Developing an experiment for a future search for μ->eγ: Overview and simulation

L. Gerritzen, R. Yokota^A, S. Ban, F. Ikeda^A, T. Iwamoto, K. Matsuoka^C, T. Mori, H. Nishiguchi^C, A. Ochi^B, W Ootani, Y. Uchiyama^C

Muons: Three "Golden Channels"

Adapted from HiggsTan

Signal $\mu^+ \rightarrow e^+ \gamma$

- Muon decays at rest
- Back-to-back $p = \frac{m_{\mu}}{2} \approx 53 \text{ MeV}$
- $\Sigma E = m_{\mu}c^2$
- $\Sigma \vec{p} = 0$
- $\Delta t = 0$

Irreducible background

- $\mu^+ \rightarrow e^+ \overline{\nu} \nu \gamma$
- $E < m_{\mu}c^2$
- $\sum \vec{p} \neq 0$
- $\Delta t = 0$
- Not back-to-back
- Same vertex

\Rightarrow Need excellent energy and momentum resolution

Accidental background

- Particles from unrelated processes
- $E \neq m_{\mu}c^2$
- $\Sigma \vec{p} \neq 0$, therefore not back-to-back
- $\Delta t \neq 0$
- No common vertex
- Rate dependent

\Rightarrow Time and vertex resolution

Searches for cLFV in Muons*

Secondary Beamlines at PSI

High-intensity Muon Beams (HIMB)

- Part of IMPACT project
- Replace target M with new target H
- Can deliver 10¹⁰ surface muons per second
- New possibilities for cLFV searches
- Start planned for 2028

Current status of MEG II

- Two major publications accepted in January 2024:
 - First MEG II results
 - Detector performance
- Long beam times in 2023 & 2024
- Long shutdown at PSI after 2026

Concept for a new experiment

- Continue search of MEG II with HIMB
- For high rates: Photon pair spectrometer
- Positron side: Pixel sensor (HV-MAPS, similar to Mu3e)
- Tentative requirements:
 - $\Delta E_{\gamma} < 210 \text{ keV}$
 - $\Delta t_{\gamma} < 30 \text{ ps}$
 - $\Delta x_{\gamma} < 2 \text{ mm}$

Pair spectrometer with active converter

- Dilemma of pair spectrometer: Efficiency vs. Energy loss in converter
- Solution: Active converter

Past Simulation Efforts

- Started with standalone Geant4 simulation
 - Studies concerning segmentation & converter thickness

(c) 30 度入射

図 5.6: ターン粒子が半周しコンバージョン点付近へ再入射した位置の入射角度別分布。 入射角はビーム軸からの角度。原点はガンマ線入射点。

[R. Yokota's Master Thesis] https://meg.web.psi.ch/docs/theses/yokota_master.pdf

Future $\mu \rightarrow e\gamma$ search

Simulation Efforts

• Currently developing more modern framework for full simulation and reconstruction

Software Considerations

- Modular
 - Early stage of detector design: design studies
- Modern
 - Previously, only moderate connection with HEP development
 - Want to use more well-maintained software (e.g. Gaudi)
 - Looking into other Key4HEP parts

Event Display

Conclusion

- Search for $\mu \rightarrow e\gamma$ currently done by MEG II
- New development is needed to utilize new beamlines and extend reach
- Development of hardware and software has started
- Next step: Work with collaborators for other detector parts

Backup

Spectrometer or calorimeter?

$$\left(\frac{\sigma_p}{p}\right)^2 = \left(\frac{\sigma_p}{p}\right)^2_{MS} + \left(\frac{\sigma_p}{p}\right)^2_{defl}$$
const. ~p

$$\frac{\sigma_E}{E} = \frac{A}{\sqrt{E}} \bigoplus B \bigoplus \frac{C}{E}$$

In muon decays: dominated by multiple scattering Downside for photon detectors: energy loss in converter Generally perform worse at $\boldsymbol{\mu}$ decay energies

Generally not straight-forward, e.g. MEGA used photon pair spectrometer, also considered for future $\mu \rightarrow e\gamma$ experiment, PIONEER will use positron calorimeter