 Mar. 2024

Expected PDE decrease

Stopped muons in 2017-2021: 410×10¹²

ch	0	1
ratio of radiation dose of this experiment to that of 2017-2021	0.015	0.017
Stopped Muons (N_{μ}^{stop}) corresponding to this experiment	6.2×10 ¹²	7.0×10^{12}
Expected Initial PDE	~15 %	~15 %
Expected PDE Decrease	~0.21-0.75 %pt	~0.24-0.85 %pt
Expected PDE Decrease (in relative)	~ 1.4-5.0 %	~ 1.6-5.6 %

Expected PDE Decrease in relative (Lower Limit) = $1 - \frac{0.074 \exp(-N_{\mu}^{\text{stop}} \cdot (15/14)/67) + 0.076 \exp(-N_{\mu}^{\text{stop}} \cdot (15/14)/926)}{0.15}$

> Expected PDE Decrease in relative (Upper Limit) = $1 - \exp(-N_{\mu}^{\text{stop}} \cdot (15/7.1)/926.011)$

The PDEs in 2017-2021 are measured from the VUV-MPPCs at the center of the LXe

Partially modified from S. Kobayashi, PhD thesis (2022) (https://www.icepp.s.u-

tokyo.ac.jp/download/doctor/phD2022_kobayashi.pdf)

18pT3-7

Temperature history

Temperature history

JPS 2024 Spring / Ryusei Umakoshi

30

Result - Waveform of alpha-ray

• Mostly, the waveform of ch0, 1 were got as data.

JPS 2024 Spring / Ryusei Umakoshi

18pT3-7

Result - Waveform of alpha-ray

• Sometimes small pulse came in ch0,1

18 Mar. 2024

JPS 2024 Spring / Ryusei Umakoshi

18pT3-7

Alpha-ray charge history

- The probability of photon entering a chip with including the dead zone: $P_{1 \text{ chip,void}}$
 - $\alpha_{1 \text{ chip,void}} = 0.892 \text{ rad}$
 - $\beta_{1 \text{ chip,void}} = 0.537 \text{ rad}$

$$> \Omega_{1 \text{ chip,void}} = 2 \arcsin(\sin \alpha_{1 \text{ chip,void}} \sin \beta_{1 \text{ chip,void}}) = 0.819$$
$$P_{1 \text{ chip,void}} = \Omega_{1 \text{ chip,void}} / 4\pi = 0.0652$$

• The probability of photon entering the dead zone: P_{void} • $\alpha_{\text{void}} = 0.0699 \text{ rad}$

•
$$\beta_{\text{void}} = \beta_{1 \text{ chip,void}} = 0.537 \text{ rad}$$

$$->\Omega_{\text{void}} = 2 \arcsin(\sin \alpha_{\text{void}} \sin \beta_{\text{void}}) = 0.0714$$

•
$$P_{\text{void}} = \Omega_{\text{void}} / 4\pi = 0.00568$$

The probability of photon entering a chip without the dead zone: $P_{1 \text{ chip}} = P_{1 \text{ chip,void}} - P_{\text{void}} = 0.0652 - 0.00568 = 0.0595$

18 Mar. 2024

Estimation of PDE

Over voltage

 $\sim 5 V$

~3.5 V

Number of photon entering a chip in VUV-MPPC

- $N_{pho} = \frac{E_{\alpha}}{W} \times P_{1 \text{ chip}} = \frac{4.78 \text{ MeV}}{18.75 \text{ eV}} \times 0.0595 = (1.52 \pm 0.7) \times 10^4 \text{ photon}$
 - $E_{\alpha} = 4.78 \text{ MeV}$
 - $W = 17.9 \text{ eV} \text{ or } 19.6 \text{ eV} \rightarrow (18.75 \pm 0.85) \text{ eV}$
 - $P_{1 \text{ chip}} = 0.0595$
- Becquerel of Am241: 100 Bq??

 >Irradiation dose:
 1.52×10⁴ photon×100 Hz · (5.95 · 5.85 mm²)⁻¹
 = 4.4×10⁴ photon · Hz · mm⁻²
 = 5.5×10⁸ photon · h⁻¹ · mm⁻²
- The reasons of mismatch of expected and measured radiation rate
 - Reflection of the surface of VUV-MPPC
 - The alpha-ray emitted from the shadow of wire
 - The real solid angle is larger than expected one

ch	0	1
expected impinging photon per alpha-ray	$(1.52 \pm 0.7) \times 10^4$ photon	$(1.52 \pm 0.7) \times 10^4$ photon
expected radiation rate	5.5×10^8 photon \cdot h ⁻¹ \cdot mm ⁻²	5.5×10^8 photon \cdot h ⁻¹ \cdot mm ⁻²
measured radiation rate	2.0×10^7 photon $\cdot h^{-1} \cdot mm^{-2}$	2.2×10^7 photon $\cdot h^{-1} \cdot mm^{-2}$
Ratio of measured radiation rate to expected radiation rate	0.036	0.04

Shimada's measured radiation rate (including ECF): 9.7×10^7 photon $\cdot h^{-1} \cdot mm^{-2}$

Number of photon entering ch0

ratio of radiation dose to 2017-2021 run: 0.053

trigger rate	37.7 event/sec
mean charge	1.98 10^9*e
gain	2.064 10^6*e
expected PDE	~15%
ECF	1.273
Surface area of 1 chip	$5.95 \times 5.85 \text{ mm}^2$
Irradiation time	300 hours

37

Radiation dose in Shimada's thesis (including ECE (\sim 30 %)	9.7×10 ⁷ photon/h/mm2 https://www.icepp.s.u-	VUV light irradiation in this experiment	5.9*10^9 photon*mm^-2
maybe overestimated)	tokyo.ac.jp/download/master/ m2020_shimada.pdf	VUV light irradiation in 2021	4.0*10^11 photon*mm^-2
Radiation dose in this	2.0×10^7 photon/h/mm2	run	
experiment		ratio of radiation dose to	0.015
18 Mar. 2024	JPS 2024 Spri	2021 run	

Expected irradiation dose in 2021 MEG II

expected dose in 2021 (with ~700h MEG II intensity)

irradiation source	dose/fluence	
γ	0.04375 Gy	
VUV photon	2.0-2.5 x 10 ¹¹ /mm ²	
neutron	1.27 x 10 ⁷ n/cm ²	

Result – Breakdown Voltage

	Breakdown voltage [V]	
ch0	45.76	
ch1	45.68	
ch2	45.66	
ch3	45.71	

gain of ch0

gain of ch1

18 Mar. 2024

PDE degrease in 2017-2021

Phase diagram of xenon

Result – Expected PDE decrease

Gain vs Over voltage

Small chamber construction

- Inside small chamber, separeted into GXe and LXe
 - By cooling, LXe accumulated in the bottom of small chamber
- Small chamber is covered by a outer chamber
 - Between the small and outer chamber is vacuumd
 - This works like "magic bottle"

18pT3-7

Vacuuming and leak check

- Turbo pump (Pfeiffer Vacuum, TMH 071P)
 - Used for vacuuming inside the small chamber
 - Reach $O(10^{-4})$ Pa in this experiment
- Scroll pump
 - Used for vacuuming of the outer chamber
 - Reach O(1) Pa in this experiment
- Helium leak detector (Alcatel, ASM 122 D)
 - Detects the leak of a flange using helium
 - There were no leak even high-sensitivity $(O(10^{-10}) \text{ mbar} \cdot l/s)$

Pulification of GXe and cooling of small chamber

- After vacuuming, entering GXe inside the small chamber
 - Purify GXe throught the getter (impurity < 1 ppb)
- Cooling of inside the small chamber
 - Refrigerator (Iwatani, PDC08)
 - Cooling cold head inside small chamber
 - LN2
 - Helped cooling of the small chamber
 - Emergency Used (because the refrigerator didn't work

Tips

- Superinsulation
 - Multiple layer film made from alminum
- LN temperature: 77 K (196 °C)

Annealing

- Heating the VUV-MPPCs (at 70 °C)
 - to remove the accumulated positive charges
- PDE can be returned to original value by annealing.
- Sample
 - Baking condition: 150 °C x 16 hours

Annealing each MPPC for 28 hours (at 70 °C)

Calculation of LXe height filling inside small chamber

- small chamberの容器の内径(直径):101 mm
 ->面積:8008 mm² = 80.1 cm²
 ->容器の底から20.6 36 cmまで、液体キセノンに浸る
 1.65L = 1650 cm³
 1 L = 1000 cm³
- GXe inside high pressure tank: 750 L, 0.23 MPa
 - when the pressure is 0.12 MPa, the volume is $750 \times 0.23/0.12 = 1438$ L
- LXe volume is 500 times smaller than GXe volume
 - 1438 L in GXe -> 1438/500 = 2.88 L in LXe
- Inner diameter of small chamber: 101 mm
 - Bottom area of small chamber: $8.01 \times 10^3 \text{ mm}^2$
- the height of LXe inside small chamber is $2.88 \times 10^6 / 8.01 \times 10^3 = 360$ mm = 36 cm
 - 1 litre = $1 \times 10^6 \text{ mm}^2$

Getter (PS3-MT3-R-2)

Impurities Removed	Nitrogen Outlet Purity (ppb)	Rare Gas Outlet Purity (ppb)
H ₂ O	<1	<1
0 ₂	<1	<1
СО	<1	<1
CO ₂	<1	<1
CH4	<1	<1
Other Hydrocarbons	<1	<1
H ₂	<1	<1
N ₂	N/A	<1