MEGII実験陽電子タイミングカウンターの 位置較正及び時間分解能に対する影響の評価

米本 拓、他MEG IIコラボレーション 2020年3月17日 日本物理学会2020年年次大会@名古屋大学

講演番号: 17aG22-10

Core-to-Core Program

Contents

- Introduction
- $\mu \rightarrow e + \gamma$
- MEG II experiment
- Pixelated Timing Counter
- pTC alignment
- Alignment
- Flowchart
- Scan data
- Results
- Discussion

- MC study
- TOF from reconstructed track

1

- Results
- Discussion
- Summary & Prospect

- One of charged lepton flavor violating decays, which is forbidden in the Standard Model.
- Many of the new physics beyond the Standard Model predict that the branching ratio is $O(10^{-13}) O(10^{-14})$ mediated by an undiscovered particle in O(10) TeV.
- Considering the high energy scale particle and the small branching ratio, high intensity muon beam is effective to search the decay.
- Upper limit on the branching ratio: $\underline{\mathcal{B}(\mu^+ \rightarrow e^+ + \gamma)} < 4.2 \times 10^{-13} (90\% \text{ C.L.})$ \uparrow Final results of the MEG experiment

JPS 2020 Annual Meeting Taku Yonemoto "MEG II実験陽電子タイミングカウンターの位置較正及び時間分解能に対する影響の評価" 2

MEG II experiment

- Upgrade of the MEG experiment
- The search for $\mu^+ \rightarrow e^+ + \gamma$
- $\mu^{\scriptscriptstyle +}$: most intense beam at PSI (10⁸ $\mu^{\scriptscriptstyle +}$ /s)
- γ : detected by LXe
- e^+ : bent by COBRA magnet,
 - detected by pTC & CDCH
- expected sensitivity:

 $\mathcal{B}(\mu^+ \rightarrow e^+ + \gamma) \sim 6 \times 10^{-14}$

MEG II - Pixelated Timing Counter

- a highly segmented (256 tiles \times 2) scintillation detector on two semi-cylindrical super-modules.
- each counter consists of a 120mm \times 40mm (50mm) \times 5mm plastic scintillator.
- read by series connection of 6 SiPMs attached to both side of the scintillator.
- time resolution ~ 38 ps for 9 hits (average number of hits for signal e^+), whereas 90~100 ps for a single hit.

• Position difference among hit counters \rightarrow Track reconstruction and Time-of-Flight calculation ... has been investigated by MC study

• Position of whole pTC

pTC alignment

 \rightarrow e⁺ detection efficiency ... will be investigated

Taku Yonemoto "MEG II実験陽電子タイミングカウンターの位置較正及び時間分解能に対する影響の評価" 5

Contents

- Introduction
- $\mu \rightarrow e + \gamma$
- MEG II experiment
- Pixelated Timing Counter
- pTC alignment
- Alignment
- Flowchart
- Scan data
- Results
- Discussion

JPS 2020 Annual Meeting

- MC study
- TOF from reconstructed track
- Results
- Discussion
- Summary & Prospect

<u>Flowchart</u>

3D scan by FARO 3D ScanArm (see Backup)

(1) Scan pTC and get scan data of the following (\checkmark Mar. 2019).

- 512 counters
- laser tracker targets

Laser survey by Leica laser tracker (see Backup)

② Laser tracker targets are measured in the MEG II

global coordinates system (✓ Sep. 2019).

Calculate transform matrix by laser tracker targets

③ Counters in the 3D scanner coordinates system can be

transformed into the MEG II global coordinates system.

*Every time we install TC, we will restart from ②

Design value of counter positions (now used in MEG II software)

> Measure deviations (=Alignment)

Get counter positions in the MEG II

global coordinates !

Scan data - overview

- Scan data are available as an array of (x,y,z) points
- Data is lacking because the light of 3D scanner could not reach
- 77 counters from 512 counters are excluded from analysis due to bad data condition

Taku Yonemoto "MEG II実験陽電子タイミングカウンターの位置較正及び時間分解能に対する影響の評価" 8

Scan data - handling

- Design values are used as initial values to transform counters into counter-local XYZ
- Top side of counters, mostly scanned in good condition, are manually extracted from data points. They are adopted as indicators of counter positions (shown in red).
- Center position of each counter is calculated from the maximum and minimum points from its top side:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} (x_{max} + x_{min})/2 \\ (y_{max} + y_{min})/2 \\ (z_{max} + z_{min})/2 \end{pmatrix}$$

• Counter position from the center position is shown in green, whereas designed one is in blue.

Scan data – Data selection

designed scintillator+SiPM+PCB size of top side

Results of alignment

- Mean value of deviations b/w are in ~1.1mm
- All the standard deviation σ are in ~1.2 mm
- Maximum value of the deviation is ~5.5 mm

*US = up stream DS = down stream

value	dx (US)	dy (US)	dz (US)	dx (DS)	dy (DS)	dz (DS)
mean	0.15 mm	0.65 mm	1.1 mm	-0.35 mm	0.43 mm	-0.33 mm
Std_dev	0.75 mm	0.86 mm	0.88 mm	1.0 mm	1.1 mm	1.2 mm

Discussion of alignment

• We aim to measure geometrical error of pTC construction, assembly or installation.

 \rightarrow Several millimeters.

• The results also reflect accuracy of the alignment method.

 \rightarrow The alignment has done in 1.2 mm accuracy for each x,y,z axis. * Counters with large deviations from design

- More than 3mm misaligned counters can be confirmed by sight or with a ruler

- We can check whether excluded 77 counters have large deviations from design or not.

real position designed (expected)

JPS 2020 Annual Meeting

Contents

- Introduction
- $\mu \rightarrow e + \gamma$
- MEG II experiment
- Pixelated Timing Counter
- pTC alignment
- Alignment
- Flowchart
- Scan data
- Results
- Discussion

- MC study
- TOF from reconstructed track

13

- Results
- Discussion
- Summary & Prospect

TOF from reconstructed track

- In the past, there are no detailed studies on effects of misalignment of pTC.
- Misalignment would worse track reconstruction. Then, calculation of Time of Flight (TOF) would be worsen.
- 1mm difference makes 3 ps difference at light speed.
 - \rightarrow Because time resolution for each counter alone is 90~100 ps, 1mm misalignment makes no effects?

MC study for deviated geometry

2 types of pTC geometrical setup

- 1. Designed setup (with no deviations)
- 2. Aligned setup (with measured deviations)

Taku Yonemoto

Results (1) Designed setup

- Reconstruction: designed geometry
- TOF from MC truth is subtracted from TOF from reconstructed track.

 \rightarrow Ordinarily reconstructed. (std. dev ~ 7.1ps)

Results (2) Aligned setup

 \rightarrow <u>0.8ps better reconstructed by the aligned geometry</u>

Discussion of MC study

- Measured deviations worsen accuracy of the calculation by 0.8 ps.
- The realistic situation should be intermediate b/w completely knowing the deviation and not knowing them.
- Maximum effect on the time resolution for reconstructed time from track TOF is estimated:

$$\frac{\sqrt{\left(\sigma_{single}^{2}+7.8^{2}\right)\times N}}{\frac{N}{\sqrt{\left(\sigma_{single}^{2}+7^{2}\right)\times N}}} \cong 1.0006 \sim 1.0007$$

$$\frac{\sqrt{\left(\sigma_{single}^{2}+7^{2}\right)\times N}}{N}$$

<u>Summary</u>

- Alignment for pixelated timing counter was done with 3D scanner and laser tracker, and its accuracy is in 1.2mm.
- From MC simulation, measured geometrical deviations have worsen the time resolution for reconstructed time from track by 0.06~0.07%.

Prospect

- We will manually check 77 counters excluded from analysis of the alignment.
- More precise alignment will be done with new laser tracker targets.

Back up

Instruments - 3D scanner

3D Scanner (FARO Edge ScanArm HD)

- Accuracy $\pm 25 \mu m$
- Scan rate : 560,000 points/sec
- · Cited from https://www.faro.com/resource/faro-edge-scanarm-hd/

JPS 2020 Annual Meeting

Taku Yonemoto "MEG II実験陽電子タイミングカウンターの位置較正及び時間分解能に対する影響の評価" 21

Results (3) Random setup

- Randomly deviated from design
- Uniform random numbers
- $|dx_i| < 5 \text{ mm.}$
- Reconstructed with 2 types of geometrical

configuration.

- 1. Adjusted geometry (Blue, std. dev \sim 7.1 ps)
- 2. Design geometry (Red, std. dev $\sim 16 \text{ ps}$)

\rightarrow More than twice better reconstructed by the adjusted geometry.

JPS 2020 Annual Meeting

<u>Results(4)</u> Time resolution of multiple-hit

- TOF_{0n} from MC truth is subtracted from TOF_{0n} from reconstructed track
 (0 / n stand for a first / last hit counter)
- Average time resolution: $\sum_{i=2}^{12}$ (resolution × rate of *i* hit events)

standard setup : 60.2 ps survey setup (adjusted/default config.): 61.0/60.9 ps random setup (adjusted/default config.): 60.1/61.7 ps

JPS 2020 Annual Meeting Taku Yonemoto "MEG II実験陽電子タイミングカウンターの位置較正及び時間分解能に対する影響の評価"24