

- 陽電子再構成のまとめ及び感度・系統誤差の評価 -

大矢 淳史, 他MEG IIコラボレーション 2023年日本物理学会春季大会

<u>Outline</u>

Introduction

- Analysis
- Summary and prospect

<u>Motivation and principle of $\mu \rightarrow e\gamma$ search</u>

 180°

- $\mu \rightarrow e \gamma$ search at MEG II
 - CLFV decay, forbidden in SM
 - Target sensitivity: $Br(\mu \rightarrow e\gamma) \sim 6 \times 10^{-14}$ \rightarrow Can probe O(10 TeV) physics
- Search strategy
 - Signal identified by kinematics
 - Statistics: $N_{sig} \propto R_{\mu} \cdot T \cdot Br(\mu \rightarrow e\gamma) \cdot \epsilon$
 - Main BG: Accidental coincidence of BG-e & BG- γ
 - $N_{BG} \propto R_{\mu}^2 \cdot T \cdot \delta E_e \cdot \delta E_{\gamma}^2 \cdot \delta \Theta^2 \cdot \delta T$
 - \rightarrow Use of DC beam @PSI
 - \rightarrow High resolution measurement
 - Second BG: Radiative decay with small energy $\bar{\nu}\nu$
 - $\,\times$ 0.1 compared to the # of accidental

Kinematics	Signal	BG
$e\gamma$ time difference	Same time	No correlation
$e\gamma$ direction	Opposite	No correlation
E _e	52.8 MeV	< 52.8 MeV
E_{γ}	52.8 MeV	< 52.8 MeV

MEG II apparatus

•

•

.

Coordinate definition

Z-axis in downstream

 θ, ϕ : polar coordinate

X-axis in opposite of LXe

(LXe)

(pTC)

- Muon stopped on target
- Positron detection with magnet + DCH + pTC
- Gamma detection with LXe detector
 - BG- γ tagging with RDC detector •

MEG II apparatus for vertex & track

Reconstruction

- Positron reconstruction
 - Decay position and angle by track extrapolation to target
 - Time measured at pTC & TOF correction with track
 - Energy from track curvature & B-field

Gamma reconstruction @conversion point

- Conversion position by light distribution
- Time by combining measurements at photo sensors
- Energy by total number of scintillation photons
- Full reconstruction of kinematics @vertex
 - Gamma angle by combining with vertex reconstructed by positron spectrometer
 - Gamma time @vertex reconstructed with TOF correction

Observables in analysis

- List of observables
 - $t_{e\gamma} \coloneqq t_{\gamma} t_e$
 - $\phi_{e\gamma} \coloneqq \pi + \phi_e \phi_\gamma$ Opening angle • $\phi_{e\gamma} \coloneqq \pi - \phi_\gamma$ Opening angle
 - $\theta_{e\gamma} \coloneqq \pi \theta_e \theta_\gamma \]$ decomposed into θ, ϕ
 - *E*_γ
 - *E*_e
 - RDC hit
- Conditional observables
 - Track fitting uncertainty –
 - ϕ emission angle (Parameter correlation depends on ϕ)
 - Conversion depth in LXe

Signal peak in the flat BG distribution (if $N_{sig} > 0$)

With smaller uncertainty, signal peak in E_e distribution becomes sharp

Tracking momentum uncertainty

Statistical method of $\mu \rightarrow e\gamma$ search

- Likelihood analysis to estimate N_{sig}
 - Extended un-binned fit on energy, angle, time & RDC

$$L(N_{sig}, N_{Acc}, N_{RMD}) = \exp\left(-\frac{(N_{RMD} - \mu_{RMD})^2}{2\sigma_{RMD}^2}\right) \times \exp\left(-\frac{(N_{Acc} - \mu_{Acc})^2}{2\sigma_{Acc}^2}\right)$$
Additional external constraints

$$\times \frac{e^{-(N_{sig}+N_{Acc}+N_{RMD})}}{N_{obs}!} \times \prod_{dataset} \left(N_{sig} \cdot S(x) + N_{acc} \cdot A(x) + N_{RMD} \cdot R(x) \right)$$

Extend likelihood
PDFs of $E_e, E_\gamma, t_{e\gamma}$ etc.

Additional autornal constraints

- Confidence interval
 - Feldman-Cousins method, profile likelihood ratio used for ordering: $\lambda(N_{sig}) = \frac{L(\text{best fit with fixed } N_{sig})}{L(\text{full best fit})}$
- Branching ratio
 - Branching ratio given by dividing with normalization: $Br = \frac{N_{sig}}{k} = N_{sig} \times SES$

<u>Outline</u>

- Introduction
- Analysis
- Summary and prospect

<u>Time PDF</u>

- Signal time resolution evaluated with RMD
 - $\sigma_t = 66 \oplus \frac{112}{\sqrt{n_{TC}}} \, \mathrm{ps}$
 - Depends on # hits on pTC
 - Average $\sigma_{t\gamma}$: 83 ps

- Background distribution
 - Non-flatness due to t_{γ} time-walk in trigger logic
 - Included in PDF evaluation
- Uncertainty
 - 7 ps uncertainty on peak center position
 - 5 ps uncertainty on resolution
 - \rightarrow O(0.1 %) impact to $\mu \rightarrow e \gamma$ sensitivity

Positron momentum PDF

 $\gtrsim 12000$

210000

8000

6000

4000

2000

- PDF evaluation from background (Michel) fitting
 - Can calibrate energy scale and resolution
 - Fit function: (Theory × Eff(E_e)) \otimes Resolution of E_e
 - $Eff(E_e): E_e$ dependence of efficiency (Modeled with erf)
 - Tracks categorized on E_e uncertainty in track fitting
 - Clear change in resolution and $Eff(E_e)$
- Uncertainty
 - Energy scale: 10 20 keV
 - Resolution: up to ${\sim}10~\%$
 - Fit resolution well agrees with tracking uncertainty
 - \rightarrow O(0.1 %) impact to $\mu \rightarrow e\gamma$ sensitivity

E. (MeV)

Angle PDF

- Non-flat distribution
 - Trigger requires direction match between positron & gamma
- Directly taken from sideband
- Signal
 - Correlation is known b/w δE_e , $\delta \theta_e \& \delta \phi_e$
 - Correlation parameter estimation in progress
 - By double turn analysis combined with studies on MC samples

Alignment (angle PDF uncertainty)

- Mis-alignment shifts signal PDF
 - No physical calibration source
 - Precise alignment is a must
 - Largest systematics source in MEG I
- Important parameters
 - 1. DCH LXe relative alignment in 3D
 - 2. DCH target alignment in X coordinate

Alignment (angle PDF uncertainty)

True target

hole

- DCH target alignment in X
 - From hole analysis
 - 200 μm consistency between holes
 - 500 μm difference from optical method
 - Position change not included yet
 - \rightarrow Most suspected cause. Camera data needs to be combined to improve
- DCH LXe relative alignment
 - Relies mainly on optical method
 - Z alignment cross-checked with cosmic tracks \rightarrow Disagreement of 2.5 mm
 - Possible causes
 - Mistake in LXe optical survey 1.
 - Tracking bias only for cosmic linear tracks 2.

20

-10

Assumed target

• Х

10

 $Z_{track} - Z_{XEC}$

Sensitivity estimate

	2021 performance
$ heta_e$, ϕ_e	7.7/5.6 mrad (Double turn analysis)
y_e, z_e	0.8/2 mm (Double turn analysis)
E _e	90 keV for core (Michel fit)
E_{γ}	2% (CEX resolution analysis)
u, v, w_{γ}	2.5 mm for w < 2 cm (Collimated gamma ray data)
$t_{e\gamma}$	$\frac{112}{\sqrt{n_{TC}}} \oplus 66 \text{ ps}$ (RMD samples)
RDC	Installed since middle of 2021 run

- Median 90 % C.L. sensitivity: 8. 2 \times 10⁻¹³
 - Study with temporary PDFs for those not fully ready
 - Background distribution is not perfect
 - Systematic uncertainty is not fully evaluated yet

<u>Outline</u>

- Introduction
- Analysis
- Summary and prospect

<u>Summary</u>

- Presented PDF evaluation with focuses on positron side
 - Time & positron momentum PDFs are ready with negligible systematics
 - Angle PDF evaluation in progress
 - Disagreement found in alignment
- 8.2×10^{-13} branching ratio sensitivity with 2021 pilot run dataset
 - Approaching the MEG I full data (2009 2013) sensitivity
 - Though limited 2021 beamtime for physics DAQ (effectively 4 weeks)
 - Thanks to improved resolution and efficiency
 - Still systematics not included yet

	Normalization	Br sensitivity
2021	2.68×10^{12}	8.2×10^{-13}
MEG I full data	1.71×10^{13}	5.3×10^{-13}

Prospect

- 2021 analysis
 - Final estimation of PDF
 - Further investigation on highly uncertain parameters
 - Alignment
 - E_{γ} energy scale (previous talk)
 - Final evaluation of systematic uncertainty
 - 2021 result will be presented in Sep (If everything on schedule)
 - Unblinding in May Jun
- Further data taking
 - Physics data taking continued 2022 \rightarrow Discussed in the next presentation
 - 2023 also planned, with further improved data-taking scheme
 - With experience in 2022 run

<u>Backup</u>

2021 dataset

- DAQ in 2021 pilot run
 - Not a full-year physics run
 - Needed to define data taking scheme
 - Finally achieved fully efficient DAQ in Oct
 - Beam rate change during the run
 - Also took required set of calibration data
- Situation with 2021 data analysis
 - Enough quality for physics analysis
 - Analysis in progress
 - Blinded done with $t_{e\gamma}$, E_{γ}
 - Detector performance evaluation
 - BG studies with sidebands

Time sideband for accidental BG Energy sideband for RMD BG

Performance comparison

	Currently achieved performance in MEG II	Performance in MEG
$ heta_e$, ϕ_e	7.7/5.6 mrad (Double turn analysis)	9.4/8.7 mrad
y_e, z_e	0.8/2 mm (Double turn analysis)	1.2/2.4 mm
E _e	90 keV for core (Michel fit)	306 keV
E_{γ}	2% (CEX resolution analysis)	2.4% (w<2 cm), 1.7% (w>2cm)
u, v, w_{γ}	2.5 mm for w < 2 cm (Collimated gamma ray data)	5 mm
$t_{e\gamma}$	$\frac{112}{\sqrt{n_{TC}}} \oplus 66 \text{ ps}$ (RMD samples)	122 ps
RDC	Installed since middle of 2021 run	Not installed

Alignment w.r.t B-field

 $\cos\theta$ dependence o dependence
offset [MeV] 0.05 0.05 Offset [Mev] 0.04 0.02 Acceptance range + 0 0 -0.02-0.02-0.04-0.04— original - original X shift 1mm X shift 1mm -0.06+ Y shift 1mm Y shift 1mm -0.06 Z shift 1mm 🔫 Z shift 1mm -0.4 -0.2 0.2 0.4 50 -50 0 0 cosθ [deg] \$ [deg]

Alignment result (B-Field)

0.1 mm in X 0.7 mm in Y 0.3 mm in Z

Full 3D comparison of target holes

- Z misalignment is not present
- Y misalignment in agreement with B-field observation

Survey (2021) + CT scan	Track 2021	Difference
1.30243, -0.319128, -4.69109	1.285(6), -0.304(4), - 4.774(7)	0.017, -0.015, 0.08
-1.32782, -0.314651, 4.97927	-1.40(1), -0.302(6), 5.025(14)	0.072, -0.013, -0.046
2.3601, -0.313624, -8.53115	2.339(14), -0.287(9), -8.638(15)	0.021, -0.027, 0.11
-0.0312347, 0.97017, 0.138845	-0.087(6), 1.000(3), 0.139(8)	0.056, -0.030, 0.00
-0.0414534, -1.62367, 0.14167	-0.096(13), -1.614(7), 0.116(17)	0.054, -0.01, -0.026
-2.33435, -0.297131, 8.84869	Not enough statistics	