MEG II実験2021データを用いた *μ → eγ*崩壊探索の状況 - ガンマ線再構成のまとめ -

日本物理学会 2023年 春季大会 (オンライン) 23pT1-1

> 小林暁 (東大理)、 他MEG IIコラボレーション Satoru Kobayashi on behalf of the MEG II collaboration The University of Tokyo

THE UNIVERSITY OF TOKYO

Core-to-Core Program

Introduction

- MEG II experiment
- Liquid Xenon gamma-ray detector
- RUN 2021
- Gamma-ray analysis
- Analysis of physics dataset
 - Pileup analysis
 - Event categorization
 - Analysis efficiency
 - Uniformity
- Summary & Prospects

Charged Lepton Flavor Violation (cLFV)

- Flavor mixing is not observed only for charged leptons.
- cLFV is strongly suppressed in SM + ν oscillation ($Br(\mu \rightarrow e\gamma) \sim 10^{-54}$).
- Large enhancement is predicted by new physics.
- High energy scale beyond LHC is indirectly accessible.

$\mu \rightarrow e\gamma$ Search

- $\mu^+ \rightarrow e^+ \gamma$ decay: two-body decay
 - Signal: Coincidence & back-to-back & 52.8 MeV e^+ and γ
 - Main background: accidental
 - Positron from Michel decay + accidental gamma-ray.
 - Key: Precise measurement of e^+ and γ to discriminate signal and BG.
- Current limit: $Br(\mu^+ \to e^+ \gamma) < 4.2 \times 10^{-13} (90\% \text{ C.L., MEG})$

MEG II experiment

- MEG II started searching for $\mu^+ \rightarrow e^+ \gamma$ decay in 2021.
 - Goal: $Br(\mu \rightarrow e\gamma) \sim 6 \times 10^{-14}$ (2021-202x).
 - Continuous high intensity muon beam ($\ge 3 \times 10^7 \mu/s$) @PSI, Switzerland
 - Detector upgrade (Resolution improvement for each detector)
- In 2021, the first physics dataset was collected for 1.5 months.
 - Beam rate: $3 5 \times 10^7$ /s.

Liquid Xenon detector upgrade

Performance	MEG	MEG II (measured)
Position resolution[mm]	5-6	2.5
Energy resolution[%]	2.4/1.7	2.0/1.7
Time resolution[ps]	62	61
Efficiency[%]	65	67

- The entrance face is covered with 4092 VUV-sensitive Multi-Pixel Photon Counters (MPPC).
 - Uniform light collection efficiency \rightarrow Improve energy & position resolution.
 - Reduced material budget \rightarrow Higher detection efficiency
- The performance is estimated with 55 MeV gamma rays from $\pi^0 \rightarrow \gamma \gamma$.
- In this talk, the status of the analysis for the physics dataset is presented.

MEG II talks

- Analysis, summary
 - 23pT1-2 Oya
 - 23pT1-3 Uchiyama
- LXe detector
 - 23aT3-6 Matsushita
 - 23aT3-7 Ban
- Timing counter
 - 23aT3-2 Yonemoto
- RPC
- Beyond MEG II
 - 22aT3-4 lkeda

Gamma-ray analysis

Reconstruction chain

- The calibrations for the gamma-ray reconstruction are almost ready.
- One missing part: pileup analysis.

Satoru Kobayashi

- Reduce the background gamma-ray event rate.
- Precise energy reconstruction under a high-intensity environment.

Calibration is ready. Pileup analysis is essential to analyze the physics data.

JPS Spring, Online, 23 March 2023

Pileup analysis

- Two types of pileup gamma-rays worsen the sensitivity.
 - On-time pileup gamma-ray: $AIF2\gamma$.
 - Off-time pileup gamma-ray: mainly RMD.
- Pileup analysis is a combination of
 - Peak search in the light distribution.
 - Template fit of MPPC and PMT summed waveform.
- The pileup analysis was tested with the data for the first time.

Event categorization

Category	Definition
NoPileup	No pileup found
Unfolded	Off-time pileup found + unfolded
Coincidence	On-time pileup found
NotConverged	Template fit not converged
	Not used for the physics analysis

Energy spectrum of each category

- A gamma-ray event is categorized into four based on the analysis result.
- "Coincidence" and "NotConverged" events are **not** used for the physics analysis.
 - Coincidence: likely to be AIF2gamma events.
 - NotConverged: Off-time pileup in the analysis window.
- Event categorization is consistent with MC with 0.5% accuracy.

Background reduction

- The rate of the background gamma-ray events close to the signal energy is reduced by **43%**.
 - Energy range: [51.5 MeV, 54 MeV]

Satoru Kobayashi

• 51% in MC with low analysis threshold.

Significant reduction of background gamma-ray event rate is achieved.

Analysis efficiency

Energy deposit of a signal gamma ray with two inner peaks (side view)

- Analysis efficiency is estimated by using signal gamma rays with pileup background gamma rays in MC.
- The analysis inefficiency is 6.5%.
 - 4.7% Coincidence : Signal gamma ray can have multiple peaks.
 - 1.4% NotConverged
 - 0.4% cosmic-ray rejection : Light distribution of deep gamma ray is similar to that of a cosmic ray.
- A study to improve the efficiency is in progress.

A good analysis efficiency of 93.5% is achieved.

Uniformity

Energy spectrum of background gamma rays

- Non-uniformity of the energy scale is corrected based on the energy peak of 55 MeV gamma ray.
- A large non-uniformity for shallow gamma-ray energy spectrum is found.
- We are checking the non-uniformity carefully.

- Pileup analysis for gamma-ray events under a high-intensity environment is developed.
- 43% reduction of background gamma ray event rate is achieved.
 - Comparable to MC (51%)
- The analysis efficiency is 93.5%
 - evaluated using signal gamma ray in MC.
 - Study to improve the efficiency is in progress.
- The non-uniformity of the energy spectrum is under investigation.

2021 Physics run

- In 2021, the first physics dataset was collected for 1.5 months.
 - Beam rate: $3 5 \times 10^7$ /s.

Uniformity

Energy spectrum of background gamma rays

- Non-uniformity of the energy scale is corrected based on the energy peak of 55 MeV gamma ray.
- A large non-uniformity for shallow gamma-ray energy spectrum is found.
- We are checking the non-uniformity carefully.

Satoru Kobayashi

JPS Spring, Online, 23 March 2023