

大矢 淳史, 他MEG IIコラボレーション 2023年日本物理学会年次大会

Some important details are omitted from this presentation. Also see cited presentations in the past JPS for details.

<u>Outline</u>

3

Introduction

- Updates since last JPS
- Analysis
- Summary and prospect

Motivation and principle of $\mu \rightarrow e\gamma$ search

 180°

- $\mu \rightarrow e\gamma$ search at MEG II
 - CLFV decay, forbidden in SM
 - Target sensitivity: $Br(\mu \rightarrow e\gamma) \sim 6 \times 10^{-14}$ \rightarrow Can probe O(10 TeV) physics
- Search strategy
 - Signal identified by kinematics
 - Statistics: $N_{sig} \propto R_{\mu} \cdot T \cdot Br(\mu \rightarrow e\gamma) \cdot \epsilon$
 - Main BG: Accidental coincidence of BG-e & BG- γ
 - $N_{BG} \propto R_{\mu}^2 \cdot T \cdot \delta E_e \cdot \delta E_{\gamma}^2 \cdot \delta \Theta^2 \cdot \delta T$ \rightarrow Use of DC beam @PSI
 - ightarrow High resolution measurement
 - Second BG: Radiative decay with small energy $\bar{\nu}\nu$
 - $\times 0.1$ compared to the # of accidental

Kinematics	Signal	BG
$e\gamma$ time difference	Same time	No correlation
$e\gamma$ direction	Opposite	No correlation
E _e	52.8 MeV	< 52.8 MeV
Eγ	52.8 MeV	< 52.8 MeV

MEG II apparatus

•

.

Coordinate definition

Z-axis in downstream

 θ, ϕ : polar coordinate

Liquid xenon photon detector

(LXe)

Pixelated timing counter (pTC)

Muon stopping target

X-axis in opposite of LXe

- Muon stopped on target
- Positron detection with magnet + DCH + pTC
- Gamma detection with LXe detector
 - BG- γ tagging with RDC detector

Data samples

- 7 weeks of DAQ in 2021
- Blinded box
 - Time coincidence within 1 ns
 - 48 MeV $< E_{\gamma} <$ 58 MeV
- Backgrounds in data
 - Accidental coincidence (Major)
 - Study in the timing sideband region
 - Radiative decay (Very few events)
 - Study in the energy sideband region (Peak in the right plot)

<u>Outline</u>

- Introduction
- Updates since last JPS
- Analysis
- Summary and prospect

Update since last meeting

- 1. Improved efficiency in positron track reconstruction
 - Introduced machine learning method in hit reconstruction
 - Details presented in 8aA421-2 (2022 autumn)
 - Improved tracking efficiency by 15 20%

Update since last meeting

- 2. Finalized alignment
 - Target deformation is considered in tracking
 - Bowing of up to 1 mm
 - Updated target hole alignment
 - Method discussed in
 - 23pT1-2 (2023 spring)
 - 7aA442-2 (2022 autumn)
 - Updated cosmic ray tracking
 - Used to align XEC to CDCH in z direction
 - Concluded alignment uncertainty
 - ~ 100 μm in target alignment
 - ~ 1 mm in LXe vs CDCH alignment

Update since last meeting

- 3. Finalized analysis towards unblinding
 - Finalized evaluation of systematic uncertainties
 - Gamma energy scale uncertainty (previous talk)
 - Alignment uncertainty
 - Checked analysis reliability
 - Fitting to sideband (today's talk)
 - Fitting to full detector simulation

<u>Outline</u>

- Introduction
- Updates since last JPS
- Analysis
- Summary and prospect

Statistical method of $\mu \rightarrow e\gamma$ search

12

• Likelihood analysis to estimate N_{sig}

$$L(N_{sig}, N_{Acc}, N_{RMD}) = \exp\left(-\frac{(N_{RMD} - \mu_{RMD})^2}{2\sigma_{RMD}^2}\right) \times \exp\left(-\frac{(N_{Acc} - \mu_{Acc})^2}{2\sigma_{Acc}^2}\right)$$
Additional external constraints
$$\times \frac{e^{-(N_{sig}+N_{Acc}+N_{RMD})}}{N_{obs}!} \times \prod_{dataset} \left(N_{sig} \cdot S(x) + N_{acc} \cdot A(x) + N_{RMD} \cdot R(x)\right)$$
Extend likelihood
PDFs of $E_e, E_\gamma, t_{e\gamma}$ etc.
$$\text{Feldman-Cousins method, profile likelihood ratio used for ordering:} \quad \lambda(N_{sig}) = \frac{L(\text{best fit with fixed } N_{sig})}{L(\text{full best fit})}$$

- Observables in fitting
 - $\phi_{e\gamma} \coloneqq \pi + \phi_e \phi_{\gamma}, \ \theta_{e\gamma} \coloneqq \pi \theta_e \theta_{\gamma}, \ E_{\gamma}, E_e, t_{e\gamma} \coloneqq t_{\gamma} t_e,$ RDC hit
- PDF details
 - 7aA442-2 (2022 autumn), 23pT1-2 (2023 spring), 18pRA34-7

Normalization

- Normalization: To convert N_{sig} estimation of likelihood into branching ratio
 - $Br = N_{sig}/N_{\mu}$
 - N_{μ} : The number of effectively measured muon decays
 - Two independent approaches discussed in 7aA442-2 (2022 autumn)
- Updated value including positron reconstruction improvement
 - Positron counting method
 - $(2.55 \pm 0.13) \times 10^{12}$
 - RMD event counting in energy sideband
 - $(3.1 \pm 0.3) \times 10^{12}$
 - Combined result: $(2.64 \pm 0.12) \times 10^{12}$

Systematic uncertainties

- Signal PDF uncertainty
 - Shown in the right
 - Large contribution from
 - Alignment (angle PDF)
 - E_{γ} calibration
- Normalization
 - 5% uncertainty

Sensitivity & fitting to BG-only data

- Sensitivity
 - Definition: Median of upper limit in zero signal toy experiments
 - $Br(\mu \rightarrow e\gamma) < 8.4 \times 10^{-13}$ w/o systematics
 - $Br(\mu \rightarrow e\gamma) < 8.8 \times 10^{-13}$ w/ systematics
- Result will be reported soon
 - "PSI special seminar" in Oct/20
- Today's talk: Sideband analysis
 - Analysis for timing sideband data
 - Four sidebands are analyzed
 - $-3 < t_{e\gamma} < -2$ ns
 - $-2 < t_{e\gamma} < -1$ ns
 - $1 < t_{e\gamma} < 2$ ns
 - $2 < t_{e\gamma} < 3$ ns

Fitting to sideband: Example1

- Fit to sideband as a cross-check before unblinding
 - Only accidental events identical to those in blinded region ightarrow Checks about BG PDF
 - Below: sideband 1 ns 2 ns

Fitting in another sideband

- Consistent with Br = 0
- Confidence interval
 - Br < 6.9×10^{-13}

Event distribution in sideband: Example1

- Event distribution
 - Signal likelihood ranked by PDF ratio: S(x)/B(x)

High rank 5 events

(Some of them dropped by cuts)

Fitting to sideband: Example2

- Fit to sideband as a cross-check before unblinding
 - Only accidental events identical to those in blinded region ightarrow Checks about BG PDF
 - Below: sideband 2 ns 3 ns

Fitting in another sideband

- Observed 3 signal-like events
- But within statistical fluctuation
 - 5% probability expected
- Confidence interval (90% C.L.)
 - $1.6 \times 10^{-13} < Br < 2.6 \times 10^{-12}$

Event distribution in sideband: Example2

- Event distribution
 - Signal likelihood ranked by PDF ratio: S(x)/B(x)

High rank 5 events

(Some of them dropped by cuts)

Summary and prospect

- 2021 analysis
 - Sensitivity to $Br(\mu \rightarrow e\gamma)$: 8.8×10^{-13}
 - Will be published soon
 - "PSI special seminar" in Oct/20
- 2022 analysis
 - Calibration works in progress
- 2023 DAQ and onwards
 - 2023 data taking with good condition so far

Projected sensitivity based on 2021 performance

<u>Backup</u>

Performance comparison

	Currently achieved performance in MEG II	Performance in MEG
$ heta_e$, ϕ_e	7.7/5.6 mrad (Double turn analysis)	9.4/8.7 mrad
y_e, z_e	0.8/2 mm (Double turn analysis)	1.2/2.4 mm
E _e	90 keV for core (Michel fit)	306 keV
E_{γ}	2% (CEX resolution analysis)	2.4% (w<2 cm), 1.7% (w>2cm)
u, v, w_{γ}	2.5 mm for w < 2 cm (Collimated gamma ray data)	5 mm
$t_{e\gamma}$	$\frac{112}{\sqrt{n_{TC}}} \oplus$ 72 ps (RMD samples)	122 ps
RDC	Installed since middle of 2021 run	Not installed

MEG II apparatus for vertex & track

Reconstruction

- Positron reconstruction
 - Decay position and angle by track extrapolation to target
 - Time measured at pTC & TOF correction with track
 - Energy from track curvature & B-field

Gamma reconstruction @conversion point

- Conversion position by light distribution
- Time by combining measurements at photo sensors
- Energy by total number of scintillation photons
- Full reconstruction of kinematics @vertex
 - Gamma angle by combining with vertex reconstructed by positron spectrometer
 - Gamma time @vertex reconstructed with TOF correction

Observables in analysis

24000

22000 20000 18000

16000

14000

12000

10000

8000

6000

4000 2000

'n

- List of observables
 - $t_{e\gamma} \coloneqq t_{\gamma} t_e$
 - $\phi_{e\gamma} \coloneqq \pi + \phi_e \phi_\gamma$ Opening angle • $\theta_{e\gamma} \coloneqq \pi - \theta_e - \theta_\gamma$ decomposed into θ, ϕ
 - E_{γ}
 - E_{e}
 - RDC hit
- Conditional observables
 - Track fitting uncertainty
 - ϕ emission angle (Parameter correlation depends on ϕ)
 - Conversion depth in LXe

Signal peak in the flat BG distribution (if $N_{sig} > 0$)

With smaller uncertainty,

signal peak in E_e distribution becomes sharp

ノち

Overview of PDFs

- List of observables
 - $\phi_{e\gamma} \coloneqq \pi + \phi_e \phi_\gamma$
 - $\theta_{e\gamma} \coloneqq \pi \theta_e \theta_\gamma$
 - $E_{\gamma} \rightarrow$ Discussed in previous talk
 - *E*_e
 - $t_{e\gamma} \coloneqq t_{\gamma} t_e$

• RDC hit

BG PDF RMD PDF Full PDF

Signal PDF

Also see 1.23pT1-2 (2023 spring) 2.7aA442-2 (2022 autumn)

RMD events in energy sideband used for resolution evaluation

Kinematic endpoint smeared by resolution \rightarrow Resolution evaluated by spectrum fitting

Overview of PDFs

- List of observables
 - $\phi_{e\gamma} \coloneqq \pi + \phi_e \phi_\gamma$ $\theta_{e\gamma} \coloneqq \pi \theta_e \theta_\gamma$ Opening angle decomposed into θ, ϕ

 - $E_{\gamma} \rightarrow$ Discussed in previous talk
 - *E*_e
 - $t_{e\gamma} \coloneqq t_{\gamma} t_e$
 - RDC hit

Positron resolution by two-turn analysis Detail in

1.23pT1-2 (2023 spring) 2.7aA442-2 (2022 autumn)

Gamma resolution by DAQ w/ collimator Detail in 15aSE-9 (2020 autumn)

Normalization

Normalization with two independent methods

Michel positron counting method

- Use of pre-scaled positron only trigger
- Automatically include
 - Positron efficiency
 - Beam intensity
- Need precise knowledge of
 - Selection efficiency
 - Trigger efficiency
 - Gamma efficiency
- $(2.55 \pm 0.13) \times 10^{12}$

5 % uncertainty

RMD counting method

- Use of RMD in energy sideband region
- Automatically include both
 - Positron efficiency
 - Gamma efficiency
- Need to correct
 - Efficiency vs energy dependence
 - Impact of detector resolution
- $(3.1 \pm 0.3) \times 10^{12}$
 - Large uncertainty in gamma-ray response convolution

 \rightarrow Combined result: $(2.64 \pm 0.12) \times 10^{12}$

Alignment (angle PDF uncertainty)

- Mis-alignment shifts signal PDF
 - No physical calibration source
 - Precise alignment is a must
 - Largest systematics source in MEG I
- Important parameters
 - 1. DCH LXe relative alignment in 3D
 - 2. DCH target alignment in X coordinate

Angle PDF

- Non-flat distribution
 - Trigger requires direction match between positron & gamma
- Directly taken from sideband
- Signal
 - Correlation is known b/w δE_e , $\delta \theta_e \& \delta \phi_e$
 - Correlation parameter estimation in progress
 - By double turn analysis combined with studies on MC samples

Positron momentum PDF

>12000

210000

8000

6000

4000

- PDF evaluation from background (Michel) fitting
 - Can calibrate energy scale and resolution
 - Fit function: (Theory×Eff(E_e)) \otimes Resolution of E_e
 - $Eff(E_e): E_e$ dependence of efficiency (Modeled with erf)
 - Tracks categorized on E_e uncertainty in track fitting
 - Clear change in resolution and $Eff(E_e)$
- Uncertainty
 - Energy scale: 10 20 keV
 - Resolution: up to ~ 10 %
 - Fit resolution well agrees with tracking uncertainty
 - \rightarrow O(0.1 %) impact to $\mu \rightarrow e\gamma$ sensitivity

