MEG II実験液体キセノンガンマ線検出器の 全チャンネル読み出しでの性能評価

Performance evaluation of MEG II liquid xenon gamma-ray detector with full channel readout

小林 暁 (東大理), 他MEG IIコラボレーション

Satoru Kobayashi on behalf of the MEG II collaboration The University of Tokyo 日本物理学会 2021年秋季大会 (オンライン開催) 15pT3-6

Core-to-Core Program

- Introduction
 - MEG II experiment
 - Liquid Xenon Gamma-ray Detector Upgrade
 - Previous commissioning runs
- 2021 Engineering run
 - Read out
 - Noise situation
 - Calibration, monitoring
- Summary & Prospects

µ→eγ search

- $\mu \rightarrow e\gamma$ decay is a charged lepton flavor violating(**cLFV**) decay.
 - Almost forbidden in SM+v. oscillation (Br($\mu \rightarrow e\gamma$)~10⁻⁵⁴)
 - **Predicted** in some theories $(Br(\mu \rightarrow e\gamma): 10^{-11} \sim 10^{-14})$
- The MEG experiment gives the current upper limit of $Br(\mu \rightarrow e\gamma)$.
 - Br(µ⁺→e⁺γ) < 4.2×10⁻¹³ (90% C.L.)

MEG II Experiment

- MEG II will search for the $\mu \rightarrow e\gamma$ decay with unprecedented sensitivity.
 - Goal: $Br(\mu \rightarrow e\gamma) \sim 6 \times 10^{-14}$ in 3 years of data acquisition.
 - Even higher intensity muon beam $(3 \times 10^7 \mu/s \rightarrow 7 \times 10^7 \mu/s)$
 - **Detector upgrade** (× 2 resolution improvement for each detector)
- Liquid Xenon gamma-ray detector measures the position, energy, and timing of the incident gamma-ray.
 - 900 L liquid xenon + VUV-sensitive photosensor.

Liquid Xenon Detector Upgrade

- MEG gamma-ray detector used 2-inch PMTs to detect scintillation light of liquid xenon in the VUV range ($\lambda \sim 175$ nm).
- Non-uniformity of light collection efficiency limited the resolution.
 - A small and square-shaped photosensor is desirable.
- We use **VUV-sensitive MPPCs** in MEG II.
 - Developed for MEG II in collaboration with Hamamatsu K.K.
 - Entrance face: 216 PMTs \rightarrow 4092 MPPCs ($12 \times 12 \text{ mm}^2$)

Liquid Xenon Detector Upgrade

- MEG gamma-ray detector used 2-inch PMTs to detect scintillation light of liquid xenon in the VUV range ($\lambda \sim 175$ nm).
- Non-uniformity of light collection efficiency limited the resolution.
 - A small and square-shaped photosensor is desirable.
- We use **VUV-sensitive MPPCs** in MEG II.
 - Developed for MEG II in collaboration with Hamamatsu K.K.
 - Entrance face: 216 PMTs \rightarrow 4092 MPPCs ($12 \times 12 \text{ mm}^2$)

Highlight of pre-engineering runs 2017 - 2020

MPPC radiation damage under beam

Improved energy resolution

MEG II expected 10 12 Conversion depth (cm)

2019年年次大会、小川(現九州大)

MEG measured

MEG II measured

- · Limited number of readout: 1004 / 4760 channels.
- Known issues: radiation damage
 - MPPC PDE & PMT gain degradation under beam.
 - Solution: thermal annealing recovers MPPC PDE.
- Detector performance:
 - Acceptable energy & position resolution (1.7% / 2.5 mm)
 - Timing resolution & Detection efficiency: reliable measurement to be done.

Engineering run 2021

Electronics modules

- Finally, the whole detector : 4760 channels are read out.
- The beam time started on 13th Aug.
 - Reduced beam intensity to investigate radiation damage
 - Stopping rate $R_{\mu} = 3 \times 10^7 \mu/s$: ~40% of $7 \times 10^7 \mu/s$
- The first missions:
 - Performance evaluation of the readout electronics.
 - Monitor of the radiation damage.

Engineering run 2021: Readout

Gamma-ray pile up event (Data)

- Almost all photosensors are working well.
 - 28 MPPCs and 27 PMTs don't work due to short circuit / HV supply.
- Reasonable DAQ rate (~10 Hz, 100 MB/s).

Engineering run 2021: Noise

• $\sigma_{E,pedestal} = 3.7 \times 10^{-2}$ MeV: 0.08% of 52.8 MeV.

- 2020: 1.3×10^{-1} MeV... Improved by a factor of 3.5.
- Reduced coherent noise probably due to choke coil.
- Negligible impact on the energy resolution (~1%).
- High-frequency noise is suppressed with offline noise reduction.

Engineering run 2021: Calibration

- Radiation damage of PMT gain and MPPC PDE are monitored with intrinsic sources (LED, ²⁴¹Am).
- The degradation rate is consistent with previous measurements.
 - MPPC PDE decrease: 0.05(1)% / hour at $7 \times 10^7 \mu/s$
 - PMT Gain decrease: ~0.02% / hour at $7 \times 10^7 \mu/s$

Engineering run 2021: Gamma-ray calibration

- We have two external gamma-ray sources:
 - 17.6 MeV gamma-ray from $^{7}\text{Li}(p,\gamma)^{8}\text{Be}$ reaction.
 - 9 MeV gamma-ray from neutron capture.
- This data will be used to monitor the total detector response.

Engineering run 2021: Gamma-ray from muon decay

- Energy spectrum of background gamma-ray from muon decay.
- Development of pileup analysis for the data is in progress.
 - Next talk: Development of algorithm with simulation
- The uniformity of the energy resolution will be studied with this data.

- The commissioning of the liquid xenon gamma-ray detector for the MEG II experiment is in progress.
- Finally the readout of all 4760 channels is available.
 - 99% of photosensors are working.
- The noise situation has been greatly improved.
 - The noise from readout electronics is negligible.
- Calibration apparatus and analysis to monitor the radiation damage are ready.
 - MPPC PDE and PMT gain decreases over beam time, but are monitored frequently.

- 2021 beam time: ~ the end of 2021
 - Set up 'MEG trigger'
 - Online selection based on timing, direction, and energy of both gamma-rays and positrons.
 - Reliable time resolution & efficiency measurement
 - Investigate the uniformity of detector resolution
 - First physics data acquisition
- Next year: Start a long physics data acquisition.

Finally we are about to start physics data acquisition. Stay tuned!

- Offline noise reduction
- Data reduction
- MPPC PDE decrease in 2019
- PMT Gain decrease
- Energy resolution measurement
- Position resolution measurement
- Study on the possible causes of worse resolution

Offline Noise Reduction

- So far, we have noise reduction for three-types of noises.
 - High-frequency noise synchronized with clock (n*80 MHz)
 - Cell pedestal fluctuation derived from incomplete DRS calibration.
 - · Low- frequency noise depending on temperature.
- DRSNoiseReduction + DRSTMPCalibration tasks.

Data reduction

- Data reduction is required not to use up the storage.
- Implementation of rebin to DAQ frontend is foreseen.
- Offline rebin is already used to reduce computation time.
- Goal: 80% reduction with rebin.

MPPC PDE decrease

- PDE decrease rate:
 - 0.06(1)% / MEG II hour(2019)
- Wavelength dependence: deterioration of PDE for visible light is ~1/10.
- VUV light interact in the shallow region of MPPC.
 - The observed damage is likely to be surface damage.

PMT Gain decrease

- The reason of the damage is not clear, but likely to be deterioration of dynodes.
- 0.4(2)%/MEG II day = 0.02%/MEG II hour

Summary

19

- Commissioning of MEG II LXe detector was done with 17.6 MeV monochromatic γ -source.
- Energy resolution was measured to be larger than what we expect from simulation.
 - Noise and calibration problem does not seem to explain the difference.
 - Both MPPC and PMT shows larger fluctuation
 - Changing parameter settings in simulation does not help
- Unknown component which affect resolution exists since MEG.
 - Resolution at ~52.8MeV needs to be checked this year with ~55 MeV calibration γ source.

・ 2019 Autumn JPS (家城)

Previous measurement of energy resolution

Energy resolution with muon BG gamma-ray spectrum

Sensitivity vs Energy resolution

from Shinji Ogawa's Ph.D. thesis

• Energy resolution $@E_{\gamma} \sim 52.8$ MeV was measured with the BG gamma-ray energy spectrum from muon decay.

• $\sigma_E = 1.7 \pm 0.1 \%$: limited by an unknown term.

 Sensitivity improves by ~15% from MEG with energy resolution 1.7%, but ~10% worse than the design.

Energy resolution at 55 MeV

Energy resolution @55 MeV

Energy resolution

Sigma of fit function Spread of hit energy

- Energy resolution σ_E was estimated from σ_{fit} .
 - Subtracted the hit energy spread σ_{truth} using MC.
- Measured energy resolution: $1.8 \pm 0.1 \%$ (0.5 cm < depth < 10 cm).
- Unknown term(Deviation from MC) is dominant.
 - MC: identical readout configuration to data.
 - Noise term: ~0.25% / Statistical term: ~0.4%: relatively small.

Liquid Xenon Detector Upgrade

Detector Resolution	MEG (measured)	MEG II (design)	MEG II (measured)	
Position(mm)	5 - 6	2.5	2.5	2020 Autumn JPS / 15aSE-9
Energy(%)	1.7 - 2.4	1.0 - 1.1	1.7	2019 Autum JPS(小川) / 2021 spring(小林)
Timing(ps)	62	50 - 70	(40: intrinsic)	2018 Spring JPS(小川) / 2021 spring JPS (恩田)
Efficiency(%)	63	69	-	

Design values : "The design of the MEG II experiment",

- We need to measure energy and time resolution whereas improvement of position resolution was already confirmed.
- The number of readout electronics is limited(~1000/4760) in 2020.
 - Installation and commissioning of full system is now in progress.
- Today's theme:
 - Energy resolution measurement using pion decay $\pi^0 \rightarrow \gamma \gamma$