Core-to-Core Program

MEG II実験液体キセノン検出器用VUV-MPPC におけるPDE減少の真空紫外光を用いた調査

Research on PDE decrease of MPPC for MEG II liquid xenon detector by using vacuum-ultraviolet

Kohei Shimada On behalf of MEG II collaboration The University of Tokyo

Mar. 12th, 2021

- The motivation of searching for $\mu \rightarrow e\gamma$
- Overview of MEG II

MPPC

- MPPC PDE decrease
- Surface damage by VUV light

Measurement of PDE decrease at low-temp

- Irradiation by xenon flash lamp
- Irradiation by liquid xenon scintillation light

- The motivation of searching for $\mu \rightarrow e\gamma$
- Overview of MEG II

MPPC

- MPPC PDE decrease
- Surface damage by VUV light

Measurement of PDE decrease at low-temp

- Irradiation by xenon flash lamp
- Irradiation by liquid xenon scintillation light

The motivation of searching for $\mu \rightarrow e\gamma$

 $\cdot \mu \rightarrow e\gamma$ in the standard model

$$Br(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U^*_{\mu i} U_{ei} \frac{\Delta m_{i1}^2}{M_W^2} \right|^2 \simeq$$

- · Cannot be observed
- · $\mu \rightarrow e\gamma$ in a new physics e.g. SUSY GUT · Assume unknown heavy particle

$$Br(\mu \to e\gamma) = \mathcal{O}(10^{-12}) - \mathcal{O}(10^{-14})$$

 \cdot Can be observed

Overview of the MEG II experiment at Paul Scherrer Institut

- The world's most intense μ beam $7 \times 10^7 \ \mu$ /sec
- Muons are stopped at the target
- Two-body decay
- The photon energy, interaction point and time are measured by LXe

Overview of the MEG II experiment at Paul Scherrer Institut

- Detect the scintillation ($\lambda = 175 \text{ nm}$)
- 4092 MPPCs, 668 PMTs at ~165 K
- Energy and position resolutions will be improved as compared with MEG by a factor of two
- Under commissioning since 2017

- The motivation of searching for $\mu \rightarrow e\gamma$
- Overview of MEG II

MPPC

- MPPC PDE decrease
- Surface damage by VUV light

Measurement of PDE decrease at low-temp

- Irradiation by xenon flash lamp
- Irradiation by liquid xenon scintillation light

VUV-sensitive MPPC PDE decrease

小林暁, 日本物理学会 2020年春季大会 16pG22-11

- Photon detection efficiency (PDE)
- Visible sensitivity was almost unchanged
- Degradation of VUV sensitivity \rightarrow Total decrease in 2019 : 9% (in 1 week under MEG II beam intensity $7 \times 10^7 \ \mu/\text{sec}$)
- Design MEG II DAQ time : 360days (3 years) \rightarrow This degradation is a serious problem

Possible cause : surface damage by VUV light

- Surface damage was observed in other experiments
- Most VUV light pass through the passivation layer (e.g. SiO₂), but some of them stopped in it
 - Electron-holes are generated in passivation layer
- Holes are trapped at interface b/w passivation layer and Si
- The electric field near the boundary of the two surfaces will be reduced by the holes
 - Collection efficiency will be reduced
- Degradation may be accelerated at low temperature because holes hardly move
- Holes will be removed by heat
 - Annealing effect was observed

- The motivation of searching for $\mu \rightarrow e\gamma$
- Overview of MEG II

MPPC

- MPPC PDE decrease
- Surface damage by VUV light

Measurement of PDE decrease at low-temp

- Irradiation by xenon flash lamp
- Irradiation by liquid xenon scintillation light

Overview of the measurements

- We want to know how PDE decreases in MEG II DAQ time
- PDE decrease by UV and low-temp effect were observed in previous measurement (15pSF-5)
 - Much slower than MEG II LXe detector
 - There may be wave length effect
- This time, MPPCs were irradiated by VUV at ~165 K
- Irradiation source
 - Xe flash lamp
 - Xe scintillation light

Xe-lamp 2 W module (L13651-01-3)

Irradiation by Xe-lamp

- Irradiation source : Xe-lamp (MgF₂ glass)
- Cooled the MPPC in N₂ gas
 - Prevent dew formation
 - Allows VUV to reach MPPC
 - Absorption length of N₂ is smaller by ~2 orders of magnitude than that of O₂
- MPPC was mounted on refrigerator
 - MPPC temp ~ 165 K

Overview of setup : Irradiation

11

Irradiation by Xe-lamp

- Signal charge was measured before and after the irradiation
- Non irradiated MPPCs were also used as reference

• Observed VUV charge by using N₂ gas

Absorption cross section of 175 nm is

VUV irradiation at low-temp

PDE_{after}/PDE_{before}

	chip 1	chip 2	chip 3	chip 4
Reference	1.06	1.07	1.11	1.08
Irradiated	1.16	1.17	1.17	1.15

- $\cdot N_{VUV}$: Dose level in this measurement
- $N_{2019,VUV}$: Dose level in LXe detector in 2019
- p 4 08
 - Dose level (in 21 h) : 160 nm $\leq \lambda \leq 185$ nm $\cdot N_{VUV} = 1.7 \times 10^{11} \text{ photon/mm}^2$ $= N_{2019,VUV} \times 3.3$ →Corresponds to ~ 30% decrease
 - VUV-PDE decrease was not observed

Irradiation by liquid xenon scintillation light using alpha sources

- Light source : liquid xenon scintillation light
 - Alpha source (241 Am, range : 50 μ m) was set in liquid xenon
 - \cdot Dose level is smaller than Xe-lamp
 - \cdot Other conditions are the same as LXe detector
- Signal charge was monitored
- LED was set for calibration and monitoring visible sensitivity

Irradiation by liquid xenon scintillation light using alpha sources

- \cdot The data in last 168 h was stable
- \cdot Signal charge for LED was not changed
- Dose level (in 168 h) : $\lambda = 175 \text{ nm}$

•
$$N_{VUV} = 1.6 \times 10^{10} \text{ photon/mm}^2$$

= $N_{2019,VUV} \times 0.31$

In all chips, VUV-PDE decrease was not observed

- The motivation of searching for $\mu \rightarrow e\gamma$
- Overview of MEG II

MPPC

- MPPC PDE decrease
- Surface damage by VUV light

Measurement of PDE decrease at low-temp

- Irradiation by xenon flash lamp
- Irradiation by liquid xenon scintillation light

- In MEG II LXe detector, VUV-PDE decrease was observed
 - \cdot It was guessed that the degradation was caused by surface damage
- Irradiation measurements were performed
 - PDE decrease by UV was observed in previous measurement $N_{UV} \gg N_{2019,VUV}$
 - VUV-sensitivity degradation was not observed $N_{VUV} \sim N_{2019,VUV}$
 - → VUV photon is not the main cause of the VUV-PDE decrease of the MPPCs in LXe detector Irradiation by excimer lamp is going to be performed
 - - $\cdot N_{2019 VUV} \times 10^3$ /sec at 5 cm ($\lambda = 172$ nm)
- Other candidates

 - · MPPCs in LXe detector were irradiated γ and neutron • We are now investigating this effect (next talk 12pT2-9)

Backup slides

VUV-sensitive MPPC (SiPM)

- VUV-sensitive MPPC has been newly developed for MEG II
- Operational at low temperature (~165 K)
- Photon detection efficiency (PDE) > 15% at $\lambda = 175$ nm

VUV irradiation at low-temp

- Light source : Xe-lamp (MgF2 glass)
- Cooled the MPPC in N₂ gas
 - MPPC was mounted on refrigerator
- Signal charge was monitored
 - Non irradiated MPPCs were also used as reference

Irradiation by liquid xenon scintillation light using alpha sources

- Light source : liquid xenon scintillation light
 - · Alpha source (^{241}Am) was set in liquid xenon
 - Range : 50 μ m
- Signal charge was monitored
- LED was set for calibration and monitoring visible sensitivity

