



# MEG II実験 run2022データを用いたレプトンフレーバーを破る ミュー粒子崩壊 $\mu \rightarrow e\gamma$ の探索 に向けて

Sei Ban (ICEPP), for the MEG II collaboration 17th Sep. 2024, JPS 2024年次大会 @北海道大学 Introduction : cLFV and MEG II experiment

Reconstruction of 2021+2022 data

Physics analysis of 2021+2022 data

Prospects

Introduction : cLFV and MEG II experiment

Reconstruction of 2021+2022 data

Physics analysis of 2021+2022 data

Prospects

## Charged Lepton Flavor Violation

- In quark and neutrino (neutral lepton) sector, the flavor violates in SM



- Some theories BSM predict flavor violation in the charged lepton sector
  - In the Standard Model (+v osci.), it is practically prohibited :  $Br(\mu \rightarrow e\gamma)=10^{-54}$
  - In BSM,  $Br(\mu \rightarrow e\gamma) \sim O(10^{-14})$  is predicted (not observed yet)



Diagram in the SM + neutrino oscillation



Possible diagram in SUSY-GUT senario

#### Charged Lepton Flavor Violation

- Strong evidence of new physics once it observes
- Grand Unified Theory predicts cLFV
  - SUSY-GUT, SUSY-seesaw
  - Typical prediction :
    - Br( $\mu \rightarrow e\gamma$ ) ~ O(10<sup>-14</sup>)
    - Can be observed realistically

 $\Gamma$  e Standard Model, it is practically promoted . Dr( $\mu \rightarrow e\gamma$ ) = 10 °

In BSM, Br( $\mu \rightarrow e\gamma$ ) ~ O(10<sup>-14</sup>) is predicted (not observed yet)



Diagram in the SM + neutrino oscillation



Possible diagram in SUSY-GUT senario



## Current status of cLFV (and other experiments)

- Most strict limit for cLFV : Br( $\mu \rightarrow e\gamma$ ) < 3.1×10<sup>-13</sup> (90% C.L.) by MEG II (+MEG)



- Other channels to search for cLFV
  - μ+→e+e-e+ : Mu3e
  - $\mu$ -N $\rightarrow$ e-N : COMET, DeeMe, Mu2e
- Still under development/preparation for physics run

-0.9998-0.9996-0.9994-0.9992 -0.999

 $\cos\Theta_{e}$ 

## MEG II experiment : signal and background

Signal : Gamma-ray and positron with 52.8 MeV ( $=m_{\mu}/2$ )



back-to-back on-timing

 $N_{sig} \propto R_{\mu} \times T \times \text{Efficiency}$ 

- Dominant background : Accidental coincidence of Michel positron and gamma



#### MEG II experiment : signal and background



## MEG II experiment

- MEG II experiment aims to search for charged lepton flavor violation :  $\mu^+ \rightarrow e^+\gamma$ 
  - with higher sensitivity by one order of magnitude compared to the MEG
  - Using high intensity continuous muon beam at Paul Scherrer Institut (PSI)
  - Target sensitivity of  $Br(\mu^+ \rightarrow e^+\gamma)$ :  $6 \times 10^{-14}$



## Timeline of the MEG II experiment

- Physics run started since 2021
  - First result was reported in 2023 (published in 2024)
- Data acquiring was continued in 2022, 2023, and is planned in 2024



#### Introduction : cLFV and MEG II experiment

## Reconstruction of 2021+2022 data

## Physics analysis of 2021+2022 data

Prospects

# Trigger efficiency improvement

- Trigger logic for MEG event
  - $E_{\gamma}$  > Threshold (~ 40-45 MeV)
  - $|T_{e\gamma}|$  < Time window (~ 12.5 ns)
  - Direction matching : eγ hit position correlation
- In 2022 run, time walk effect on gamma-ray side was improved by using PMT instead of MPPCs for timing trigger



- µ

#### Trigger efficiency improvement

Direction matching efficiency is re-evaluated



#### Target analysis

- Muon stopping target : 174±20µm thickness polyvinyltoluene (scinti. material) -
- In MEG experiment, the largest uncertainty came from target deformation -
- In MEG II experiment, it is monitored by Camera
- Marker analysis -
  - monitored the target position/rotation and deformation
  - -> implemented into event reconstruction
- Hole analysis
  - Hole reconstruction by positron tracks
  - Reduced target position uncertainty :  $\pm 100 \mu m$  (2021) ->  $\pm 35 \mu m$  (2022) (xy)





#### Positron reconstruction

- Hit selection : Standard waveform analysis + Machine-learning technique
  - Adopted in 2021 analysis (in the previous publication)
  - Parameters optimization for 2022 analysis : done
- Then tracks are reconstructed
  - Improved algorithm to select "ghost track" (better quality track)
  - Sharper Michel positron edge is obtained with new track selection
    - Note : events with differently judged ghost track and  $\Delta E_{e(\text{new-old})} \text{>} 700 \text{ keV}$



#### Double turn analysis in positron tracking

- Double turn track is used for evaluation of the resolutions of e+ kinematics
  - combining with MC study



| Resolution table with various beam rate |                             |                 |                 |                 |                 |                 |  |  |  |  |  |
|-----------------------------------------|-----------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|--|
|                                         | Variable                    | $3 \times 10^7$ | $2 \times 10^7$ | $3 \times 10^7$ | $4 \times 10^7$ | $5 \times 10^7$ |  |  |  |  |  |
| 2021                                    | <i>y</i> [mm]               | 0.65            | 0.64            | 0.60            | 0.67            | 0.67            |  |  |  |  |  |
|                                         | <i>z</i> [mm]               | 1.83            | 1.76            | 1.80            | 1.89            | 1.97            |  |  |  |  |  |
|                                         | $\phi$ ( $\phi$ = 0) [mrad] | 5.22            | 4.83            | 5.28            | 5.12            | 5.43            |  |  |  |  |  |
|                                         | $\theta$ [mrad]             | 6.56            | 6.17            | 6.27            | 6.23            | 6.30            |  |  |  |  |  |
|                                         | <i>p</i> [keV]              | 82.30           | 76.11           | 81.26           | 87.83           | 90.08           |  |  |  |  |  |
| 2022                                    | <i>y</i> [mm]               | -               | -               | 0.61            | 0.67            | 0.67            |  |  |  |  |  |
|                                         | <i>z</i> [mm]               | -               | -               | 1.76            | 1.89            | 1.93            |  |  |  |  |  |
|                                         | $\phi$ ( $\phi$ = 0) [mrad] | -               | -               | 5.22            | 5.34            | 5.43            |  |  |  |  |  |
|                                         | $\theta$ [mrad]             | -               | -               | 6.20            | 6.16            | 6.5             |  |  |  |  |  |
|                                         | <i>p</i> [keV]              | -               | -               | 78.60           | 87.60           | 87.35           |  |  |  |  |  |

#### Energy reconstruction of gamma-ray

- Sensor calibrations are updated for 2021 data, and done for 2022 data
- In 2022 data, temporal evolution of non-uniformity is observed
  - Because the purity changed over the run til
  - Time-varying non-uniformity correction is









## Reconstruction of gamma-ray : w distribution

- Improvement of position reconstruction algorithm (along w-direction)
- (not perfect but) consistent behavior in the w distribution
  - b/w single gamma event and pileup gamma event
  - w distribution with pileup before algorithm update shows larger distribution for higher w-position



#### Radiative Decay Counter

- Radiative decay counter to detect low momentum positron
  - accompanied with high energy gamma-ray in RMD
  - RDC information is one of an input for likelihood analysis
- Improvement of waveform analysis
  - Reduce noise, pileup analysis with template waveform fitting
  - Inefficiency observed in 2021 analysis is disappeared thanks to the template fitting method
    - Tagged-RMD fraction improved :  $22.0(8)\% \rightarrow 25.3(8)\%$  (2021, 4e+7 data)



LYSO

Plastic Scinti.

#### Summary of reconstruction and performance

- Reconstruction status
  - Positron : Completed
  - Gamma : to be finalized soon (energy)
  - RDC : Completed
- Detector performances summary
  - Performance for positron reconstruction is improved
  - Performance for gamma reconstruction will be evaluated soon after final reconstruction



|                  | Pe        | θe       | Eγ        | Position <sub>y</sub> | T <sub>eγ</sub> | ε <sub>e</sub> | εγ  |
|------------------|-----------|----------|-----------|-----------------------|-----------------|----------------|-----|
| MEG              | 380 keV/c | 9.4 mrad | 2.4%/1.7% | 5 mm                  | 122 ps          | 30%            | 63% |
| 2021 (published) | 89 keV/c  | 7.2 mrad | 2.0%/1.8% | 2.5 mm                | 78 ps           | 67%            | 62% |
| 2022 (3e+7)      | 79 keV/c  | 6.2 mrad | yet       | 2.5 mm                | yet             | 67%            | 62% |

Introduction : cLFV and MEG II experiment

## Reconstruction of 2021+2022 data

## Physics analysis of 2021+2022 data

Prospects

#### Likelihood analysis to search for $\mu^+ \rightarrow e^+\gamma$

- Blind analysis
  - $E_{\gamma}$  : [48, 58] MeV,  $t_{e\gamma}$  : [-1, 1] ns
  - Likelihood analysis
    - Per event Probability Distribution Function (Per event PDF) is adopted
    - PDFs are extracted from the sideband



$$\begin{split} L(N_{\text{sig}}, N_{\text{RMD}}, N_{\text{Acc}}, X_{\text{TGT}}) \\ &= \exp\left(-\frac{(X_{\text{TGT}})^2}{2\sigma_{\text{TGT}}^2}\right) \qquad : \text{Target alignment term} \\ &\times \exp\left(-\frac{(N_{\text{RMD}} - \langle N_{\text{RMD}} \rangle)^2}{2\sigma_{\text{RMD}}^2}\right) \times \exp\left(-\frac{(N_{\text{Acc}} - \langle N_{\text{Acc}} \rangle)^2}{2\sigma_{\text{Acc}}^2}\right) \qquad : \text{Constraint for \#BG by sideband} \\ &\times \frac{e^{-(N_{\text{sig}} + N_{\text{RMD}} + N_{\text{Acc}})}}{N_{\text{obs}}!} \prod_{i=1}^{N_{\text{obs}}} \left(N_{\text{sig}}S(\vec{x_i}|X_{\text{TGT}}, \vec{q_i}) + N_{\text{RMD}}R(\vec{x_i}|\vec{q_i})\right) + N_{\text{Acc}}A(\vec{x_i}|\vec{q_i}))\right) \\ &: \text{Ordinal extended likelihood} \end{split}$$

#### Normalization

- Number of effectively measured muon decay is estimated using Michel positron
  - $k_{2022} = 1.01 \times 10^{13}$
  - ~3.8 times larger statistics than 2021
  - Not finalized yet : will be updated after gamma reconstruction (  $\varepsilon$  TRG fix)
- Cross-check by RMD normalization will be done after final reconstruction



#### Analysis prospects

- Reconstruction of positron : completed
- Reconstruction of gamma : almost final stage
- Extraction of the PDFs and sideband analysis are starting
- Toy experiments production by MC will follow
  - to evaluate sensitivity
- We are aiming to unblind and publish in this Autumn



Introduction : cLFV and MEG II experiment

Reconstruction of 2021+2022 data

Physics analysis of 2021+2022 data

Prospects

#### Outlook and improvement of 2023 data

- In 2023 run, online  $E_{\gamma}$  uniformity was improved
  - Could set higher  $E_{\gamma}$  trigger threshold, thus was available
- Positron reconstruction efficiency decrease with higher beam rate is known
  - 4e+7 beam rate is current best choice in terms of sensitivity
- With higher intensity and longer run time, achieved ~1.6 times statistics
- Analysis is ongoing



#### Status of 2024 run

- In 2024, beam time is assigned from June to December
- Improvements for 2024 run :
  - Direction matching table optimization in the trigger section to improve trigger efficiency
  - Refreshment (replacement) of SiPMs in the TC was done
- Currently, physics run is suspended by a failure of LHe supply by cryo-plant
  - will be resumed in October





## Prospect of sensitivity

- Br( $\mu \rightarrow e\gamma$ ) = N<sub>sig</sub> / k
- Sensitivity is calculated as 90% C.L. upper limit with BG only hypothesis
- Median 90% C.L. upper limit for  $N_{sig}$  : 2.7
- $\rightarrow$  Sensitivity(2021+2022) : 2.1×10<sup>-13</sup>
  - Preliminary estimation
  - will be updated by final gamma reco.
  - First MEG II (only) exposure beyond MEG sensitivity
- MEG II experiment will continue by 2026
  - PSI  $\pi\text{E5}$  beam line update in 2027-28
- In 2025-26, beam time will be shared with Mu3e experiment?
- -> aim to reach (5-6)×10-14



Introduction : cLFV and MEG II experiment

Reconstruction of 2021+2022 data

Physics analysis of 2021+2022 data

Prospects

- MEG II experiment searches for  $\mu{\rightarrow}e\gamma$  decay
- Physics run started since 2021 and will continue by the end of 2026
- Analysis status for 2022 data (and update for 2021 data)
  - Reconstructions are almost on the final stage
    - Target, Positron, RDC : done
    - Gamma : will be finalized soon
  - Aim to publish new result in this Autumn
  - Sensitivity (2021+2022) : Br( $\mu \rightarrow e\gamma$ ) = 2.1×10<sup>-13</sup>
    - Will be updated (improved) by gamma reconstruction
- Analysis of 2023 data is on-going
  - Lager statistics than 2022
- Physics run in 2024 will resume in October

# Back up

#### PDE decrease

Slide from T. Iwamoto (15aA562-4)

# γ detector (LXe) Issue

- MPPC PDE decrease
  - observed in 2017 under muon beam
  - · The cause to be investigated
  - Based on 2021 operation, PDE will change from 16% to 2% in ~100 days MEG II intensity
  - Annealing recovers PDE fully
- Strategy for run 2022
  - LXe MPPC can sustain
    ~ 120 days with 5×10<sup>7</sup> µ/s
    - Beam intensity optimization necessary
  - Annealing for all MPPCs during accelerator winter shutdown period



# Pileup rejection update in the liquid xenon detector

- Pileup search and unfolding
  - Using information of spacial clustering and #pulses in sum waveform
  - Then unfold the sum waveform by template waveform fit
  - Simultaneous fit between PMT and MPPC sum waveform is performed

