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MEG Il experiment

® Search for rare muon decays
to find definitive evidence for BSM

® Use world’'s most intense DC muon

beam
continuously emits 7 X107 e*/s
detected by a cylindrical drift chamber

® The detector signals are read %
out as waveform /) —C
by DRS4 waveform digitizer 7 SRR
1024 points @ 1.2 — 1.8 GSPS T

® All the detectors as well as
computing resource and analysis

EPJ-C 78 (2018) 380

‘‘‘‘‘‘‘

framework have been prepared. chamber (CDCH)
® Starting physics data taking in 2021 (~1.6 10X, 9,~100 keV)
Engineering data were taken in previous
years.

In this study, use 2020 data.
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http://link.springer.com/10.1140/epjc/s10052-018-5845-6

Dritt chamber: anutshel 6 6 o o o/

/
Signal formation /
1. Charged particle generates primary /{
lonization clusters discretely in gas O /dd O | 7mm
2. The ionized es drift to an anode wire
and form avalanche near the wire g
. /
Reconstruction o o o /df o o ¥
1. Measure the timing of the 15t cluster Pr/im’ry onization ~ 13 e cluster/cm
2. Draw a drift circle g Vi ~ 3 €M/ps
3. Fit a track to the drift circles Gas gain ~ 5x10°
ty
MEG Il CDCH: an ultra low-mass chamber N
-‘drlft time

Gas:  He:iC,H,; = 90:10
Wires: 20 um W anode

+ 40/50 um Al cathode <
2 m long, 9 layers, ~ 300 ns
1152 readout cells in total
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Challenges

® Detecting the 15t cluster signal is essential for the experiment
The efficiency is directly connected to the e* reconstruction efficiency,
and thus, search sensitivity.

® Two difficulties:
1. S/N

The amplification in avalanche process (gas gain) has large fluctuation obeying a
Polya distribution. The 15t cluster signal can be very small.

2. Pileup
Very high hit rate in MEG II: up to 1.7 MHz per cell, 35% occupancy in 250ns.
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Apply ML to the complicated waveform analysis.
As the first step, apply to noise reduction to improve S/N
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Denoising autoencoder

target  input latent output target
' space '
5 5
'noise ‘/?;’A\ [ '
® ®

encoder decoder

® Autoencoder: train network so that output = input
Latent space holds the features of signal

® Denoising autoencoder: add noise to the target for the input
More effectively learns the feature and becomes more robust
Can be used to denoise noisy data

® Apply to waveform data

Use MC signal w/o noise  + noise data (random trigger data w/o beam)
(mix events randomly in time at 7 X107 s7) (non-Gaussian non-white noise)

Tried in two directions: estimating signal or estimating noise
arch 14, 2021
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The model: signal estimation

Input (1024, 2)

Output (1024, 2)

1D conv (9) concatenate T 1D conv
(1024, 128) >
(1024, 128)
Max pool (2) Up sample
G12, 18 o (512, 128)
conv 1D conv
(512, 128) concatenate R
(512, 128)
Max pool (2) Up sample
(256, 128) (256, 128)
1D conv (9) concatenate 1D conv
Adam, RelU,
Max pool (24 conv(9) 22000 512 batch size,
Up sample h
(128, 64) (128, 64) ;ngepoc S,
o . /3k parameters
Extend the denoising autoencoder with:
® 1D convolutional network
® '|JNet'-like structure with S|<|p connections https://arxiv.org/abs/1505.04597 (image segmentation)

® /-channel input with 2-end waveforms from a wire
® Use 'mean squared logarithmic error (msle)’ loss function.

1 with T mV offset to avoid 0-division.
YUSUKE UCHIYAMA


https://arxiv.org/abs/1505.04597

Signal estimation with 1D autoencoder

Signal + noise (input)
True signal (target)
Estimated signal (output)

—— noisy
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Nolse estimation

® \Want to use other wires information together
which contains information for coherent noise.

® However, neither increasing input channels nor extending to
2D input works well.
It is difficult,to extract different signal patterns in different wires with CNN.

AV M I~

® Change the view of the data — estimate noise instead of signal.
Coherent noise changes gradually over different wires. = 2D CNN can deal with it
well.
Existence of signal masks the noise, but estimate it using other wires waveform.
Group 8 wires that connect to the same front-end cards into an input.

March 14, 2021
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Input (8, 1024,2) Output (8,1024, 2)
.
-
| 2D conv (1, 7) concatenate | 2D convT
>
(8, 1024, 128)
1 Max pool (1, 2) Up sample
(8, 512, 12) 5.7 (8, 512, 128)
conv (5, 2D convT
(8 512, 128) concatenate R
(8,512, 128)
Max pool (2, 2) Up sample
4, 256, 128) (4, 256, 128)
2D conv (3, 5) concatenate 2D convT
(4,256, 64) Adam, RelU,
Max pool (2, 2) 02> 60 512 batch size,
Up sample h
(2,128, 64) (2, 128, 64) 150 epochs,
2D conv (3, 5) 1.1M parameters

® 2D convolutional network

® 'L Net'-like structure with 5|<|p connections https://arxiv.org/abs/1505.04597 (image segmentation)
® -channel input with 2-end waveforms from 8 wires

® Use 'mean squared error (mse)’ loss function.

March 14, 2021
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https://arxiv.org/abs/1505.04597

Noise estimation with 2D CNN autoencoder

Noise + signal (input)
True noise (target)
Estimated noise (output)
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Implementation

TRAINING

Tensorflow 2.4 + Keras
in Python3.7

on Google Colab

with Tensor Processing Unit (TPU)

convert to ONNX format @ ONNX

2 )
INFERENCE
® ROOT based MEG Il reconstruction
framework
® inC++17
® ONNX Runtime C++ APl <2, ONNX
. . v RUNTIME
® with CPU single thread
(Xeon Gold 6138 2.0 GHz)
N\ J

High flexibility X Easy maintenance

Use one’s preferred package (one good at the problem under
consideration) for model building & training.

Use a common interface in C++ to use the trained model in

inference/prediction.

GPU/TPU in cloud are available for training, while only CPU (single
thread) is available in the MEG Il resource & framework.
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Results

® Apply to cosmic-ray (low rate) data in 2020 run.
128 wires were readout (only 1/5 of the whole).
Triggered by scintillation counters. = ¢,

® Evaluate the performance from the hit time distribution

Recovered

1st cluster hits
1600

15t cluster detection efficiency improves.

i ® Thresholds are lowered from 5.5 mV to

Noliees GoENNThre 3wy g 3.5 mV with signal estimation,

Signal cs, (1D CNN) Thee 35 my | 3.0 mV with noise estimation.

® Signal estimation tends to generate fake
pulses from noise fluctuation.

Cooventional Thre5.5 Low3.5

1400
1200

1000

800
The number of hits matched with CR tracks

600 increases by 17%.

Fake hit
ake hits —

Detected timing
200

LRz

.. x107

1 I 1 s
02 0.4 0.6
dclibits: e ~ CronityHmME(E) Ny threshold

5t
- =

v

. -
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Next

® Improve
Tune hyperparameters

Increase training samples or augmentation
| signal estimation | Noise estimation _

Develop a better model

Training (TPU) 2.6 s/epoch 1.3 s/epoch
® Speed up |nfe Frence Inference (CPU) 1.2 s/events 1.5 s/events
Compress the model with pruning * only 1/5 of full readout wires

* 60k waveforms used in training

Use a simpler or more efficient model with distillation

® Apply to muon beam data

® Extend to directly detecting hits (times and amplitudes) from the
input waveforms
Combine the noise & signal networks with transfer learning.
Disentangle clusters from different hits (pileup).
Require delicate MC tuning and precise data calibration.
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Conclusions

® Applied to MEG Il CDCH waveform data.
® The models certainly learn the features of signal and noise.

® Denoising enables lowering hit detection threshold and
improves the detection efficiency of the 15t cluster signal.
Superior to conventional waveform analysis with digital filters.
A promising technique to improve the experiment sensitivity.

® Flexible & sustainable framework matching HEP analysis was
established.

® Computation time in inference is an issue for practical application,
in which only single thread CPU is available.
Speeding up by a factor 5 is desirable.
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YUSUKE UCHIYAMA



® 1D conv < FIR digital filter. Apply multiple filters to catch different
patterns.

® Activation — nonlinear response.

® CNN - position invariant signal detection,
but not scale invariant — learn from data. <Augmentation will
help it.

® Pooling — allow timing variation, good for local pattern
recognition but loose global timing information

® U-net skip connection — recover global timing information

March 14, 2021
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filter k |
|ter”erne S J"&‘ '\.‘/“\*‘

patterns to be recognized . .
low-pass filter hlgh—pas§ filter
(moving average) (differential)

Shaped (filtered) waveform = feature map

strongly ignited

Activation (relu) — nonlinearity

March 14, 2021
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channels

n channels
independent kernel (k points‘). o e . . . . nx m kernels,
for each channel LX) oo ° . n X m X k parameters in total
[ ]
[
e (]
0®e%0%00%0%° o Oy 0070 C0 00 .

sum over channels

m channels
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Signal estimation
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Noise estimation
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ONNX

€ ONNX

® The best solution as of today, we concluded, is using ONNX.

® Open Neural Network Exchange (ONNX) is an open standard
format for representing machine learning models.
Able to exchange the models built by different frameworks.

ABBYY E2 mwns
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Supported frameworks

Frameworks & Converters

Use the frameworks you already know and love.

g Y - : ™ Cognitive
© Caffe? caa:'gg;st ée» Chainer <> Toghkit e
LibSVM MATLAB @xnet B8 MyCaffe”
m §\2\§ NeoML \ \ ;Ub'ra ;}S; 44 PaddiePaddie O PyTorch

Gsas SIEMENS T, .@n @engine

¥ TensorFlow c)j;nécBoost

For example, following exchange is possible:

Building & training model in ONNX file . Inference in
PyTorh Tensorflow

A\ 4

® Note that not all the features may be supported.
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In python scripts,

/. vﬁ’\g Keras O PyTorch Q\

Caffe2

€ ONNXomne
|
N : <> ONNX /

viE, RUNTIME

|

MEGAnNalyzer
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The model: residual \ear”"\g"“tp“t”’z“)

Input (8, 1024, 2)

25 add -
EEm
v 2D conv (1,7) concatenate T 2D convT
>
(8, 1024, 128)
4 Max pool (1, 2) Up sample
(8, 512, 12) 5.7 (8,512, 128)
conv (5, 2D convT
(8 512, 128) concatenate N
(8,512, 128)
Max pool (2, 2) Up sample
4, 256, 128) (4, 256, 128)
2D conv (3, 5) concatenate 2D convT
(4, 256, 64) Adam, RelLU,
Max pool (2, 2) Cale (o) 512 batch size,
Up sample h
(2, 128, 64) (2, 128, 64) 150 epochs,
2D conv (3, 5) 1.1M parameters

® 2D convolutional network

® lUNet'—“ke structure Wlth Sklp Connections https://arxiv.org/abs/1505.04597 (image segmentation)
® 2-channel input with 2-end waveforms from 8 wires

® Use ‘'mean squared error (mse)’ loss function.
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https://arxiv.org/abs/1505.04597

