MEG II実験の背景ガンマ線識別を目的とした **RPC**検出器の高レート耐性を 実現するデザインの研究

大矢 淳史

家城佳,大谷航,越智敦彦,恩田理奈,山本健介

Outline

Introduction

- Motivation
- Requirements to the detector
- Concepts of the detector design
- Prototype
- Detector design optimization
- Summary

... experiment

 180°

52.8 MeV

- Signal identified by energy, timing and direction of e and γ
- Background suppression is crucial
 - Main BG source: Accidental coincidence of BG-e and BG- γ
 - One of BG- γ source: Radiative muon decay (RMD: $\mu \rightarrow e\nu\nu\gamma$) \rightarrow Can be identified by detecting law energy (1 = MeV) positron associated with RMD

Radiative Decay Counter (RDC)

- RDC: Detector for positron from $\mu \rightarrow e\nu\nu\gamma$
 - Downstream RDC: Already constructed
 - Upstream RDC has to be operational in high-intensity low-momentum muon
 → Still under development with challenging requirements
- Requirements to upstream RDC
 - 1. Material budget: $< 0.1\% X_0$
 - 2. Rate capability: 4 MHz/cm^2 of muon (21 MeV/c)
 - 3. MIP efficiency: 90% MIP efficiency
 - 4. Timing resolution: < 1 ns time resolution
 - 5. Radiation hardness: > 60 weeks operation
 - 6. Detector size: 20 cm (diameter)

Possible design of upstream RDC

- Resistive Plate Chamber with Diamond-Like Carbon electrodes
 - RPC→ Fast response (< 1 ns resolution)
 - DLC→ Controllable resistivity (with mixed structure of sp² and sp³) Low mass design (sputtered on thin Kapton films)

Status of studies

- Design with < 0.1 % X_0
- Performance evaluation
 - Efficiency
 - Timing resolution
 - Performance in high-rate μ -beam

- Today's talks
 - High-rate capability of larger scale (20 cm) detector has been found non-trivial → This talk
 - Signal pileup suppression \rightarrow Next talk

Outline

Introduction

- Detector design optimization
 - Introduction to rate capability
 - Resistivity optimization
 - HV supply optimization

Rate capability of RPC

- Rate capability

• With DLC electrodes, voltage drop follows: $\nabla^2 \, \delta V(x, y) = Q_{mean}(V_{eff}) \cdot f(x, y) \cdot \rho$

Avalanche charge

Hit rate Surface resistivity

 \rightarrow Design must be optimized to keep δV at a reasonable level

Status of rate capability studies

• Known parameters in $\nabla^2 \delta V(x, y) = Q_{mean}(V_{eff}) \cdot f(x, y) \cdot \rho$

Avalanche charge

Surface resistivity Hit rate

acceptable

2650 2700

30

20

10

2500

2550

2600

• Requirements to δV : < ~100 V **MIP efficiency with 1-layer** \rightarrow Determined by the voltage to achieve 40 % with single-layer. **70** Efficiency [%] • Avalanche charge: 3 pC for low-momentum muon 60 \rightarrow Measured in 2020 with low-momentum muon beam 50 • Hit rate: 4 MHz/cm² at the center 40 100 V drop is

2800

2750

Applied voltage [V]

Studies to be completed

• Parameters which remained to be determined in $\nabla^2 \, \delta V(x, y) = Q_{mean}(V_{eff}) \cdot f(x, y) \cdot \rho$

Avalanche charge

Hit rate Surface resistivity

- Surface resistivity
- Boundary condition of the equation
 - → Depends on geometry of HV supply

Boundary condition: $\delta V = 0$

Surface resistivity study

- The effect of surface resistivity
 - Small resistivity: Higher rate capability
 - Large resistivity: Discharge suppression
 - → Optimization required
- Optimization study
 - Stability with several resistivity
 - $\leq 1 \text{ M}\Omega/\text{sq}$
 - 20 30 $M\,\Omega/sq$ (position dependent)
 - $50 70 \text{ M}\Omega/\text{sq}$ (position dependent)
 - Direction of electric field
 - Which direction is better to suppress discharge ?

Spacers are attached to one side

Result of optimization

-HV

- The direction of electric field
 - The spacer face must be +HV \rightarrow Independent from resistivity
 - Possible cause: Edge effect of E-field at floated spacer bottom

• Surface resistivity

- Resistivity of +**HV** electrodes (with spacers)
 - 1 M Ω /sq: Instable so far
 - $\geq 20 30 \text{ M}\Omega/\text{sq}$: Stable enough
 - ~10 M Ω /sq: Further study is required
- Resistivity of –HV electrodes (without spacers)
 - < 1 M Ω /sq possible with high enough resistivity of +HV electrode

+HV

E field strength (simulation)

Study on HV supply geometry

 δV

• $\nabla^2 \delta V(x, y) = Q_{mean}(V_{eff}) \cdot f(x, y) \cdot \rho$

- The distance from HV supply must be small
 → Strip geometry
- Studies underway for technical implementation
- Simulation of δV in MEG II beam
 - Purpose
 - Decide ρ and $\ell_{\rm pitch}$
 - One example configuration
 - ρ : 10 M $\Omega/{\rm sq}$ for both anode and cathode
 - ℓ_{pitch} : 1 cm
 - $\rightarrow \delta V \sim 100 \ V \ (\delta V < 100 \ required)$

+HV

Possible variations of the design for MEG II

- Parameter dependence
 - Pitch of HV supply strips: $\delta V \propto \ell_{pitch}^2$
 - DLC resistivity: $\delta V \propto \rho$
- Possible design and concerns

	$\ell_{ ext{pitch}}$	ρ : +HV side	ρ: -HV side	Concern
1	1 cm	$10 M\Omega/sq$	10 M Ω /sq	10 M Ω /sq not tested
2	1 cm	20 MΩ/sq	1MΩ/sq	DLC damage from discharge may be severe with large asymmetry
3	8 mm	20 MΩ/sq	$O(10) M\Omega/sq$	Large inactive region (Strip area is inactive)

+ Bad DLC resistivity control (x5 fluctuation)

Outline

• Introduction

- Detector design optimization
- Summary and prospect

Summary and prospect

- High-rate capable and ultra-low mass RPC with DLC is under development for MEG II upstream RDC
- Studies on design optimization are presented
 - Motivation: To achieve high-rate capability with a full-scale detector
 - Study1: Resistivity optimization
 - Study2: HV supply optimization
- Planned studies
 - Implementation of strip geometry
 - DLC resistivity control
 - Further optimization
 - Operation in a longer time scale

Backup

MIP detection with single-layer

- Timing resolution and efficiency are measured with single layer
 - Positron from muon decay with $O(1 10 \text{ kHz/cm}^2)$ rate
 - Beta-ray from 90 Sr (~MBq) with ~ <u>100 kHz/cm²</u> rate

MIP detection with multi-layer

- Efficiency study with multi-layer
 - Efficiency expected to improve as $1 \epsilon_n = (1 \epsilon_1)^n$
 - Efficiency with four layers measured
 - Beta-ray from ⁹⁰Sr
 - Rate: O(<u>1 kHz/cm²</u>)

- Issue: discharge at lower voltage than single layer
 - Probably because of imperfect flatness of electrodes

 $\begin{array}{ll} \text{Gas is different from other tests:} \\ \text{R134a} & 93\%, \\ \text{SF}_6 & 7\% \end{array}$

Response to low-momentum muon at low rate

Voltage drop evaluation in high rate muon beam

Voltage drop evaluation in high rate muon beam

- Waveform analysis
 - On-timing window (30 ns) for MIP performance evaluation
 - Off-timing window (30 ns) for evaluation of pedestal and accidental muon events

Efficiency estimated to be

Voltage drop evaluation in high rate muon beam

Calculated with

Observed voltage drop

Expected voltage drop

 δV δV : 150 V δV : 100 V +HVSum of δV for +HV and -HV side 22

+HV

- Distribution of particles hit position at upstream RDC
 - Beam μ : $\sigma = 2 \text{ cm}$
 - RMD positron: $\sigma = 2.8$ cm

RMD positron

Concerns

- DLC resistivity control
 - The resistivity precision limited for DLC sputtering
 - Both over and under fluctuation with up to a factor $\times\,5$
 - If necessary, can be reduced by annealing to some extent
 - $\times \sim 0.5$ when annealed with 200°C
 - Systematic studies underway
- DLC damage caused by discharge (Concerns in a long time-scale)
 - Evaporation of DLC
 - → Further study required with a longer time scale
 - Asymmetric discharge
 - Formation of conductive damage on +HV side
 - Appears when -HV resistivity is much smaller than +HV one
 - \rightarrow Investigation in progress

Conductive damage

DLC evaporated 24

Surface resistivity study

Technical aspect of DLC surface resistivity measurement
 O(10) MΩ/sq measured with 4-point method

