
機械学習を活用した
高計数率ドリフトチェンバー
のヒット再構成

High-rate drift chamber hit reconstruction 
with machine learning technique

内山雄祐 (The University of Tokyo)

on behalf of MEG II collaboration

日本物理学会2021年年次大会
令和3年3月14日

14aT3-7



MEG II experiment

Cylindrical drift 

chamber (CDCH)
(~1.6×10-3X0, σp~100 keV)

EPJ-C 78 (2018) 380

⚫ Search for rare muon decays
 to find definitive evidence for BSM

⚫ Use world’s most intense DC muon 
beam
 continuously emits 7×107 e+/s

 detected by a cylindrical drift chamber

⚫ The detector signals are read 
out as waveform
 by DRS4 waveform digitizer

 1024 points @ 1.2 – 1.8 GSPS

⚫ All the detectors as well as 
computing resource and analysis 
framework have been prepared.

⚫ Starting physics data taking in 2021
 Engineering data were taken in previous 

years.

 In this study, use 2020 data.

http://link.springer.com/10.1140/epjc/s10052-018-5845-6


Drift chamber: a nutshell

Signal formation

1. Charged particle generates primary 
ionization clusters discretely in gas

2. The ionized e-s drift to an anode wire 
and form avalanche near the wire

Reconstruction

1. Measure the timing of the 1st cluster

2. Draw a drift circle

3. Fit a track to the drift circles

+1450 V

vdrift ~ 3 cm/μs

Gas gain ~ 5×105

Primary ionization ~ 13 e- cluster/cm

t

t0

drift time

~ 300 ns

MEG II CDCH: an ultra low-mass chamber 

Gas:    He:iC4H10 = 90:10

Wires: 20 μm W anode 

+ 40/50 μm Al cathode

2 m long, 9 layers, 

1152 readout cells in total

~7 mm



Challenges

MC

Apply ML to the complicated waveform analysis.

As the first step, apply to noise reduction to improve S/N 

mean: 9 mV

p(<5 mV) = 0.35

p(<2 mV) = 0.11

⚫ Detecting the 1st cluster signal is essential for the experiment
 The efficiency is directly connected to the e+ reconstruction efficiency, 

and thus, search sensitivity.

⚫ Two difficulties:

1. S/N
 The amplification in avalanche process (gas gain) has large fluctuation obeying a 

Polya distribution. The 1st cluster signal can be very small.

2. Pileup
 Very high hit rate in MEG II: up to 1.7 MHz per cell, 35% occupancy in 250ns.

pileup hit

signal hit



Denoising autoencoder

⚫ Autoencoder: train network so that output = input
 Latent space holds the features of signal

⚫ Denoising autoencoder: add noise to the target for the input
More effectively learns the feature and becomes more robust

 Can be used to denoise noisy data

⚫ Apply to waveform data
 Use MC signal w/o noise +    noise data (random trigger data w/o beam)

(mix events randomly in time at 7×107 s-1)                                (non-Gaussian non-white noise)

 Tried in two directions: estimating signal or estimating noise

input output targetlatent

space

encoder decoder

add

noise

target



The model: signal estimation

Extend the denoising autoencoder with:

⚫ 1D convolutional network

⚫ ‘UNet’-like structure with skip connections

⚫ 2-channel input with 2-end waveforms from a wire

⚫ Use ‘mean squared logarithmic error (msle)’ loss function.
 with 1 mV offset to avoid 0-division.

Input (1024, 2)

(1024, 128)

(512, 128)

(512, 128)

(256, 128)

(256, 64)

(128, 64) (128, 64)

(256, 64) 

Up sample

concatenate

concatenate

concatenate
1D conv (9)

Max pool (2)

1D conv (9)

Max pool (2)

1D conv (9)

Max pool (2)1D conv(9)

(256, 64)

(512, 128) 
(512, 128)

(256, 128)

1D conv

Up sample

(512, 128)

1D conv

(1024, 128) 
(1024, 128)

Up sample

1D conv

Output (1024, 2)

Adam, ReLU,

512 batch size,

100 epochs,

373k parameters

https://arxiv.org/abs/1505.04597 (image segmentation)

https://arxiv.org/abs/1505.04597


Signal estimation with 1D autoencoder

True signal (target)

Estimated signal (output)

Signal + noise (input)



Noise estimation

⚫ Want to use other wires information together
which contains information for coherent noise.

⚫ However, neither increasing input channels nor extending to 
2D input works well.
 It is difficult to extract different signal patterns in different wires with CNN.

⚫ Change the view of the data → estimate noise instead of signal.
 Coherent noise changes gradually over different wires. → 2D CNN can deal with it 

well. 

 Existence of signal masks the noise, but estimate it using other wires waveform.

 Group 8 wires that connect to the same front-end cards into an input.



The model: noise estimation

⚫ 2D convolutional network
⚫ ‘UNet’-like structure with skip connections
⚫ 2-channel input with 2-end waveforms from 8 wires
⚫ Use ‘mean squared error (mse)’ loss function.

Input (8, 1024, 2)

(8, 1024, 128)

(8, 512, 128)

(8, 512, 128)

(4, 256, 128)

(4, 256, 64)

(2, 128, 64) (2, 128, 64)

(4, 256, 64) 

Up sample

concatenate

concatenate

concatenate
2D conv (1, 7)

Max pool (1, 2)

2D conv (3, 7)

Max pool (2, 2)

2D conv (3, 5)

Max pool (2, 2)

2D conv (3, 5)

(4, 256, 64)

(8, 512, 128) 
(8, 512, 128)

(4, 256, 128)

2D convT

Up sample

(8, 512, 128)

2D convT

(8, 1024, 128) 
(8, 1024, 128)

Up sample

2D convT

Output (8,1024, 2)

Adam, ReLU,

512 batch size,

150 epochs,

1.1M parameters

https://arxiv.org/abs/1505.04597 (image segmentation)

This is equivalent to the residual learning

https://arxiv.org/abs/1505.04597


Noise estimation with 2D CNN autoencoder

True noise (target)

Estimated noise (output)

Noise + signal (input)



Implementation

TRAINING

⚫ Tensorflow 2.4 + Keras

⚫ in Python3.7

⚫ on Google Colab

⚫ with Tensor Processing Unit (TPU)

⚫ convert to ONNX format

INFERENCE

⚫ ROOT based MEG II reconstruction 
framework

⚫ in C++17

⚫ ONNX Runtime C++ API

⚫ with CPU single thread
(Xeon Gold 6138 2.0 GHz)

High flexibility × Easy maintenance

Use one’s preferred package (one good at the problem under 

consideration) for model building & training.

Use a common interface in C++ to use the trained model in 

inference/prediction.

GPU/TPU in cloud are available for training, while only CPU (single 

thread) is available in the MEG II resource & framework.



Results

⚫ Apply to cosmic-ray (low rate) data in 2020 run.
 128 wires were readout (only 1/5 of the whole).

 Triggered by scintillation counters. → t0

⚫ Evaluate the performance from the hit time distribution

t

Detected timing

threshold

missing 1st cluster

Fake hits

Recovered

1st cluster hits 1st cluster detection efficiency improves.
⚫ Thresholds are lowered from 5.5 mV to

3.5 mV with signal estimation,

3.0 mV with noise estimation.

⚫ Signal estimation tends to generate fake 

pulses from noise fluctuation.

The number of hits matched with CR tracks 

increases by 17%.



Next

⚫ Improve
 Tune hyperparameters

 Increase training samples or augmentation

 Develop a better model

⚫ Speedup inference
 Compress the model with pruning

 Use a simpler or more efficient model with distillation 

⚫ Apply to muon beam data

⚫ Extend to directly detecting hits (times and amplitudes) from the 
input waveforms
 Combine the noise & signal networks with transfer learning.

 Disentangle clusters from different hits (pileup).

 Require delicate MC tuning and precise data calibration.

Signal estimation Noise estimation

Training (TPU) 2.6 s/epoch 1.3 s/epoch

Inference (CPU) 1.2 s/events 1.5 s/events

* only 1/5 of full readout wires

* 60k waveforms used in training 



Conclusions

⚫ Applied denoising autoencoders to MEG II CDCH waveform data.

⚫ The models certainly learn the features of signal and noise.

⚫ Denoising enables lowering hit detection threshold and 
improves the detection efficiency of the 1st cluster signal.
 Superior to conventional waveform analysis with digital filters.

 A promising technique to improve the experiment sensitivity.

⚫ Flexible & sustainable framework matching HEP analysis was 
established.

⚫ Computation time in inference is an issue for practical application,
 in which only single thread CPU is available.

 Speeding up by a factor 5 is desirable.



⚫ 1D conv ⇔ FIR digital filter. Apply multiple filters to catch different 
patterns.

⚫ Activation → nonlinear response.

⚫ CNN → position invariant signal detection,
but not scale invariant → learn from data. ←Augmentation will 
help it.

⚫ Pooling → allow timing variation, good for local pattern 
recognition but loose global timing information

⚫ U-net skip connection → recover global timing information



⊗

filter kernels

patterns to be recognized
low-pass filter

(moving average)

high-pass filter

(differential)

Shaped (filtered) waveform = feature map

strongly ignited

=

Activation (relu) → nonlinearity



channels

⊗

⊕ ⊕

to the next layer

independent kernel (k points)

for each channel

n channels

m channels

n×m kernels,

n×m×k parameters in total

sum over channels



Signal estimation Noise estimation



ONNX

⚫ The best solution as of today, we concluded, is using ONNX.

⚫ Open Neural Network Exchange (ONNX) is an open standard 
format for representing machine learning models.
 Able to exchange the models built by different frameworks.

Supported by



Supported frameworks

⚫ Note that not all the features may be supported.

Building & training model in

PyTorh
ONNX file

Inference in

Tensorflow

For example, following exchange is possible:



In python scripts,

.onnx file

MEGAnalyzer

in c++



The model: residual learning

⚫ 2D convolutional network
⚫ ‘UNet’-like structure with skip connections
⚫ 2-channel input with 2-end waveforms from 8 wires
⚫ Use ‘mean squared error (mse)’ loss function.

Input (8, 1024, 2)

(8, 1024, 128)

(8, 512, 128)

(8, 512, 128)

(4, 256, 128)

(4, 256, 64)

(2, 128, 64) (2, 128, 64)

(4, 256, 64) 

Up sample

concatenate

concatenate

concatenate
2D conv (1, 7)

Max pool (1, 2)

2D conv (3, 7)

Max pool (2, 2)

2D conv (3, 5)

Max pool (2, 2)

2D conv (3, 5)

(4, 256, 64)

(8, 512, 128) 
(8, 512, 128)

(4, 256, 128)

2D convT

Up sample

(8, 512, 128)

2D convT

(8, 1024, 128) 
(8, 1024, 128)

Up sample

2D convT

Output (8,1024, 2)

Adam, ReLU,

512 batch size,

150 epochs,

1.1M parameters

https://arxiv.org/abs/1505.04597 (image segmentation)

add

https://arxiv.org/abs/1505.04597

