

Core-to-Core Program

MEG II 実験2021年データを用いた 液体キセノンガンマ線検出器の性能 および測定量の系統誤差の評価

山本健介 (東大理)

他MEG IIコラボレーション

2023年9月16日(土)-19日(火)

日本物理学会第78回年次大会

18pRA34-7

Outline

- Introduction
 - $\mu \rightarrow e\gamma$
 - MEG II experiment
- 2021 γ analysis
 - E_{γ} scale calibration
 - E_{γ} PDFs estimation for likelihood analysis
 - Systematic uncertainties
- Conclusion

Motivation of $\mu \rightarrow e\gamma$

- Charged Lepton Flavour Violation (cLFV)
 - Never observed
 - Strongly suppressed in SM + ν osc. $(\mathcal{B}(\mu \rightarrow e\gamma) \sim 10^{-54})$
 - Measurable branching ratio predicted by new physics $(\mathcal{B}(\mu \rightarrow e\gamma) \sim 10^{-11} - 10^{-14})$
 - SUSY-seesaw, SUSY-GUT, etc.

• $\mu \rightarrow e\gamma$: Good probe of cLFV

- Current limit: 4.2×10^{-13} (90% C.L.) by MEG
- Target sensitivity of MEG II: 6×10^{-14}

$\mu \rightarrow e \gamma$ signal and background

• Key: Precise measurement of e^+ & γ to discriminate signal & BG

MEG II apparatus

Coordinate systems

Today's topics: 2021 γ analysis finalisation

- The first physics dataset collected for 1.5 months in 2021
 - Beam rate: 2,3,4,5 × $10^7 \ \mu/s$
 - Calibration datasets also collected
 - 55 MeV γ from $\pi^0 \rightarrow \gamma \gamma$
 - 17.6 MeV γ from $^{7}\text{Li}(p,\gamma)^{8}\text{Be}$ reaction
- LXe performance evaluated so far
- E_{γ} scale non-uniformity found
- Today's topics: γ analysis finalisation
 - E_{γ} calibration update
 - E_{γ} PDFs for likelihood analysis
 - Systematic uncertainties

E_{γ} PDFs & uncertainties

• Likelihood function to estimate $N_{
m sig}$

 $\mathcal{L}(N_{\text{sig}}, N_{\text{acc}}, N_{\text{RMD}}) = (\text{external constraint terms}) \times \frac{e^{-(N_{\text{sig}} + N_{\text{acc}} + N_{\text{RMD}})}}{N_{\text{obs}}!} \prod_{\text{dataset}} (N_{\text{sig}} \cdot S(x) + N_{\text{acc}} \cdot A(x) + N_{\text{RMD}} \cdot R(x))$

- Fiducial volume segmented by v, w to incorporate E_{γ} response difference
 - Physics model-independent search for $\mu
 ightarrow e \gamma$
 - Polarisation $\rightarrow z(u)$ independent

BG γ further study

Previous study

This work

Calibration dataset

55 MeV γ

BG γ further study

Previous study This work Calibration 55 MeV γ 55 MeV γ + 17.6 MeV γ + BG γ dataset **BG Fit** 4e7: w < 2 Normalized events / (0.20 MeV) Events / (0.30 MeV) 40 cm < v < 60 cm 40 cm < v < 60 cm 20 cm < v < 40 cm20 cm < v < 40 cm0 cm < v < 20 cm**10**⁻¹ **10**⁻¹ 0 cm < v < 20 cm 10^{-2} 10^{-2} 10^{-3} 10^{-3} 10^{-4} 0.045 0.05 0.055 0.06 0.045 0.05 0.055 0.06 0.04 E_v [GeV] E_{γ} (GeV) Normalised in [50 MeV, 58 MeV] Normalised in [48 MeV, 58 MeV]

$|E_{\gamma}|$ scale uniformity calibration

Previous study

This work

E_{γ} scale uncertainty

Segment indices w < 2w > 2

Uncertainty	
History	0.3%
Uniformity	0.2% on average
Linearity	0.1%
Total	0.4%

U

Resolution estimation

- Resolution in signal PDF consists
 - I. Resolution for 55 MeV γ
 - 2. Smearing by non-uniformity for u
 - Integrated out for *u*
 - 0.1-0.7% smearing

Integrated E_{γ} spectrum

³⁵ ³⁰ ²⁵ ²⁰ ³⁰ ³⁰ ²⁵ ²⁰

- MEG II searches for $\mu \rightarrow 04 e^{\gamma 0.0}$ with target sensitivity of 6×010^{-14} 0.04
 - Physics data taking started in 2024
- 2021 γ analysis finalised
 - E_{γ} uniformity calibrated
 - Scale uncertainty: 0.4700
 - BG PDF parametrise
 - Signal PDF extracted \mathfrak{B} ased on 55 MeV γ
 - Aim at narrower band in 202223 nalysis E_e [GeV]

15

10

5

4500

• $\mu \rightarrow e\gamma$ search analysis reported in next talk

15

10

5

2

1

Backup

Background γ

- Background γ source: RMD & AIF •
 - RMD/AIF = 65/35 for γ with >48 MeV
- <65% of BG- γ can be suppressed by RDC •

RMD

MEG

MEG II

0

AIF

65%

1.5

Reduction of AIF that

light drift-chamber i

4.5

35%

3.0

Depending on detection efficiency

Radiative Muon Decay

 $ar{
u_{\mu}}$

 e^+

µ₽

 ν_e

Run 2021

BG E_{γ} PDF

- BG PDF
 - Parametrised E_{γ} spectrum in $t_{e\gamma}$ sideband
 - Segmented by *v*, *w*
 - For each μ beam intensity
- PDF uncertainty comes from fit error

18 Sept. 2023 Kensuke Yamar

Signal E_{γ} PDF

- Signal PDF: based on 55 MeV γ
 - Double exponential+Gaussian function
 - Take into account
 - Difference in event distribution
 - Integration for *u* ٠
 - → Normalised E_{γ} spectra extracted with u, v, wsegmentation
 - \rightarrow Integrate out for *u* with randomised energy scale

(cm)

2

60

40

20

0

-20

-40

-60

-80

JPS 2023 Annual Meeting

1.2

Signal E_{γ} PDF

- The procedure repeated 1000 times
- PDF parameters and uncertainty estimated
 - Worse resolution due to non-uniformity can be incorporated

