レプトンフレーバーを破るミュー粒 子稀崩壊探索実験MEG II 最初の結果

岩本敏幸

2023年9月18日

東京大学 素粒子物理国際研究センター

他MEG II コラボレーション

日本物理学会2023年第78回年次大会 東北大学

レプトンフレーバーを破るミュー粒 子稀崩壊探索実験MEG II 最初の結果 にむけて

岩本敏幸

2023年9月18日

素粒子物理国際研究センター

他MEG II コラボレーション

日本物理学会2023年第78回年次大会 東北大学

Charged lepton flavor violation

- There are three generations (flavors), but the reason remains a mystery
- Flavor transition in Quark and in neutrino has played a decisive role in the development of particle physics •
- No observation yet for the charged lepton flavor transition

masses of matter particles

Standard model (with ν mass) vs New physics

4

 $\mathrm{BR}(\mu \to e\gamma) \simeq \frac{\Gamma(\mu \to e\gamma)}{\Gamma(\mu \to e\nu\bar{\nu})} = \frac{3\alpha}{32\pi} \left| \sum_{k=1,3} \frac{U_{\mu k} U_{ek}^* m_{\nu_k}^2}{M_W^2} \right|$

$\sim 10^{-54}$ Neutrino is too light

New particles from SUSY in the loop can enhance the branching ratio

SUSY-GUT / SUSY-seesaw

Evidence of $\mu^+ \rightarrow e^+ \gamma$ = **Evidence of new physics**

Grand unification and early Universe

天体観測

Current best limit for $\mu \rightarrow e\gamma$

MEG experiment final result in 2016

- 7.5×10^{14} stopped μ on target
- $Br(\mu \to e\gamma) < 4.2 \times 10^{-13} @90\%$ CL
 - Sensitivity : 5.3×10^{-13}
- Sensitivity is limited by detector resolutions

Already some regions from theoretical expectation excluded

CLFV with other indications

$\mu^+ \rightarrow e^+\gamma$ signal and backgrounds

e detector

LXe inside

rde⁻ MEG II proposal 2013 Detector R&D 2012-2015 Construction in 2015-2020 Commissioning and physics run 2021-

WaveDREAM waveform digitizer

Detector performance before physics run

	Pe	θe	Eγ	Χγ	Teγ	E e	ε γ			
MEG	380keV/c	9.4mrad	2.4%/1.7%	5mm	122ps	30%	63%			
MEG II proposal	130keV/c	5.3mrad	1.1%/1.0%	2.4mm	84ps	70%	69%			
MEG II updated (2021)	100keV/c	6.7mrad	1.7%/1.7%	2.4mm	70ps	65%	69%			
Symmetry 2021, 13(9), ⁻										
• The performance was estimated before starting the physics run in 2021.										

- Γ
- ullet

The detector performance is carefully investigated with the calibration data and physics data during the physics run period to be used for the $\mu \rightarrow e\gamma$ search

Analysis Highlights

Alignment of CDCH

Alignment becomes important once resolutions are improved •

- CDCH wire alignment (position, inclination, sag)
- Michel positron tracks for an iterative adjustment •

Wire sag hXErrorZWire2D401 hXErrorZWire2D401 residual [µm residual × Z [cm] Z [cm]

Alignment of target

b

Largest Systematic uncertainty in MEG

Sensitivity of 13% degraded by target position and planarity

Target displacement by 500µm corresponds to 4mrad deviation in ϕ_e

6 holes into the target Check deviations from reconstructed track distrib.

Pattern of white dots Imaged by two digital CMOS photo cameras

position and deformation the precision $\sim 100 \mu m$

L 270mm, H 66mm Scinti. material Thickness 174±20 µm Angle 75° to z

G. Cavoto et al., Rev. Sci. Instrum. 92(2021) 4, 043707

0 0 0 0 0 0

Alignment between LXe and CDCH

Tracks are extrapolated to the inner face. XEC algorithm tuned for gamma from target

Assumed direction In the reconstruction

Cosmic track

- No calibration source to check the LXe and CDCH alignment
- Extremely important to directly check the relative alignment
- Cosmic rays are used

New algorithms

- Standard CDCH hit reconstruction
 - with the time of the first electrons reaching wires •
 - large bias when the track passes close to the wire by • statistical fluctuations of the primary ionization
- Innovative machine-learning approach
 - extracting an unbiased CDCH hit position
 - CDCH waveforms input into a neural network •
 - output of distance of closest approach (DOCA) of the track •
 - All ionization clusters are used •
- Strong reduction of the hit reconstruction biases and significant improvement of the single-hit resolution observed
 - $\sigma_{\text{DOCA}} = 150 160 \,\mu\text{m}$ (improved by 5%)

Performance evaluation for CDCH

double-turn method

LXe reconstruction

- Calibration, monitoring, and performance evaluation
 - LED, a, cosmic, Li(p,17.6MeV γ)Be, 55MeV γ from π^0 , BG spectrum
 - LXe light yield, PMT gain and MPPC PDE decrease, energy nonuniformity, time dependence

 E_{γ} scale non-uniformity observed with different energy

 $\mu^+ \rightarrow e^+ \gamma \, \text{search}$

- Blind analysis
 - Time coincidence within 1ns, 48MeV<Eγ<58MeV •
- Likelihood analysis to estimate N_{sig} •
 - Confidence interval from Feldman-Cousins method •
- Sideband to extract PDFs, analysis check •

$$\mathcal{L}(N_{ ext{sig}}, N_{ ext{RMD}}, N_{ ext{ACC}}) := rac{e^{-(N_{ ext{sig}}+N_{ ext{RM}})}}{N_{ ext{obs}}}}{N_{ ext{obs}}}$$

 $S(\vec{x}_i) + N_{\text{RMD}}R(\vec{x}_i) + N_{\text{ACC}}A(\vec{x}_i)),$

22

- measurements
- data-driven)

Performance summary

	Pe	θe	Eγ	Χγ	Teγ	8 e	εγ
MEG	380keV/c	9.4mrad	2.4%/1.7%	5mm	122ps	30%	63%
MEG II proposal	130keV/c	5.3mrad	1.1%/1.0%	2.4mm	84ps	70%	69%
MEG II updated (2021)	100keV/c	6.7mrad	1.7%/1.7%	2.4mm	70ps	65%	69%
MEG II current	89keV/c	7.1mrad	2.0%/1.8%	2.5mm	78ps	65%	63%

• 2021 data analysis will be done with the performance shown in this table A paper dedicated to the operation and the performance of the MEG II detector will be published soon.

Sideband fit result

Event distribution in sideband example

5 high rank events in signal likelihood ratio S(x)/B(x)

26

2021 Data Sensitivity

- Branching ratio
 - Br = N_{sig}/N_{μ}
 - N_{μ} : the number of effectively measured muon decays
- N_{μ} in 2021
 - Michel positron counting method
 - $(2.55\pm0.13)\times10^{12}$
 - RMD counting method
 - $(3.1\pm0.3)\times10^{12}$
 - Combined : $(2.64 \pm 0.12) \times 10^{12}$
- Sensitivity of 2021 data
 - Median 90% C.L. upper limit for BG-only hypothesis
 - 8.8×10⁻¹³
 - Systematics : 3–4% contribution
- Result will be published in a PSI Special Seminar on 20th October 2023. Stay tuned.

MEG II prospects

- MEG II experiment will accumulate the physics data several years at least until 2027
 - The PSI accelerator beam line has an upgrade plan (HiMB) to have the beam intensity of 10¹⁰ µ/s starting from 2027
 - The PiE5 beamline will be shared with Mu3e experiment
- The sensitivity of the MEG II experiment will reach $Br(\mu \rightarrow e\gamma)$ ~(5–6)×10⁻¹⁴ @90%C.L. by then
- In parallel, 2022 analysis is ongoing. The results will be published next year which will have better sensitivity than MEG

Beryllium anomaly

29

• Hint for a neutral, 17MeV boson: X17 (ATOMKI collaboration)

 7 Li

 p^+ —

- Observed in ⁷Li(p, e⁺e⁻)⁸Be reaction
- Excess consistent with light boson mass = 16.95 MeV/c^2
- Branching ratio $(X17/\gamma) =$ 6×10⁻⁶

The MEG II CW accelerator and its beamline

- MEG II has a dedicated CW accelerator for 17.6MeV γ for LXe calibration purpose
- This can be used for X17boson searches

- Data were taken in 2023 during PSI accelerator shutdown period
- Results will be published soon

Future prospects (1)

- New experiment for $\mu \rightarrow e\gamma$ search •
 - HiMB project at PSI (~ $10^{10}\mu/s$) (2027 2028) •
 - High resolution, high rate capability for the detectors •
- Photon pair spectrometer with active converter •
 - Better resolutions, angle measurements
- Silicon positron spectrometer similar with Mu3e •
- Separate active targets •

基盤S (代表 大谷航) 世界最高感度のミュー粒子稀崩 壊探索で迫る素粒子の大統一

• PIONEER experiment

unitarity with rare pion decays

Conclusion

- soon.
- The sensitivity of 2022 data will be $\sim 2 \times 10^{-13}$ well beyond the MEG
- Our target sensitivity (6×10^{-14}) will be reached in several years.

 The MEG II experiment has started physics run in 2021, and the results based on 2021 data with the sensitivity of 8.8×10⁻¹³ will be published

experiment, and the publication for the 2022 data is aimed at next year.

- CHRISP Swiss Research InfraStructure for Particle physics at Paul Scherrer Institute in Switzerland •
- World most intense DC muon beam available : > $10^8\mu$ +/s •
- High precision particle physics experiments complementary to the experiments at the highest energies at CERN's LHC
- There is an upgrade project, HIMB (High Intensity Muon Beam) project, 10¹⁰ µ/s
 - Science case workshop 6-9 April 2021
 - Conceptual Design Report by end 2021
 - Implementation during 2027/2028 during 16-months HIPA shutdown

After MEG II

- High Intensity Muon Beam project • (HiMB) at PSI
 - $10^{10} \mu$ +/s (100× improvement) •
 - CDR by end of 2021 •
 - Implementation during 2027/2028 ٠
 - Science Case workshop 6-9 April 2021 •

Future $\mu \rightarrow e\gamma$ experiment for CLFV •

- Goal: Br($\mu \rightarrow e\gamma$) ~10⁻¹⁵ •
- Discover new physics and precision ٠ measurements
- Detector R&D to make maximum use of HiMB •
- Resolution improvements •
 - Calorimeter \rightarrow converter + pair spectrometer •
- High rate tolerance ٠
 - Drift chamber \rightarrow Silicon detector
- Possible to measure $\mu \rightarrow eee$ at the ulletsame time

Future $\mu \rightarrow e\gamma$

- Positron spectrometer
 - HV-MAPS + scintillator or mRPC
 - Resolutions
 - energy 0.3%(150keV) · time 30ps · angle 6mrad ·
 detection efficiency 70%
- Gamma converter + pair spectrometer
 - Resolutions
 - energy 0.4% (200keV) · time 30ps · position
 - 0.2mm · angle 50mrad · detection eff. 60%

