# MEG II陽電子スペクトロメータにおける機械学習を活用したヒット再構成の改善

Improving hit reconstruction for MEG II positron spectrometer using machine learning technique

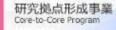




#### 内山雄祐

on behalf of MEG II collaboration

日本物理学会2022年秋季大会 令和4年9月8日





8aA421-2

# MEG II in search of $\mu^+ \rightarrow e^+ \gamma$

- □ Upgraded from MEG experiment
- An intensity frontier experiment
- To get definitive evidence for BSM





#### MEG result (2016)

$$B(\mu^+ \rightarrow e^+ \gamma) < 4.2 \times 10^{-13}$$
 @90% C.L. (while 5.3×10<sup>-13</sup> expected)

# higher intensity muon beam higher resolution everywhere higher efficiency

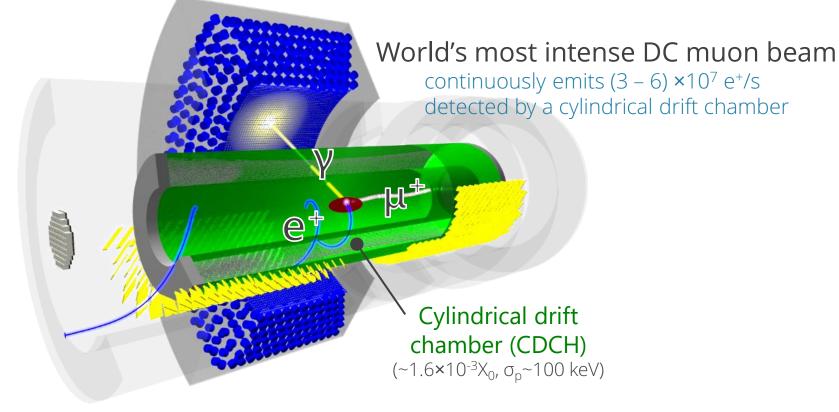
From 2021, searching for  $\mu^+ \rightarrow e^+ \gamma$  down to

$$6 \times 10^{-14}$$

(90% C.L. sensitivity)

MEGII

EPJ-C 78 (2018) 380





Detector signals are read out as waveform

by DRS4 waveform digitizer 1024 points @ 1.2 GSPS

Started physics data taking in 2021! In this study, use 2021 data.

September 7, 2022 YUSUKE UCHIYAMA

## Drift chamber: a nutshell

#### Signal formation

- 1. Charged particle generates primary ionization clusters **discretely** in gas
- 2. The ionized e<sup>-</sup>s drift to an anode wire and form avalanche near the wire

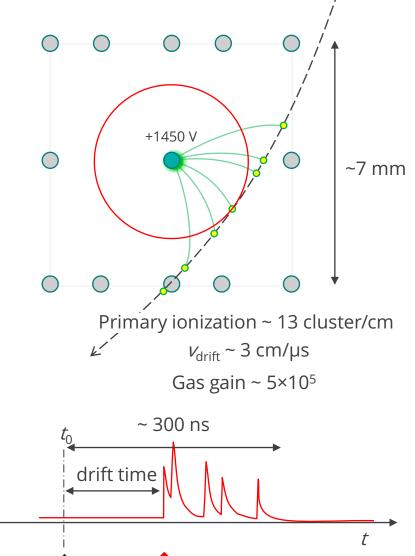
#### Reconstruction

- 1. Measure the timing of the 1st cluster
- 2. Draw a drift circle
- 3. Fit a track to the drift circles

#### MEG II CDCH: an ultra low-mass chamber

Gas:  $He:iC_4H_{10} = 90:10$ 

Wires: 20 µm W anode + 40/50 µm Al cathode 2 m long, 9 layers, 1152 readout cells in total



# Challenges

#### Detecting the 1st cluster signal is essential for the experiment

The efficiency is directly connected to the e<sup>+</sup> reconstruction efficiency, and thus, search sensitivity.

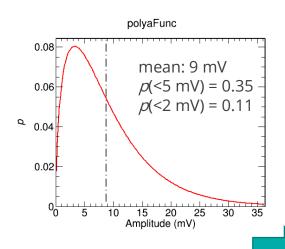
#### Two difficulties:

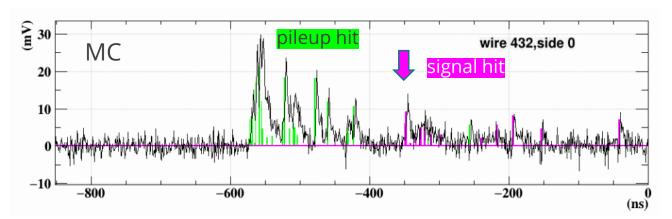
#### 1. S/N

The amplification process (gas gain) has large fluctuation obeying a Polya distribution. The 1<sup>st</sup> cluster signal can be very small.

#### 2. Pileup

Very high hit rate in MEG II: up to 1.7 MHz per cell, 35% occupancy in 250ns.





Apply ML to the complicated waveform analysis.

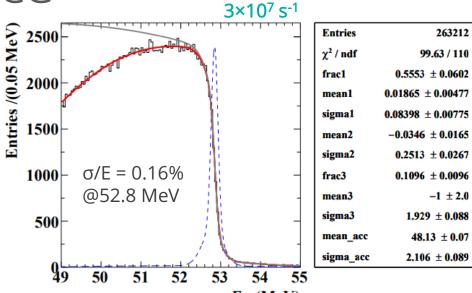
Current performance

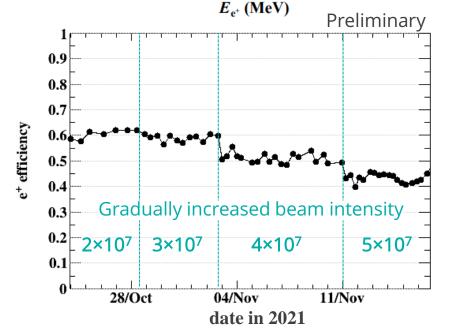
# A good momentum resolution achieved

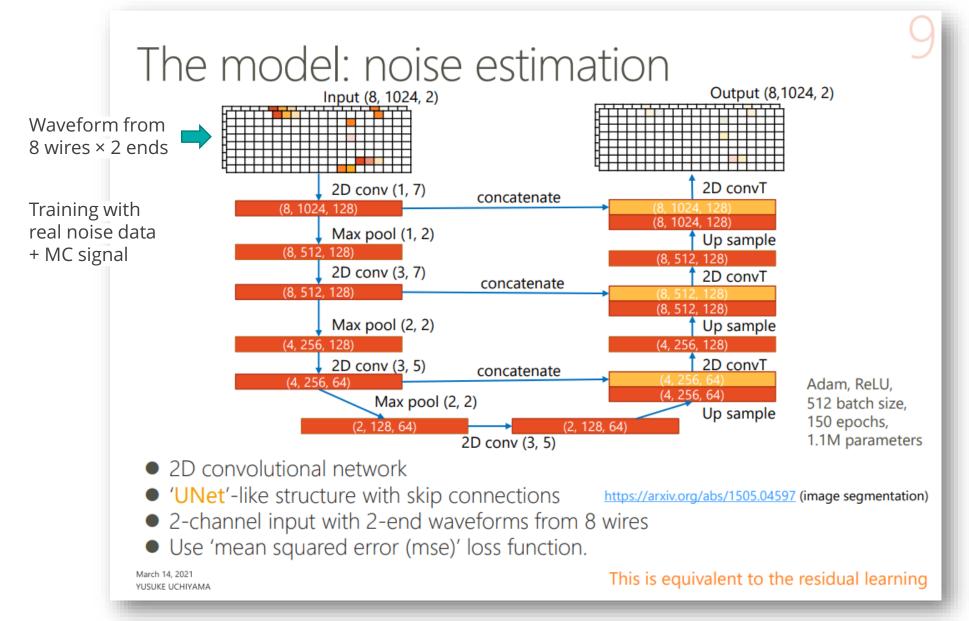
■ >3 times better than that in MEG

# Efficiency is not as good as designed

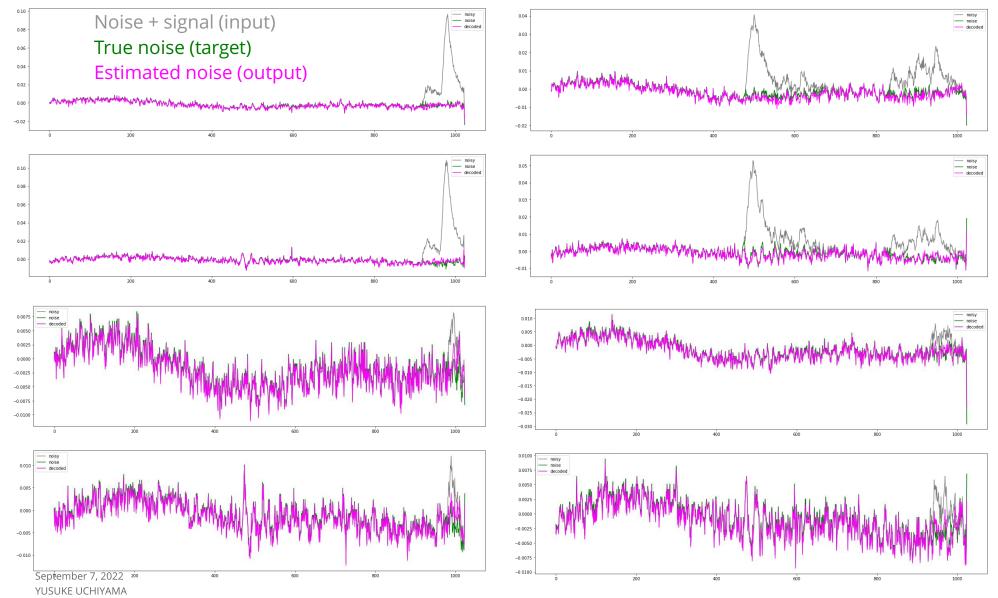
- In particular, at high beam intensity,
- nevertheless, ~2 times better than MEG
- The goal: 70%







# Noise estimation with 2D CNN autoencoder



# Implementation

#### **TRAINING**

Tensorflow 2.8 + Keras
in Python3.7
on Google Colab Pro
with Tensor Processing Unit (TPU)
convert to ONNX format

#### **INFERENCE**

ROOT based MEG II reconstruction framework

in C++17

ONNX Runtime C++ API

with CPU single thread (Xeon Gold 6138 2.0 GHz)



### High flexibility × Easy maintenance

Use one's preferred package for model building & training.

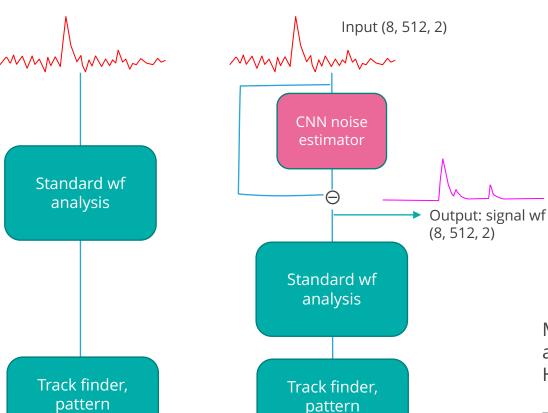
Use a common interface in C++ to use the trained model in inference/prediction.

GPU/TPU in cloud are available for training, while only CPU (single thread) is available in the MEG II resource & framework.

# Apply to 2021 data

#### Not better than the conventional analysis.

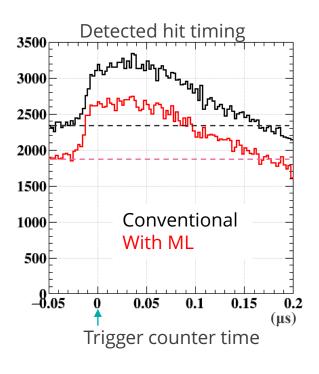
- Almost comparable performance with the best model
- but with > 10 times computation time (3.4 s/event)



recognition

recognition

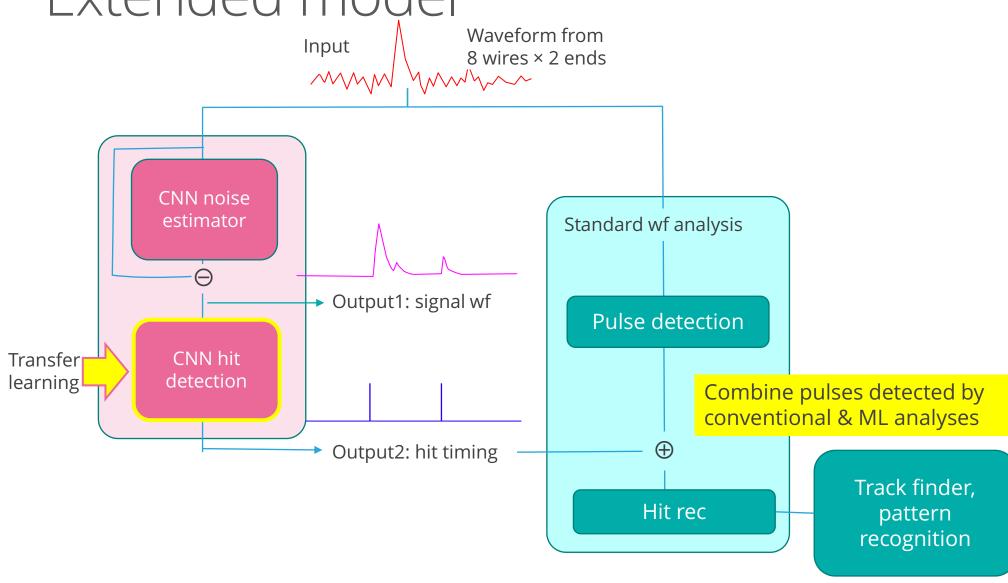
September 7, 2022 YUSUKE UCHIYAMA



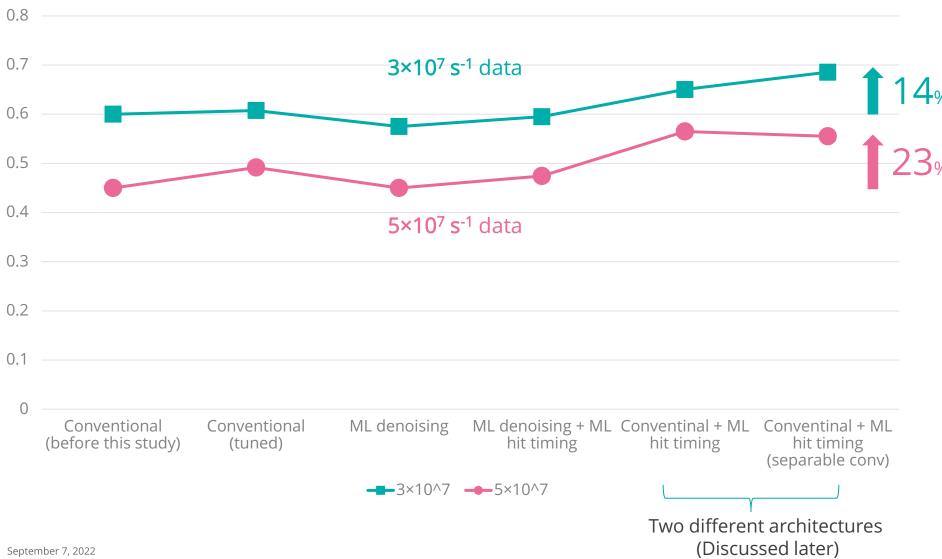
ML detects almost same number of hits associated with trigger e<sup>+</sup> with less fake hits. However, final tracking efficiency is lower.

Track finder can reject fake hits. Better to input more hits.

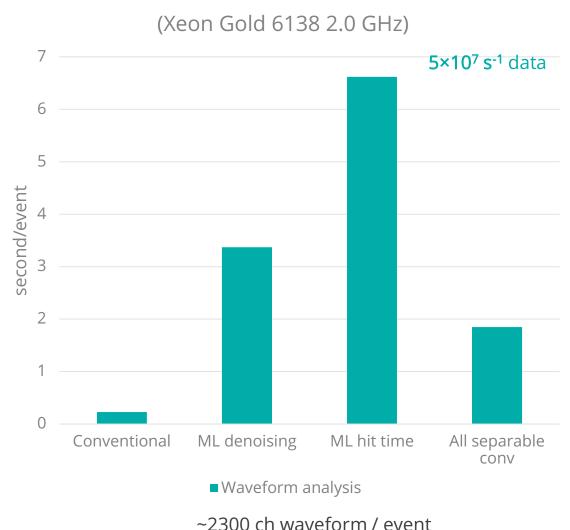
# Extended model



# Efficiency



# Computation time (ML)



#### Inference speed is an issue!

- GPU/TPU is not available in MEG II resource & framework; only CPU (single thread).
- ~30 times slower (Unfeasible!)
- Can speedup with 'separable convolution'

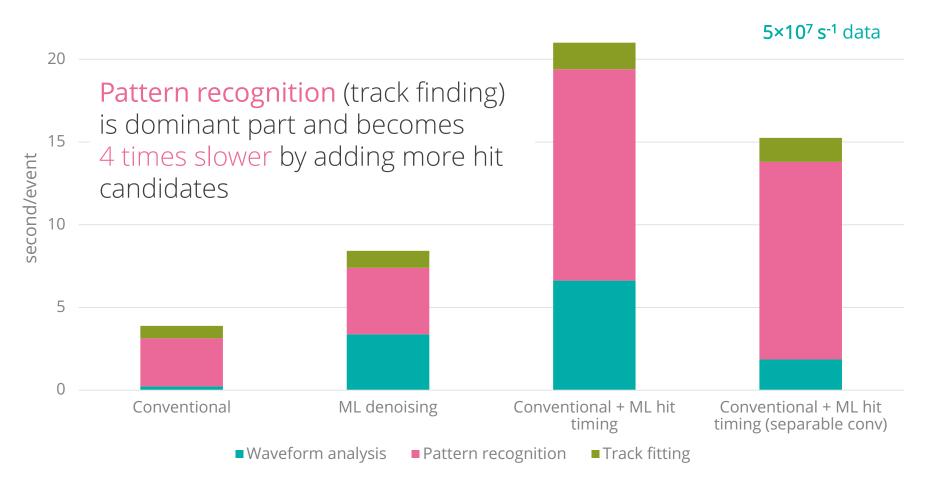
Replacing all conv-layers with separable conv speeds up by factor 3.5 with comparable performance.

Feasible!

However, more practical problem is...

# Computation time (Total)

#### second / event



# Conclusions

# Efficiency can be improved by feeding more hits to track finder

Even contaminated by fake or wrong-timing hits Track finder is clever enough to find true tracks.

ML model was extended (from denoising) to detecting hit timing and the results are added to the results from conventional waveform analysis.  $\rightarrow$  23% higher efficiency.

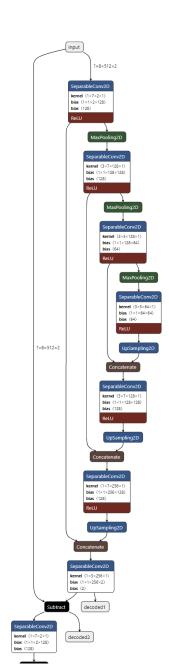
Try transformer, maybe better for hit detection.

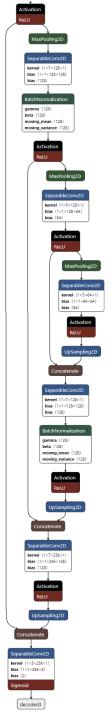
#### Significant increase in computation time is a problem

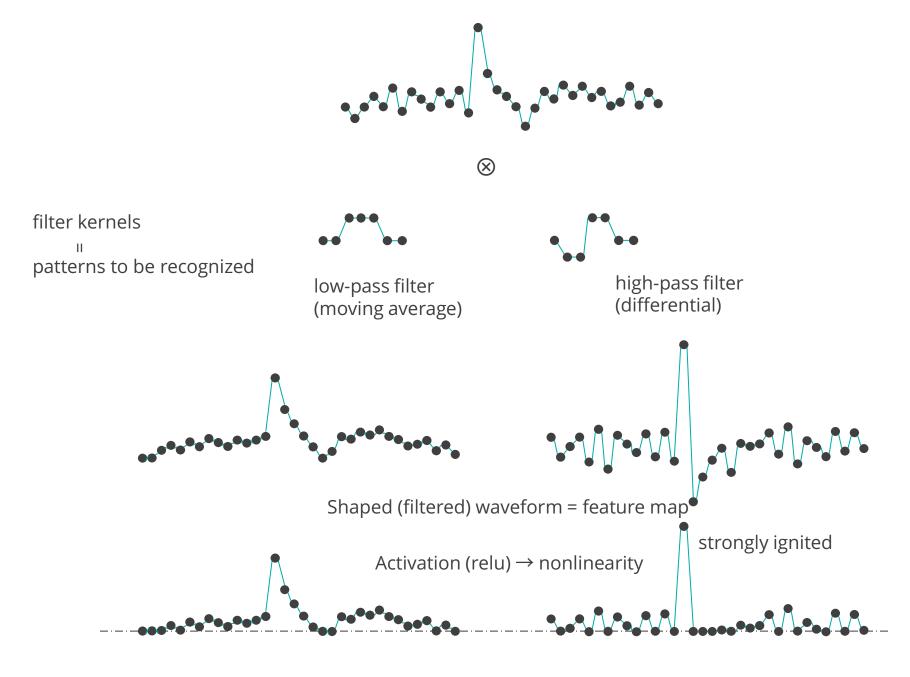
More by track finder than ML itself.

Next: developing global pattern recognition with ML to handle large number of hits within realistic computation time.

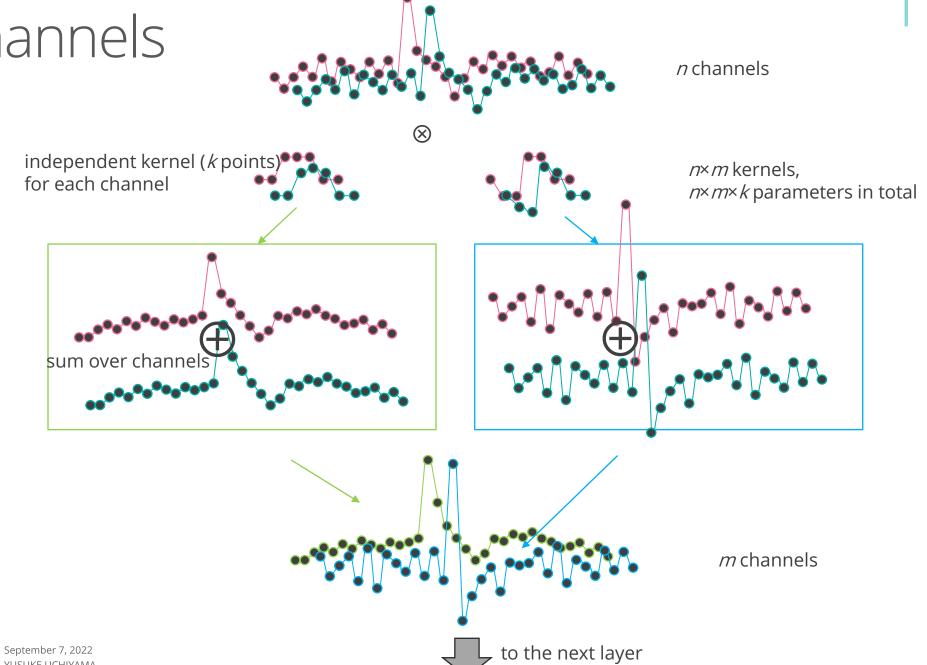
# Architecture





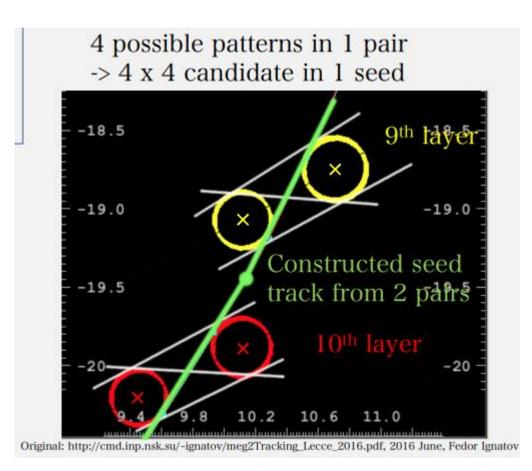


# channels



YUSUKE UCHIYAMA

### Track finder



#### Local (track following) method:

- 1. T0 from scintillation counter.
- 2. Pick up pair-hits in the same layer
- 3. Select 2 pairs in adjacent layers and test the 4 possible patterns. → A track seed.
- 4. Prolong the track seed to add hits with Kalman filter.