MEG II実験 陽電子タイミングカウンターの 分解能の詳細評価

米本拓、他MEG IIコラボレーション 2023年3月23日(木)日本物理学会2023年春季大会

23aT3-2

Outline

- Introduction (MEG II, pTC)
- pTC in 2022
- Conclusion / Prospect

MEG II experiment

- Search for cLFV ($\mu \rightarrow e \gamma$) with aimed sensitivity: 6 x 10⁻¹⁴
- An order of magnitude better from the MEG result (2016) : $\mathcal{B}(\mu \rightarrow e \gamma) < 4.2 \times 10^{-13}$

• The physics data taking **ongoing** 2021 pilot run + 2022 -> 2023...

Introduction

Pixelated / positron Timing Counter (pTC)

Concept

- Improve e⁺ time resolution by multiple-pixel-hit scheme.
- Upstream 256 + Downstream 256 = **512 pixels**
- Mean ~ 9 hits (MC, signal e^+)

- Upstream 256 + Downstream 256 = 512 pixels
- 12 cm \times 5 cm (4 cm) \times 5 mm plastic scintillator (BC422).
- Read by series connection of **6** SiPMs on both side.

(AdvanSiD, ASD-NUV3S-P High-Gain, 3 x 3 mm², 50 x 50 μ m², V_{breakdown} ~ 24 V).

pTC: Time Resolution

pTC time resolution in Even-Odd analysis for Trigger-Timing positrons (November 2022) • The estimated time resolution at 9 hits is **37 ps**.

$$\sqrt{\sigma_{\text{intrinsic}}^2 + \sigma_{\text{inter-pixel}}^2} \sim 110 \text{ ps}$$

precision of the time calibration

Positron Reconstruction Scheme

pTC Overview in 2022

• NO Dead Channels during the beamtime.

4 channels were found to be dead at the commissioning period. (Despite alive during the maintenance '21 -> '22)

- Radiation Damage on SiPM is accumulated. It is reflected on increment of Dark Currents in SiPM.
- Cooling & Drying were successfully done.
- Bias voltages were scanned & optimized.
- Calibration flow was integrated.

pTC in 2022

Calibrations on pTC

• The deposited energy (<- integrated charge) in a pixel

≻ The MPV (most probable energy loss) is adjusted.

• Inter-pixel (pixel - pixel) Timing

➢ Based on e⁺ track from Michel decay; Laser measurements eliminates geometry dependence.

• Intra-pixel (channel – channel) Timing

Timing b/w each end reflects the center

of the trapezoid of the hit distribution.

Time calibration method

NO position dependence, NO beam,
64 pixels at the same time. 10

pTC in 2022

Pixel Time Center by Laser

• DS, US pixel

(1 example from each sector)

• Averaged all the pixels

 $\frac{1}{n} \sum T_{\text{ofs}}^{\text{pixel}}(t) =: \overline{T}_{\text{ofs}}(t)$

STDDev = $\sqrt{\frac{1}{n} \sum (T_{ofs}^{pixel}(t) - \overline{T}_{ofs}(t))^2}$ shown as a measure of the **stability** (< 10 ps from 11 Aug.) (< 40 ps in July) 11

pTC Event-Time analysis

•
$$t_{\text{ave}} := \frac{1}{n_{\text{hit}}} \sum (t_i^{\text{reco}} - t_0^{\text{reco}} - TOF_{i,0})$$

$$\sigma_i = \sigma(t_{\text{ave}} - t_i^{\text{reco}})$$
 (single pixel / channel)

•
$$t_{\text{even}} := \frac{1}{n_{\text{hit}/2}} \sum (t_{2i}^{\text{reco}} - t_0^{\text{reco}} - TOF_{2i,0})$$

 $t_{\text{odd}} \coloneqq \frac{1}{n_{\text{hit}/2}} \sum (t_{2i+1}^{\text{reco}} - t_0^{\text{reco}} - TOF_{2i+1,0})$
 $\sigma(N_{\text{hit}}) = \sigma(t_{\text{even}} - t_{\text{odd}})$ (even-odd)

Resolution Evaluation in 2022

	Single Pix./Ch	1-hit (EvenOdd)	Overall (Even-Odd)
Sep.	102 ps / 132 ps	112 ps	43.5 ps
Oct. (3e7)	102 ps / 132 ps	113 ps	43.8 ps
Nov. (4e7)	102 ps / 133 ps	114 ps	44.2 ps
Nov. (5e7)	102 ps / 133 ps	114 ps	44.5 ps

 $\overline{N_{\rm hit}}$

 $\sigma_{\rm pTC}^{\rm Overall} = \sum Rate(N_{\rm hit}) \times \sigma_{\rm pTC}(N_{\rm hit})$

Conclusion

- MEG II pixelated TC performed the event time resolution in 2022
 - $\overline{N_{\rm hit}} = 9$: 37 ps

Overall Estimation : 44 ps

• Increment of the SiPM dark currents which reflects the radiation damage was found to be seriously accumulated.

Future prospect

- Refurbishment of pTC is decided to be performed.
 - \succ with 100 new pixels.
 - > Assembly & Test ongoing.
 - \succ Planned to be replaced after '23 run.

• Improvement and refinement on analysis algorithms.

 \succ weight on resolution of each pixel / channel by N_{photon}

Back up

MuEGamma Decay

- One of charged lepton flavor violating (cLFV) decays, which is forbidden in the Standard Model.
- Many of the new physics beyond the Standard Model (BSM) predict that the branching ratio is $\mathcal{O}(10^{-13}) \mathcal{O}(10^{-14})$ where an undiscovered particle in $\mathcal{O}(10)$ TeV mediates the process.
- Upper limit on the branching ratio was obtained by the MEG experiment: $\mathcal{B}(\mu \rightarrow e \gamma) < 4.2 \times 10^{-13}$ (90% C.L.)

SPXPositionCalibration

5 parameters (initial value)

p0: center (μ)
p1: length (FWHM)
p2: height (linear const. b)
p3: slope (linear const. a)
p4: sigma (σ)

- 1. Moving average for the mean of the histogram \pm 5 cm
- 2. Linear fit to the MAv histogram. (a * $(x \mu) + b$)
- 3. Least square for the convolution of the linear function & a gaussian

* Geometrical mean gives a better energy deposit reconstruction than an arithmetic mean, found in the past study.

Reconstructed edep distribution (before cal) of pixel201

- The most probable energy loss (MPV; the peak of landau-gauss dist.) for each counter is adjusted to the E_{MC}^{mean} . $E_{MC}^{mean} = 0.085$ MeV is used now, as the MC mean of all the pix.
- Difference in incident angle (mostly depending each location) is ignored.

SPXTimeCalibration / Michel calibration; MiCa

1. config/offline_second_MiCa.xml -> loose clustering data

- only SPXMichelCalibration task
 - Track selection, make 'Mille' file (.bin)
 - SPXmethod, GL Parameter, ... are SPs.

2. Run 'Pede' for calculate to time offset.

millepedeII/

 Mille to make binary file ~.bin . (in macro, #include<Mille.cc>)
 -- Others -- others -- others (= solve the linear least squares) 3. z-phi, US-DS correction with the laser calibration result.

4. Need 1 iteration for "not loose" clustering

Dark currents(1)

Dark currents(2)

10 uA increment means < 10 ps effects on σ

pTC Time Center variation

Coefficients (ps/K)	Effect
$+0.45 \pm 0.02$	+
$+1.00 \pm 0.04$	+
$+0.24 \pm 0.11$	+
$+1.24 \pm 0.04$	+
-4.1 ± 0.1	
-0.08 ± 0.02	+
-1.3 ± 0.2	<u></u> 23
	$\begin{array}{c} +0.45 \pm 0.02 \\ +1.00 \pm 0.04 \\ +0.24 \pm 0.11 \\ +1.24 \pm 0.04 \\ -4.1 \pm 0.1 \\ -0.08 \pm 0.02 \\ \hline -1.3 \pm 0.2 \end{array}$

"The laser-based time calibration system for the MEG II pixelated Timing Counter"

https://elog.psi.ch/elogs/Public ation+List/134 Thermal expansion/shrink cannot fully explain the time variation.

±1°C makes 1.3 ps difference for optical components.

- The reported reproducibility ~11 ps
 - -> some agreement

Future Prospect

Time Correction Studies

Apply a weight by $1/\sigma^2$ on each channel (for *v*, *w*) and each pixel (for *E*)

24