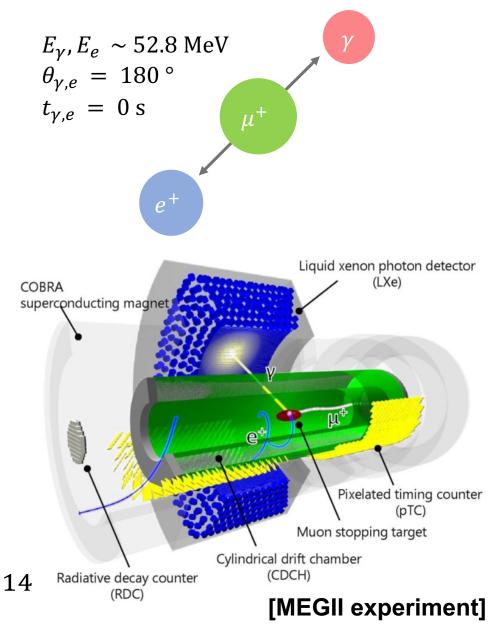


次世代 $\mu^+ \rightarrow e^+ \gamma$ 崩壊探索実験のための 光子ペアスペクトロメーターの開発

横田凜太郎

潘晟^A, Lukas Gerritzen^A, 池田史, 岩本敏幸^A, 松下彩華, 松岡広大^C, 森俊則^A, 西口創^C, 越智敦彦^B, 大谷航^A, 内山雄祐^B, 山本健介 (東大理, 東大素セ^A, 神戸大理^B, 高工研^C)

2023年9月16日 日本物理学会年次大会


2023/9/16

Development of Photon Pair Spectrometer for Next Generation $\mu^+ \rightarrow e^+\gamma$ Experiment (16pRA81-12)

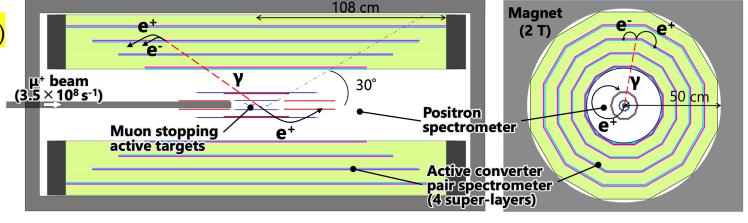
$\mu \rightarrow e \gamma$ Decay

- Charged lepton flavor violation
 - \rightarrow strong evidence for BSM
- Characteristics of decay
 - same monochrome energy: E_{γ} , $E_e \sim 52.8 \text{ MeV}$
 - back-to-back
 - same timing
- MEG II is searching for $\mu \rightarrow e \gamma$ decay at Paul Scherrer Institute (PSI)

Target sensitivity : **BR** $_{\mu \to e \gamma} = 6 \times 10^{-14}$

<u>New experiment for $\mu \rightarrow e \gamma$ </u>

- High-intensity muon beam is planned at PSI (2027-2028)
 - \rightarrow 100 times higher intensity ~ 10¹⁰ µ/s
 - \rightarrow New concept experiment
 - high resolution and high rate capability
- 1. Photon pair spectrometer \rightarrow higher resolutions ($\Delta E, \Delta t, \Delta x$)


angle measurement

- 2. Positron spectrometer
 - \rightarrow high rate capability
- 3. Separate active targets

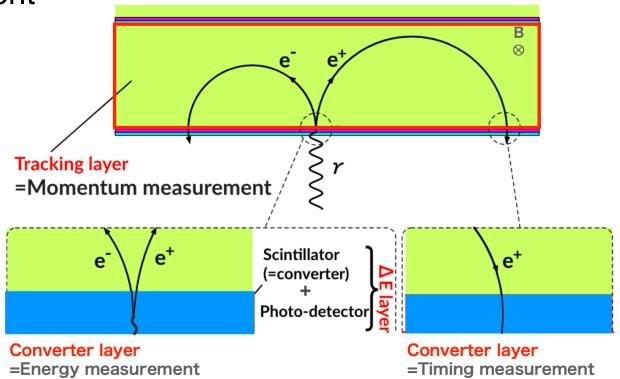
 \rightarrow higher vertex resolution, further BG suppression

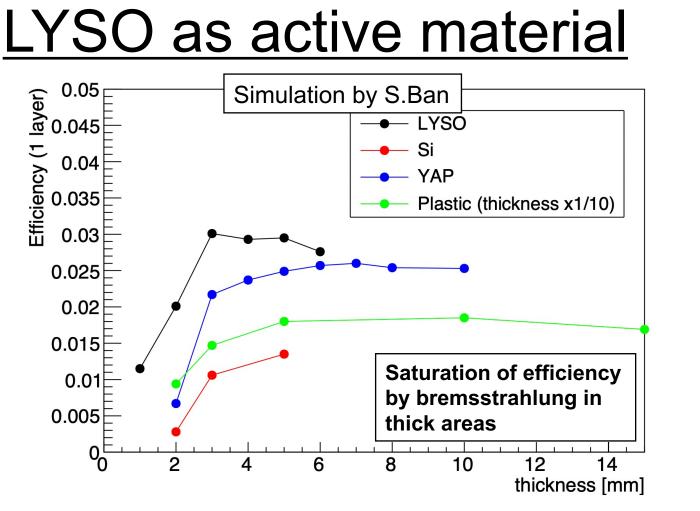
[Concept of the new experiment]

$$\Rightarrow \text{Target sensitivity: BR }_{\mu \to e \gamma} = \mathcal{O}\left(10^{-15}\right)$$

Pair spectrometer with active converter

- Pair spectrometer for γ-ray measurement
 - Advantages


High resolutions (energy, position) Direction of γ can be measured


Difficulty

Energy loss in convertor: invisible

- Low efficiency
- \rightarrow active converter
 - Measure energy loss in convertor
 - Measure timing
- Candidate technology for tracking layer

TPC(Time projection chamber), Drift chamber

[LYSO]

Density [g/cm^3]	7.2
Light Yields [rel. to Nal]	75%
Emission Peak [nm]	420
Decay time [ns]	40
Radiation Length [cm]	1.1
Critical Energy [MeV]	12
Hygroscopicity	None

- High light yields
 → Good energy resolution
- Fast response → Good timing resolution

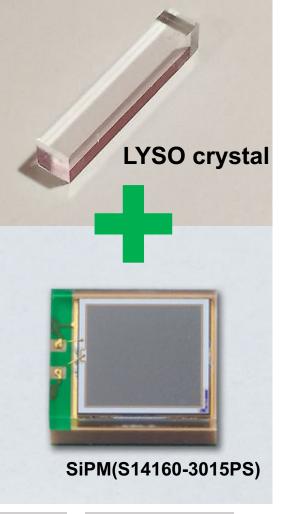
Requirements for active converter

Active converter = LYSO crystal as active material + SiPM as photo-sensor

- Energy measurement
 - Target resolution : $\Delta E/E$ = 0.4% for 52.8MeV $\gamma ~~\rightarrow \Delta E {\sim} 200 keV$
 - Maximum energy loss in 3mm-thick LYSO ~ 6.72MeV
 - \rightarrow Requirement for energy resolution at LYSO ~200keV/6.72MeV ~3% (ignoring tracker resolution)
 - \rightarrow Requirement for photoelectron statistics ~560 p.e. for 1MIP

(if 1.5mm, the required p.e. number is ~140 for 1MIP)

• Time measurement


 Δt = 30ps, by measuring timing of e- and e+ independently

 \rightarrow 40ps for 1 MIP

- What we want to study
 - 1. Number of p.e for 1 MIP
 - 2. Time resolution for 1 MIP

2023/9/16

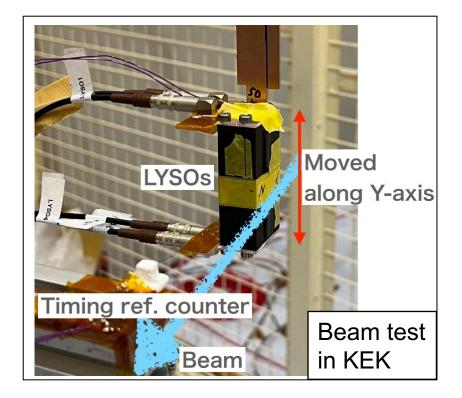
6

Previous study

• Energy measurement (In KEK)

Detected photons (3x5x50mm LYSO + SiPM)

:~2000p.e.


 \rightarrow Photoelectron statistics are sufficient

F.Ikeda (2022 Autumn JPS)

• Timing measurement (In KEK) Good timing resolution: 40-50 ps (3x5x50mm LYSO + SiPM)

\rightarrow Preliminary, but it looks promising

F.Ikeda (2023 Spring JPS)

Motivation of this study

- Time measurement performance for LYSO of different sizes using MIP
- 1. Thinner LYSO

Need to use thinner LYSO at outer region

 Possibility to use even thinner LYSO to mitigate worsening of angular resolution due to multiple scattering

- 2. Longer LYSO
 - To reduce the number of readout channels

[Different LYSO samples]

Thickness: 1.5 and 3 [mm] Width: 10 and 5 [mm] Length: 50 and 100 [mm] Type: normal and fast

\rightarrow Study light yield, timing performance, position dependence

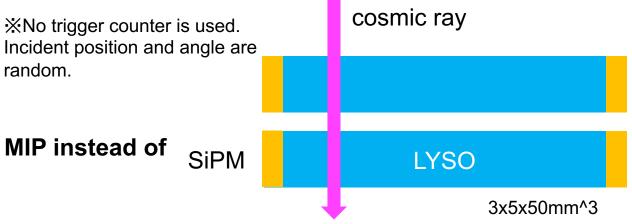
2023/9/16

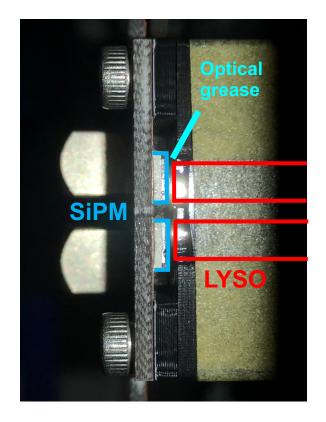
LYSO

Due to time constraints, cosmic rays are used as MIP instead of KEK's beam in the university lab.

• LYSO

Fast-type (FTRL-Suzhou JT Crystal) Wrapped by Reflector (ESR)

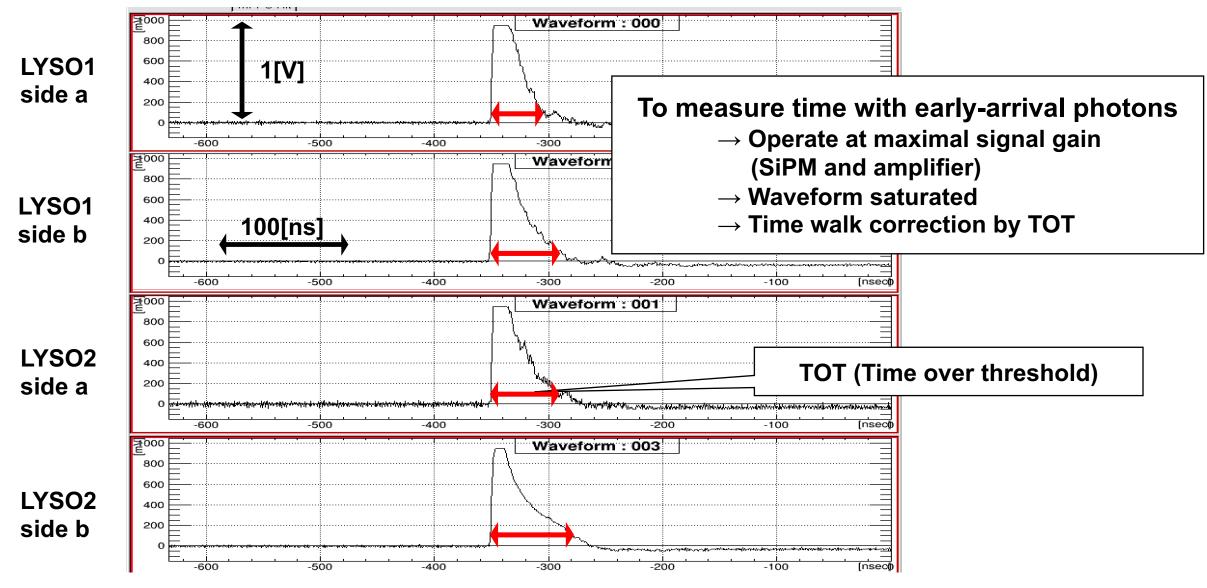

Readout


SiPM: both sides of LYSO's length

- S14160-3015PS (Photosensitive area: 3x3mm, pixel pitch: 15um)

Using Amplifier and Waveform digitizer

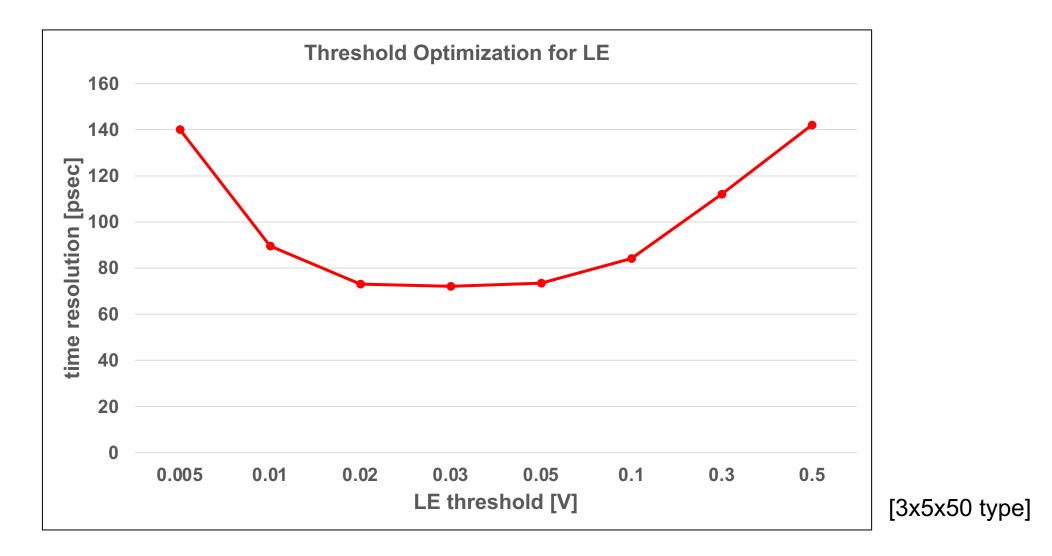
LYSO TYPE	THICKNESS [mm]	WIDTH [mm]	LENGTH [mm]
3x5x50	3.0	5.0	50
Thinner	1.5	5.0	50
Longer	3.0	5.0	100



2023/9/16

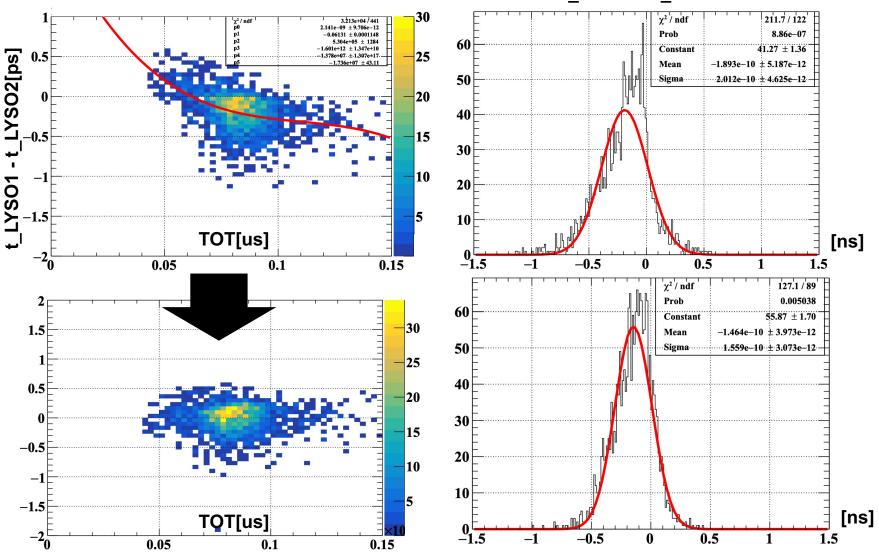
random.

Waveform


<u>Analysis</u>

- Time pickup: leading-edge method (LE) Threshold for LE is optimized
- Time-walk correction: Using TOT
- Time resolution can be calculated from

$$\frac{1}{\sqrt{2}}\sigma\left(\frac{t_{LYSO1a}+t_{LYSO1b}}{2}-\frac{t_{LYSO2a}+t_{LYSO2b}}{2}\right)$$


XAssume LYSO1 and 2 have the same time resolution

Threshold optimization for LE

Time-walk correction by TOT

• Fit: 5th order polynomial for the distribution of $t_{SiPM1} - t_{SiPM2} vs TOT$

t_LYSO1 - t_LYSO2

<u>Results</u>

LYSO TYPE	THICKNESS [mm]	WIDTH [mm]	LENGTH [mm]	Time resolution [psec]	Number of p.e(MPV)/counter for 1MIP	Requirement of p.e.
3x5x50	3.0	5.0	50	72	~1000	~560
Thinner	1.5	5.0	50	124	~600	~140
Longer	3.0	5.0	100	101	~600	~560

Comparison with previous measurement at beam test

- Number of p.e. : sufficient, but much less than previous measurements at KEK beam test

-> Need investigation

-> worse time resolution due to smaller # p.e.?

Comparison between three samples

- Best time resolution with 3x5x50
- Thinner: worse time resolution due to smaller # p.e.?
- Longer: worse time resolution due to position dependence?

Summary and prospects

Summary

- Development of pair spectrometer with active converter for $\mu \rightarrow e \gamma$ new experiments.
- Performance measured with LYSO with different sizes
 - Much smaller # of p.e. -> need investigation
 - Best time resolution with 3x5x50
 - Worse time resolution for thinner and longer samples probably due to smaller # of pe and position dependence

Prospects

 More efficient and detailed study in beam test including other sizes and types of LYSO