

MEG II実験: 液体キセノン検出機の較正 および 2023年ランにむけたアニーリングについて

Sei Ban (ICEPP), for the MEG II collaboration 23rd Mar . 2022, JPS 2023年春季大会 @online,

Calibration for 2022 data : E_{γ}

PDE recovery of the MPPCs in the LXe detector by annealing for 2023 run

Status and prospect of 2023 run

Calibration for 2022 data : E_{γ}

PDE recovery of the MPPCs in the LXe detector by annealing for 2023 run

Status and prospect of 2023 run

Charged Lepton Flavor Violation

- In quark and neutrino (neutral lepton) sector, the flavor violates in SM

- Some theories BSM predict flavor violation in the charged lepton sector
 - In the Standard Model, it is practically prohibited : Br($\mu \rightarrow e\gamma$)=10⁻⁵⁴
 - In BSM, $Br(\mu \rightarrow e\gamma) \sim O(10^{-14})$ is predicted : large enough to search
- Signal : Gamma-ray and positron with 52.8 MeV (= $m_{\mu}/2$)

MEG II experiment

- MEG II experiment aims to search for charged lepton flavor violation : $\mu^+ \rightarrow e^+\gamma$ -
 - with higher sensitivity by one order of magnitude compared to the MEG
- Consists of LXe detector for γ -ray, drift chamber & timing counter for e⁺
- Physics run started in 2021 (pilot run) -> full physics run in 2022

Calibration for 2022 data : E_{γ}

PDE recovery of the MPPCs in the LXe detector by annealing for 2023 run

Status and prospect of 2023 run

Calibration of 2022 data : E_{γ}

- Sensor calibrations : previous talk (23aT3-6)
- Position dependence of reconstructed energy is studied using 17.6 MeV peak by following reaction
 - p (CW acc.) + Li (target) \rightarrow Li(p,\gamma)Be \rightarrow γ (17.6 MeV)
- Non-uniformity is corrected along u, v, w direction
 - (plus additional 2D, 3D correction)
- Uniform response is obtained after the correction
- Further non-uniformity correction will be studied using 55 MeV peak from charge exchange reaction
 - $\pi^{-}_{(pi-beam)} \rightarrow \pi^{0}$ (in Hydrogen) $\rightarrow \gamma + \gamma$

Calibration of 2022 data : $E_{\ensuremath{\gamma}}$

- Energy scale stability
 - Checked by off-beam calibration data : CWLi line and Cosmic ray
- CWLi line (17.6 MeV)

- Calibration for rest period in 2022 is ongoing for reconstruction of E_{γ}

Calibration for 2022 data : E_{γ}

PDE recovery of the MPPCs in the LXe detector by annealing for 2023 run

Status and prospect of 2023 run

Annealing by Joule heating : PDE decrease

- Photon Detection Efficiency (PDE) of the MPPC decreased during beam time
 - known problem since 2017
 - (maybe) because of radiation damage by muon beam
- According to previous study, annealing (heating) procedure recovers the PDE
 - Using Joule heating of MPPC itself to heat up the MPPC

Averaged PDE history monitored during beam time using alpha-ray - more precise calibration is ongoing for physics analysis

PDE

time

Annealing by Joule heating : Setup

- MPPC is annealed by Joule heating using a high current source and LED light
 - Heated with ~1.75W per MPPC
- MPPCs with an interval of 4 are annealed at once to avoid over heating
 - 256 MPPCs are annealed at once
 - \rightarrow 16 sets of annealing is required (~30h/set)

Power supply with large current : 250 mA/output, 60~80 V

Blue LED

Annealing by Joule heating : Speed of PDE recovery

- Charge can be monitored to know a halfway progress of annealing
 - using visible LED installed in the LXe detector
 - Strong correlation exists between PDE recovery ratio for visible LED and VUV
 - [Recovery ratio for VUV] = 10 * [Recovery ratio for visible LED]
- (Two) Example of charge ratio : [after annealing]/[before annealing]
 - Averaged charge
- Saturation curve is seen in both
 - Three days annealing looks reasonable for one set of annealing

- Strong correlation exists between PDE recovery ratio for visible LED and VUV

- [Recovery ratio for VUV] = 10 * [Recovery ratio for visible LED]
- -> can estimate the PDE value after the annealing without installing LXe
- In average, Estimated PDE value : 21.01% after the annealing in 2023
 - cf.) in average, PDE : 15.35% after the annealing in 2022
 - Estimated PDE may contain large error due to noisy data condition
- Enough PDE value to run through this year's beam time

Calibration for 2022 data : E_Y

PDE recovery of the MPPCs in the LXe detector by annealing for 2023 run

Status and prospect of 2023 run

Prospect for 2023 run

- Beam time assignment for MEG II : 16th May. 30th Nov.
 - Detector commissioning and Beam tuning for first 1 month
 - Physics run for ~20 weeks
 - Beam intensity will be adjusted depending on the situation : PDE, etc...
 - Charge EXchange (CEX) run is planned on late Nov.
 - Energy, Timing calibration for the liquid xenon detector
- Aiming to correct further data (better statistics, better quality) than 2022

Calibration for 2022 data : E_Y

PDE recovery of the MPPCs in the LXe detector by annealing for 2023 run

Status and prospect of 2023 run

- MEG II experiment searches for charged lepton flavor violation : $\mu^+ \rightarrow e^+ \gamma$
- Full period physics data was taken in 2022
- Currently calibration is ongoing
 - (for LXe detector) energy scale, uniformity, timing \cdots
 - Calibration of data from Sep. to Nov. : done
 - Rest of calibration (Aug. and Jul.) is worked in progress
- PDE recovery of the MPPCs in the liquid xenon detector was conducted
 - By annealing with Joule heating
 - Annealing of all MPPCs : done
 - PDE value after the annealing is estimated using visible LED
 - in average, ~21%
 - Enough PDE value for 2023 run
- MEG II beam time is assigned in 2023 : 16th May. 30th Nov.

Back up

PDE decrease

Slide from T. Iwamoto (15aA562-4)

γ detector (LXe) Issue

- MPPC PDE decrease
 - observed in 2017 under muon beam
 - · The cause to be investigated
 - Based on 2021 operation, PDE will change from 16% to 2% in ~100 days MEG II intensity
 - Annealing recovers PDE fully
- Strategy for run 2022
 - LXe MPPC can sustain
 ~ 120 days with 5×10⁷ µ/s
 - Beam intensity optimization necessary
 - Annealing for all MPPCs during accelerator winter shutdown period

Liquid xenon detector : PDE decrease & Annealing

- Photon Detection Efficiency (PDE) decrease was observed in 2021 run (known problem since 2017)
 - Averaged PDE : $8.4\% \rightarrow 5.6\%$
- It worse the sensitivity if PDE becomes lower than ~4%
- PDE recovery by annealing was conducted before the beam time 2022
 - There are two method
 - Hot water annealing : easy but low temperature (45°C)
 - Joule annealing : established by previous work (but small number)

MPPC PDE vs Irradiation time

20

PDE estimation with visible LED

- By previous work,
 - Recovered amount of charge (PDE) for LED can be translated into that for VUV
 - $\angle R_{PDEforVUV} = 10 \times \angle R_{PDEforLED}$
 - relatively 10% recovery for LED light corresponds to relatively 100% recovery for VUV-light
- The PDE value is estimated by visible LED during the annealing period
- In principle, absolute PDE value will recover to 20% (initial value at manufactured)

Temperature limitation

CFRP should not exceed 45°C

 \rightarrow the maximum temperature setting in hot water annealing must be 45°C

Estimation of PDE recovery

- Estimated PDE value

PDE after the annealing 2021 with LY correction

- MPPC PDE before/after the mass Joule annealing in 2021
- Light yield is corrected using calculated PMT QE value : Ayaka's slide in the collaboration meeting 9/29, 2022
- The PDE value after annealing is updated with LY correction
- The averaged PDE after annealing : ~15%

