

MEG II 実験 DLC-RPC の 放射線耐性と動作安定性の研究

神戸大理 高橋 真斗

家城 佳^A, 大谷 航^A, 大矢 淳史^B, 越智 敦彦, 恩田 理奈^B, 鈴木 大夢, 潘 晟^A, 山本 健介^B, 李 維遠^B, 他 MEG II コラボレーション (神戸大理, 東大素セ^A, 東大理^B)

日本物理学会第78回年次大会(2023年)

Outline

Introduction

- MEG II experiment and Radiative Decay Counter
- Upstream RDC and RPC using Diamond-Like Carbon electrodes
- Requirement of radiation hardness for DLC-RPC
- Previous aging tests

The aging test of DLC-RPC

- Irradiation facility and test setup
- Status of long-term irradiation
- Aging effects

Summary and Prospects

MEG II experiment and RDC

日本物理学会第78回年次大会(2023)-17pRA81-1-Masato Takahashi

Requirements for upstream RDC

- Upstream RDC need to detect positrons from RMD in high-rate and low-momentum muon beam (5.7 × 10⁷ μ/s) (28 MeV/c)
 - 1. Material budget:
 - 2. Rate capability:
 - 3. Radiation hardness:
 - 4. Detection efficiency:
 - 5. Time resolution:
 - 6. Detector size:

- < 0.1% of radiation length
- 2.3 MHz/cm^2
- > 30 weeks operation
- > 90% for MIP e^+
- < 1 ns
- 20 cm diameter

Development of RPC using Diamond-Like Carbon electrodes

Features of DLC-RPC

- Low mass by sputtered DLC on polyimide
- Rate capability improved by low DLC resistivity
- Spacers formed by photolithography technology

Requirements of radiation hardness

- Continuous operation during the physics run in the MEG II experiment
 - Physics run period : 30 weeks/year
 - Rate of muon beam at the center: 2.3 MHz/cm²
 - Average avalanche charge of muon: 3 pC
 - \rightarrow ~125 C/cm² equivalent irradiation dose
- Carried out the aging tests to evaluate the radiation hardness of DLC-RPC

DLC-RPC irradiation campaign in 2022

> Aging tests using fast neutron and *X*-ray in 2022

- Total irradiation dose
 - For neutron: $\sim 165 \text{ mC/cm}^2$
 - For *X*-ray: ~ 8.2 C/cm²
- Results
 - Fluorine deposited on DLC electrodes
 - No change in DLC-RPC performance

17-Sep-23

日本物理学会第78回年次大会(2023)-17pRA81-1-Masato Takahashi

DLC-RPC irradiation campaign in 2023

- The aging test using X-ray carried out again in 2023
 - Aging tests 2022 obtained less irradiation than expected
 Further irradiation required
- ➤ Test period: 2023/8/17 9/11

Today's topics

- The results of DLC-RPC aging test using X-ray
 - Reported preliminary results in this talk (<u>17pR81-1</u>)
- Development for ionization chamber for X-ray monitoring detector
 - Hiromu will report on next talk (<u>17pR82-2</u>)
 - For more detailed X-ray intensity studies

X-ray irradiation test

> X-ray generator at KEK Platform-C

Also using in the aging test in 2022

Properties

- Target: Cu (X-ray with 8 keV)
 - With monochromator
- Maximum output: 1.8 kW
 - Tube voltage: 60 kV (50 kV in this test)
 - Tube current: 30 mA

日本物理学会第78回年次大会 (2023) - 17pRA81-1 - Masato Takahashi

Setup of tests

Freon (R134a)/iC4H10/SF6 = (94/5/1) %

Front of the chamber

Actually irradiated at close range

Profile of *X***-ray beam**

Measurement by ionization chamber with Pb collimator (see next talk)

日本物理学会第78回年次大会 (2023) - 17pRA81-1 - Masato Takahashi

Status of DLC-RPC during irradiation

Shaded period: not irradiated due to discharge problems

日本物理学会第78回年次大会(2023)-17pRA81-1-Masato Takahashi

DLC-RPC current transition

DLC-RPC HV current decreased during irradiation

Different from the ionization chamber HV current change

 → Changes in DLC-RPC performance

DLC-RPC HV current [µA]

No recovery with gas flow or HV off
 Cleaning electrodes recovers current
 → Effects of some deposition

日本物理学会第78回年次大会(2023)-17pRA81-1-Masato Takahashi

Electrodes surface condition

Fluorine deposition to DLC

Using X-ray photoelectron spectroscopy

Discoloration of DLC due to irradiation

- Increased in resistivity of DLC (~ 60 M Ω /sq. \rightarrow ~ 100 M Ω /sq.)
 - Affects rate capability of DLC-RPC
- Easy peeling of DLC

Summary

> DLC-RPC is under development for MEG II US-RDC

- The low-momentum and high-intensity muon beam passage
 Several stringent requirements are imposed
- Expected irradiation dose is ~125 C/cm²

> Additional aging test of DLC-RPC was carried out

- Using *X*-ray generator at KEK Platform-C
- Total irradiation dose: ~ 54 C/cm²

> Aging effects

- Decrease in DLC-RPC HV current
- Defects of DLC electrodes

Prospects

- Investigation of currently observed damage and changes in behavior of DLC-RPC
- Estimated aging effects in MEG II environment
 - Irradiation dose in this test: $\sim 54 \ C/cm^2$
 - Expected in MEG II: $\sim 125 \ C/cm^2$

DLC-RPC HV current [µA]

日本物理学会第78回年次大会(2023)-17pRA81-1-Masato Takahashi

Acknowledgements

- This work was partially supported by
 - The KEK Detector R&D Platform
 - Grant-in-Aid for Scientific Research (S)
 Grant Number JP21H04991

Fluorine deposition

- Fluorine source is operating gas of DLC-RPC
 - DLC-RPC gas: Freon (R134a/C2H2F4) / SF6 / i-C4H10
 - SF6 generates fluorine during avalanche process
 - $SF_6 + e^- \rightarrow SF_6^{-*}$, $SF_6^{-*} \rightarrow SF_5^- + F$

Electrode

17-Sep-23

日本物理学会第78回年次大会 (2023) - 17pRA81-1 - Masato Takahashi

Pulse height distribution for X-ray

DLC-RPC HV scan at minimum X-ray intensity

X-ray intensity scan at DLC-RPC WP

Environment - pressure

\succ Long-term period: 8/24 – 9/5

Pressure [hPa]

Gas flow study

> DLC-RPC operated in high-flow rate and low-flow rate

- High-flow rate (~50 ccm) / low-flow rate (~25 ccm)
- Gas mixture did not change

DLC-RPC HV current [µA]

Hit rate vs. DLC-RPC HV current

17-Sep-23

日本物理学会第78回年次大会 (2023) - 17pRA81-1 - Masato Takahashi

e^+ distribution from RMD

Aging test at KEK 2022

チェンバー内部のセットアップ

- ▶ 8.2 C/cm² 相当の照射量
- ▶ 放電の問題で動作電圧は落としている ・ WP: 2.8 kV → 2.7 kV
- > X線照射時間は非常に短い

Space charge effect

> Avalanche saturates at gas gain of 10^{7-8}

DLC sputtering

Sputtering method

- 1. Inert gas (mainly Ar) is added in a vacuum
- 2. Provides a negative charge to a deposition material
 →Ionising gas atoms by glow discharge
- 3. Gas ions collide with target at high velosity
- 4. Tapped target constituent particles adhere to and are deposited on the substrate surface

→Forms thin films

Photoresist

17-Sep-23

日本物理学会第78回年次大会 (2023) - 17pRA81-1 - Masato Takahashi