MEG II 実験でのμ→ eγ探索解析の現状 - 2021年解析の結果と2022年陽電子データの状況-

大矢 淳史, 他MEG IIコラボレーション 2024年日本物理学会春季大会

<u>Outline</u>

- Introduction
- Result of 2021 data analysis
- Ongoing analysis with 2022 data
- Summary and prospect

Introduction

$\mu \rightarrow e\gamma$ search: Motivation and Principle

- $\mu \rightarrow e\gamma$ search by MEG II
 - $\mu \rightarrow e\gamma$: CLFV decay, forbidden in SM
 - Target sensitivity: $Br(\mu \rightarrow e\gamma) \sim 6 \times 10^{-14}$ \rightarrow Can probe O(10 TeV) physics

 Search strategy 	
<u>Signal</u>	Background
2-body kinematics	Accidental coincidence
180°	Y BG photon
⁴ ⁴ ⁴ ⁴ ⁴ ⁴ ⁴ ⁴	v μ^+ e^+ BG positron

	Signal	Background
E _e	52.8	< 52.8
Eγ	52.8	< 52.8
t _{eγ}	0	Flat distribution
Θ _{eγ}	180°	No correlation

<u>Requirements to have high S/B</u>

- 1. Continuous & High-rate muon beam
- 2. High resolution measurement

MEG II detector (muon & positron)

epjc/s10052-024-12415-3

Muon stopping target

- 175 µm-thick plastic scintillator
- Stops muons at $3-5 \times 10^7$ /s rate
- Placed with 15^o slant angle w.r.t beam

Positron spectrometer

- Gradient B-field
- Drift chamber for tracking
- Scintillation timing counter

\rightarrow See also 21aT1-1

- 512 plastic counters in total
- 110 ps resolution / hit
- 9 hits (average) / 52.8 MeV track

- Wire chamber with stereo geometry
- High-density readout (2 3 cells / cm²)
- Reduced material (1.6 × $10^{-3} X_0$)

<u>MEG II detector (γ -ray)</u>

epjc/s10052-024-12415-3

Photon reconstruction

γ -ray detector

- LXe scintillator (900 L)
- VUV-sensitive sensors

LXe properties

- High stopping power ($X_0 = 2.8$ cm)
- High light yield (46000 photon/MeV)
- Fast response (45 ns decay time)

- 4092 MPPC (inner face)
 → Granular & uniform
- 668 PMT (other face)

 \rightarrow See also 18pT3-6, 18pT3-7

MEG II DAQ so far

<u>Outline</u>

6

- Introduction
- Result of 2021 data analysis
- Ongoing analysis with 2022 data
- Summary and prospect

Result of 2021 data analysis

Published in <u>epjc/s10052-024-12416-2</u>

Muon statistics

- Normalization factor: k
 - Number of effectively measured muon decay

$$Br(\mu \to e\gamma) = \frac{N_{sig}}{k}$$

• $k_{2021} = (2.64 \pm 0.12) \times 10^{12}$

- 1. Evaluation by background positron counting in dedicated dataset
- 2. Evaluation by counting $\mu \rightarrow e\nu\nu\gamma$ events
- \rightarrow Can automatically include efficiency factors

Value **Inclusion in counted number** 7.7×10^{13} Stopped muons Included in both count Limited only in 7 weeks engineering Geometrical acceptance 11% Included in both count $\epsilon_{positron}$ (average) 67% Included in both count 62% Included in $\mu \rightarrow e\nu\nu\gamma$ count ϵ_{photon} 80% Partly included in $\mu \rightarrow e\nu\nu\gamma$ count $\epsilon_{trigger}$ Not fully optimized in 2021 Included in both count 85% ϵ_{DAO}

Breakdown

Event distribution

No signal excess observed

Fitting

Result with 2021 data

	Sensitivity	Limit from data
MEG final (2016)	5.3×10^{-13}	$Br(\mu \rightarrow e\gamma) < 4.2 \times 10^{-13}$
MEG II 2021	8.8×10^{-13}	$Br(\mu \rightarrow e\gamma) < 7.5 \times 10^{-13}$
Combined	4.3×10^{-13}	$Br(\mu \rightarrow e\gamma) < 3.1 \times 10^{-13}$

- Approached MEG2016 sensitivity in 7 weeks
 → Demonstration of MEG II capability
- We just need more statistics

Other lesson from this analysis

- Which muon rate is optimal?
 - More muons at higher rate: $N_{\mu} \propto R_{\mu}$
 - More BG at higher rate: $N_{BG} \propto R_{\mu}^2$
 - Positron efficiency depends on R_{μ}
- → Highest sensitivity at 4×10^7 rate with current performance
- \rightarrow Feedbacked to DAQ in 2023

Important improvement from MEG

- Positron improvement highly contributed to sensitivity
 - + \times 3.5 improvement in momentum resolution
 - \times 2 improvement in efficiency
 - \times 2 improvement in angle resolution

To keep the performance,

- Need careful calibration
- Need long-term stability of detector

<u>Outline</u>

- Introduction
- Result of 2021 data analysis
- Ongoing analysis with 2022 data
- Summary and prospect

Ongoing analysis with 2022 data

<u>DAQ in 2022</u>

• Hardware improvements

- Additional readout in CDCH
 - Signal positrons may leave hits on these wires
 - Though small opportunity, they were missed in 2021 DAQ
- DAQ hardware
 - Better trigger calibration
 → Higher DAQ-related efficiency (× 1.15, preliminary)
- Beam rate was not optimized yet
 - Concerned PDE decrease of MPPCs in γ -ray detector
 - Only once/year chance of annealing to recover PDE
 - Decrease speed was not precisely estimated
 - DAQ hardware capability at higher pileup environment
 - Sensitivity at different beam rates was not yet known

Chamber hardware problem in 2022

- Sudden damage to electronics of drift chamber
 - Damaged in the middle of DAQ
 - Not realized for two weeks
 - Impact: Increase of high-frequency noise
 → Successful reduction in analysis

Improved real-time monitoring. Efficiency monitoring introduced in 2023

Positron analysis for 2022

- Calibration in long-term DAQ
 - ✓ Found small variations from 2021 in alignment & electronics calibration
 - ✓ But they were stable during 2022 DAQ
- Computing is becoming severe
 - Expected to take 3 months to reconstruct all positron tracks
 - Started in Feb \rightarrow Expected to finish in May
 - Bottleneck: Pattern recognition to find tracks
 → Positron inefficiency at higher rate is also from pattern recognition
 - Need to explore possible improvements of the situation for the coming years

Positron performance for 2022

<u>Summary</u>

- Presented results with 2021 dataset
 - Measured 2.64×10^{12} muon decays in 7 weeks
 - Searched with 8.8×10^{-13} sensitivity
 - \rightarrow Approached MEG2016 only in 7 weeks. Demonstration of MEG II capability
 - Combination with MEG2016 gave $Br(\mu \rightarrow e\gamma) < 3.1 \times 10^{-13}$ limit
 - \rightarrow Most stringent limit ever
- Status of 2022 data analysis
 - Positron calibration finished & Validated reconstruction quality
 - Processing positron reconstruction, expected to finish in May
 - Can measure additional 1.06×10^{13} muon decays
 - Discussions about γ -ray analysis in the next talk