MEG II実験陽電子タイミングカウンターの
長期運用へ向けた運用・解析パラメータの最適化

-Optimization of the Operation & Analysis Parameters of the MEG II Pixelated Timing Counter for Long-term Operation-

東京大学理学系研究科物理学専攻

野内 康介、他MEG IIコラボレーション
Outline

➢ Introduction
 • $\mu \rightarrow e\gamma$ search
 • MEG II experiment
 • Positron spectrometer
 • pTC design
 • pTC performance
 • pTC status

➢ Bias voltage optimization
 • Upgrade concept
 • New optimization scheme
 • Lab test
 • Application to pTC data

➢ Constant fraction optimization
 • Upgrade concept
 • New optimization scheme
 • Lab test
 • Application to pTC data

➢ Summary & prospect
 • Summary & prospect
Physics motivation
- Lepton flavor violation (LFV) is strictly forbidden in standard model (SM)
- Neutrino oscillation
 - LFV in neutral lepton sector
 - Possibility of charged LFV (cLFV)
- SM + neutrino oscillation
 - $Br(\mu \rightarrow e\gamma) \sim \mathcal{O}(10^{-54}) \Rightarrow \text{clean channel}$
 - Predicted in many new physics models
 - $Br(\mu \rightarrow e\gamma) \sim \mathcal{O}(10^{-15} - 10^{-11})$

Status of $\mu \rightarrow e\gamma$ search
- Upper limit obtained by MEG experiment
 - $Br(\mu \rightarrow e\gamma) \sim 4.2 \times 10^{-13}$ (90 % C.L.)
- MEG II aims for one order higher sensitivity
 - $Br(\mu \rightarrow e\gamma) \sim 6 \times 10^{-14}$

Introduction
- $\mu \rightarrow e\gamma$ search
- MEG II experiment
- Positron spectrometer
- pTC design
- pTC performance
- pTC status
MEG II experiment

Introduction
- $\mu \rightarrow e\gamma$ search
- MEG II experiment
- Positron spectrometer
- pTC design
- pTC performance
- pTC status

Use most intense DC μ^+ beam at PSI
Positron spectrometer

- **Constant bending radius (COBRA) magnet**
 - Superconducting solenoid with gradient magnetic field
 - Bends signal positrons with constant radius independent of emission angle
 - Sweeps positrons away from central region

- **Cylindrical drift chamber (CDCH)**
 - Single-volume, full-stereo, wire chamber
 - Reconstructs positron track (i.e. E_{e^+}, θ_{e^+})

- **Pixelated timing counter (pTC)**
 - Plastic scintillator + SiPM readout
 - Reconstructs positron time (i.e. t_{e^+})

Theme of this talk

- Introduction
 - $\mu \rightarrow e\gamma$ search
 - MEG II experiment
 - Positron spectrometer
 - pTC design
 - pTC performance
 - pTC status
pTC design

- Overall design
 512 pixels laid cylindrically upstream & downstream of target

- Single-pixel design
 - 40/50 mm×120 mm×5 mm plastic scintillator + 6 series-connected SiPMs × 2
 - Laser light can be inserted from fiber below

Positron event display
pTC performance

- **Multiple pixel hit scheme**
 - Average number of pixel hits: \(~9\)
 - Single-pixel resolution: \(~80-100\) ps
 - Overall resolution improves with \(1/N_{\text{hit}} \rightarrow \sim 38\) ps

\[
\sigma_{\text{e}^+} (N_{\text{hit}}) = \frac{\text{single hit}}{N_{\text{hit}}}
\]

- **pTC time resolution**

- **Number of pTC hits distribution**

- **Event time resolution**

\[
\text{Mean} = 9.082
\]

\(~38\) ps
Optimization of Operation & Analysis Parameters of MEG II pTC

pTC status

➢ General status
 • pTC has already been operated in past 5 years

➢ What is already achieved
 • Detector construction
 • Basic operation methods
 • Insertion & extraction, cooling system, ...
 • Calibration methods
 • Energy deposit, position, time, ...
 • Analysis
 • Waveform analysis, hit reconstruction, clustering, tracking
 • Performance evaluation

➢ Tasks for pTC
 • Detailed study on effect of radiation damage to SiPMs revealed that pTC resolution can degrade by ~20% in 3 years’ data taking (c.f. backup slide)
 • pTC must be operated at high performance in long term

➢ Motivation of this study
 • Develop methods to bring out maximum performance of pTC in long term
 • Optimize bias voltage to SiPMs
 • Optimize constant fraction (CF) parameter in waveform analysis
Optimization of Operation & Analysis Parameters of MEG II pTC

Outline

- **Introduction**
 - $\mu \rightarrow e\gamma$ search
 - MEG II experiment
 - Positron spectrometer
 - pTC design
 - pTC performance
 - pTC status

- **Bias voltage optimization**
 - Upgrade concept
 - New optimization scheme
 - Lab test
 - Application to pTC data

- **Constant fraction optimization**
 - Upgrade concept
 - New optimization scheme
 - Lab test
 - Application to pTC data

- **Summary & prospect**
 - Summary & prospect
Upgrade concept

Conventional optimization scheme

1. Perform overvoltage scan w/ laser system (c.f. backup slide)
2. Choose overvoltage (common to all channels) which yields best time resolution

What is known so far

- Time resolution depends strongly on signal-to-noise ratio (S/N)
- Radiation damage to SiPMs can moderately increase dark noise
- Dose level depends on global pixel position

Possible improvements for long-term operation

- Channel-by-channel optimization (Dark noise increase rate differs from channel to channel)
- Online optimization using observed S/N (Conventional scheme requires dedicated DAQ)
Optimization of Operation & Analysis Parameters of MEG II pTC

New optimization scheme

➢ General idea
 • Best time resolution should be achieved when S/N is maximized
 • If we can estimate overvoltage dependence of S & N at each time (radiation damage) point, optimal overvoltage can be calculated mathematically
 • This should be possible if S & N are simple functions of overvoltage
Optimization of Operation & Analysis Parameters of MEG II pTC

Lab test

Measurement

- To see effect of radiation damage, SiPMs were irradiated with 90Sr source in 4 steps
- Bias voltage scan was performed at each damage step

Time resolution & S/N

- Time resolution has linear correlation with N/S (inverse of S/N)
- Find overvoltage to maximize S/N

<table>
<thead>
<tr>
<th>Damage step</th>
<th>Irradiation time</th>
<th>Dose level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 hours</td>
<td>$0 , n_1 \text{MeV/cm}^2$</td>
</tr>
<tr>
<td>1</td>
<td>70 hours</td>
<td>$7.5 \times 10^8 , n_1 \text{MeV/cm}^2$</td>
</tr>
<tr>
<td>2</td>
<td>140 hours</td>
<td>$1.5 \times 10^9 , n_1 \text{MeV/cm}^2$</td>
</tr>
<tr>
<td>3</td>
<td>210 hours</td>
<td>$2.25 \times 10^9 , n_1 \text{MeV/cm}^2$</td>
</tr>
<tr>
<td>4</td>
<td>280 hours</td>
<td>$3 \times 10^9 , n_1 \text{MeV/cm}^2$</td>
</tr>
</tbody>
</table>
Lab test

- **S dependence**
 - S clearly has linear relation w/ overvoltage
 - Radiation damage does not affect S

- **N dependence**
 - Overvoltage dependence of $N = \sqrt{N_{\text{SiPM}}^2 + N_{\text{elec}}^2}$ can be described well by assuming
 - $N_{\text{SiPM}} = C(V - V_{\text{breakdown}})^3$
 - $N_{\text{elec}} = \text{constant}.$
 - All curves can be fitted solely by changing C

![Pulse height v.s. bias voltage graph](image1)

![Noise RMS v.s. bias voltage graph](image2)
Optimization of Operation & Analysis Parameters of MEG II pTC

Application to pTC data

- **pTC laser data**
 - Linearity of S was verified
 - Overvoltage dependence of N can also be fitted well w/ assumed function

- **Application to beam data**
 1. Obtain $V_{\text{breakdown}}$ from I-V data
 2. Obtain overvoltage dependence of S & N from laser bias voltage scan
 3. Convert overvoltage dependence of S for beam data
 4. Calculate optimal overvoltage

- **Verification of new scheme**
 - We did not have time for beam data
 - Effect of this scheme has not been verified
Optimization of Operation & Analysis Parameters of MEG II pTC

Outline

- **Introduction**
 - $\mu \to e\gamma$ search
 - MEG II experiment
 - Positron spectrometer
 - pTC design
 - pTC performance
 - pTC status

- **Constant fraction optimization**
 - Upgrade concept
 - New optimization scheme
 - Lab test
 - Application to pTC data

- **Summary & prospect**
 - Summary & prospect

- **Bias voltage optimization**
 - Upgrade concept
 - New optimization scheme
 - Lab test
 - Application to pTC data
Upgrade concept

- **pTC analysis**
 - Constant fraction (CF) method is used to obtain signal time in waveform analysis

- **What is known so far**
 - Optimal CF value strongly depends on noise level
 - Radiation damage to SiPMs can moderately increase dark noise
 - Dose level depends on global pixel position

- **Possible improvements for long-term operation**
 - Channel-by-channel optimization
 (Dark noise increase rate differs from channel to channel)

Conventional optimization scheme

1. Perform **CF scan using beam data**
2. Choose **CF value (common to all channels)** which yields **best time resolution**
Optimization of Operation & Analysis Parameters of MEG II pTC

New optimization scheme

- **General idea**
 - Optimal CF should be determined by balance between fluctuation of leading edge & peak time (i.e. S/N)
 - Low noise = small baseline fluctuation = small leading edge fluctuation = lower CF preferred
 - High noise = large baseline fluctuation = large leading edge fluctuation = higher CF preferred
 - S/N may be used to determine optimal CF

Low noise case

High noise case
Optimization of Operation & Analysis Parameters of MEG II pTC

Lab test

- **Measurement**
 - To see effect of radiation damage, SiPMs were irradiated with 90Sr source in 4 steps
 - Bias voltage scan was performed at each damage step

- **Analysis**
 - CF scan was performed in steps of 0.05 from 0.1 to 0.6 for each dataset
 → Optimal CF value (i.e. w/ best time resolution) was obtained for each dataset

- **Optimal CF & S/N**
 - Optimal CF has linear correlation w/ N/S (inverse of S/N)
 → Optimal CF can be determined simply from observed S/N
Application to pTC data

- **pTC laser data**
 - Linear correlation between optimal CF & \(N/S \) was verified for all channels
 - Channel individuality seems pretty large
 \(\rightarrow \) Channel-by-channel optimization should be effective

- **Application to beam data**
 1. Obtain relation between optimal CF v.s. \(N/S \)
 2. Obtain \(N/S \) in beam data
 3. Calculated optimal CF from 1. & 2.

- Optimal CF has wide distribution
Application to pTC data

- **Verification of new scheme**
 - Each pixel time resolution was evaluated (w/ 2-hit analysis) using beam data
 - Pixel time resolution improved for all channels & by ~3 % on average

![Graph showing the effect of new optimization scheme](image-url)
Optimization of Operation & Analysis Parameters of MEG II pTC

Outline

Introduction
- $\mu \rightarrow e\gamma$ search
- MEG II experiment
- Positron spectrometer
- pTC design
- pTC performance
- pTC status

Bias voltage optimization
- Upgrade concept
- New optimization scheme
- Lab test
- Application to pTC data

Constant fraction optimization
- Upgrade concept
- New optimization scheme
- Lab test
- Application to pTC data

Summary & prospect
- Summary & prospect
Summary & prospect

Summary

- MEG II pTC measures positron time with ~38 ps resolution
- Considering the effect of radiation damage to SiPMs, **effective optimization of operation & analysis parameters is needed** to bring out maximum performance of pTC in long term
- A new optimization scheme of bias voltage was developed, which allows **online, channel-by-channel optimization** without dedicated DAQ
- A new optimization scheme of CF was developed, which allows **channel-by-channel optimization**
 → This **improved pTC resolution by ~3 %**, even without radiation damage

Prospect

- Attempt new bias voltage optimization
- **Evaluate its effect on pTC resolution** using beam data
Backup Slides
Signal & background

- **Signal**
 - \(E_{e^+} = E_\gamma = \frac{m_\mu}{2} \approx 52.8 \text{ MeV} \)
 - \(t_{e^+\gamma} = 0 \)
 - \(\theta_{e^+\gamma} = 180^\circ \)

- **Background**
 - **Physics background**
 - Radiative muon decay (RMD)
 - \(E_{\nu_e} \approx 0, E_{\nu_\mu} \approx 0 \)
 - \(\theta_{e^+\gamma} \approx 180^\circ \)
 - **Accidental background**
 - Michel \(e^+ \)
 - RMD or AIF \(\gamma \)
pTC analysis

- **Waveform analysis**
 - Obtain signal time in each channel using CF method

- **Hit reconstruction**
 - Obtain each pixel hit time, x hit position & energy deposit
 - $t_{hit} = \frac{t_{ch1} + t_{ch2}}{2} - \frac{L}{2v_{eff}} - t_{offset}$
 - $x_{hit} = \frac{t_{ch1} - t_{ch2} + \delta t}{2} v_{eff}$
 - $E_{dep} = C_E \sqrt{Q_{ch1} \cdot Q_{ch2}}$

- **Clustering**
 - Group hits from the same positron track

- **Tracking (pTC tracking)**
 - Reconstruct positron track from pTC pixel hits

Channel 1: t_{ch1} [s]
Channel 2: t_{ch2} [s]
Hit point: $(t_{hit}, x_{hit}, y_{hit})$
SiPMs in pTC

- **Connection of SiPMs**
 - Parallel connection → large capacitance → blunt waveform → bad time resolution
 - Series connection → small capacitance → sharp waveform → good time resolution
Laser system

- **System**
 - Laser light is divided using optical splitters and can be injected into $432/512$ pixels.
 - Can be used for various DAQ w/o beam.

- **Time calibration**
 - Laser light can be injected into multiple pixels simultaneously.
 - Optical length of laser components are measured beforehand.
 - Time calibration between pixels can be performed.

432 out of 512 counters have laser light.
Radiation damage to SiPMs

Damage type
- **Bulk damage** can be induced by collision of energetic particles
- Result in **increase of bulk leakage current**
- Dominant damage in MEG II pTC (surface damage is negligible)

Damage level
- $\sim 1 \times 10^{11} \text{e}^+/\text{cm}^2$ exposure of $\sim 50 \text{MeV}$ positrons in 3 years
- Absorbed dose: $\sim 25 \text{ Gy}$
- Current increase: from $\mathcal{O}(1) \mu\text{A}$ to $\sim 100 \mu\text{A}$
- Equivalent to $\sim 5 \times 10^9 n_1 \text{MeV}/\text{cm}^2$

Position dependence of dose level
- Damage level is different within series-connected SiPMs
- Damage level depends on global pixel position
Effect of radiation damage to SiPMs

- Dark noise increase
 - Radiation damage to SiPMs is known to increase dark noise of SiPMs
 - Time resolution is dependent on S/N
 - Single-pixel resolution can worsen by ~30% at 30 °C
 - pTC is planned to be operated at 10 °C, and resolution deterioration is expected to be suppressed to ~5%

- Hit position dependent time fluctuation
 - Vertical hit position dependence of time center exists due to finite signal propagation time
 - This can be enhanced by a gradient radiation damage to SiPMs, as in MEG II pTC
 → Resolution deterioration is estimated to be ~15% in 3 years