Core-to-Core Program

連続講演:16pG22-<mark>10</mark>,11,12,13

Study on gain decrease of PMTs in MEG II gamma ray detector MEG II実験ガンマ線検出器のPMTゲイン減少に関する研究

Kazuki Toyoda on behalf of MEG II Collaboration

16pG22-10

JPS annual meeting @Nagoya Univ.

Introduction

2/12

$\mu ightarrow e\gamma$

\blacktriangleright charged lepton flavor violation o practically **forbidden** in Standard Model by tiny neutrino mass • but many predictions by **new physics** are **within experimental reach** • eg. SUSY with GUT/Seesaw \tilde{e} $\tilde{\chi}^0$ $\blacktriangleright \mu \rightarrow e\gamma$ search example of $\mu \rightarrow e\gamma$ decay o signal • dominant background: accidental both 52.8 MeV/cе е back to back μ same timing + from $\mu \rightarrow e\nu\nu\gamma$ ν $ee \rightarrow \gamma \gamma$ Kazuki Toyoda JPS annual meeting @Nagoya Univ. 16bG22-10

Introduction

MEG II Experiment

○ MEG II is experiment to search for $\mu \rightarrow e\gamma$

- \circ goal sensitivity: 6.0×10⁻¹⁴ in 60 weeks
 - MEG I result: $Br(\mu \rightarrow e\gamma) < 4.2 \times 10^{-13} (90\% \text{ C.L.})$ (sensitivity: 5.3×10^{-13})
- \circ key concept:
 - high μ intensity: $7 \times 10^7 \mu/s$ @PSI
 - high resolution detectors

 \circ this talk is on γ detector

3/12

16pG22-10

Introduction

LXe Detector

- LXe scintillator (VUV light ~175 nm)
- \circ PMTs on γ incident surface are replaced with MPPCs

2 inch PMT \times 700 ch

 $12 \text{ mm} \times 12 \text{ mm} \text{ MPPC} \times 4000 \text{ ch}$

- \rightarrow improve uniformity and granularity
 - energy resolution : 2% @MEG I \rightarrow 1% @MEG II (expected)
 - position resolution: 5 mm @MEG I \rightarrow 2.5 mm @MEG II (expected)
- \circ need precise calibration of ~ 5000 photosensors

MC event display example of pile up

Photosensor Monitoring

- calibration sources
 - \circ ²⁴¹Am *α* ray source → absolute response for LXe scintillation light
 - o blue LED → gain calculation by Poisson statistics, monitor relative variation by large photon statistics

5/12

 \blacktriangleright monitor during pilot run in 2018 PMT response 7% (ref: JPS2019a19pT14-6) 0.92 • response decreased with muon beam \rightarrow investigate in detail **MPPC** response 10% • PMT : this talk • MPPC: next 3 talks & 17aG22-7,8# of incident 5×10^{10} VUV photon 0.4 /mm² 0.2 Kazuki Toyoda date (1 month) 16pG22-10 JPS annual meeting @Nagoya Univ.

Fast Gain Decrease

Fast Gain Decrease

Calibration by Various Method

\succ charge = LY×QE×CE×G

	comment
LY : Light Yield	no effect on LED light
QE: Quantum Efficiency	dependent on wavelength
CE: Collection Efficiency	
G : Gain	calculated by LED Poisson statistics

Response

Kazuki Toyoda

o average of 200 PMTs in LXe detector

- decrease (~8%) is consistent with each other within 1%
 - \rightarrow gain is main cause of decrease

possible cause:

degradation of dynode material

7/12

Decrease Speed

decrease speed gradually decreases o slower than exponential

Kazuki Toyoda

JPS annual meeting @Nagoya Univ.

8/12

Fast Gain Decrease

Beam Rate Dependence of Decrease Speed

➤ compare decrease speed at different muon beam rate

- strong dependence on beam rate
 much faster decrease at MEG II nominal rate
 - than expected from MEG I observation
- larger gain is available by applying large HV
- can operate at safe HV?

9/12

Fast Gain Decrease

HV Estimation

- ➢ estimate HV necessary after 3 years operation
- ➤ assumptions:

 \circ constant decrease rate: $G = G_0 e^{-\alpha t}$ (faster than observation)

- HV dependence : $G = a(HV HV_0)^k$
 - assume only *a* becomes smaller

➤ result:

○ HV for most PMTs exceeds safety limit (1400 V)
→ need a way of making decrease slower

Gain ^{×10³}

3000

2500

2000

1500

Half Gain Solution

Half Gain Solution

Gain Dependence of Decrease Speed

> operation with half gain by lowering HV

separate PMTs into 2 sets lowered HV of set A just after 3-day-operation **slower decrease** @lower gain most PMTs will be operated at safe HV with low-gain-operation

JPS annual meeting @Nagoya Univ.

Half Gain Solution

Effect of Half Gain Operation

smaller number of detected photons?
 o decrease of CE is only 5%

```
affected by HV
charge = LY \times QE \times CE \times G
determine statistics
```

○ photon statistics does not largely contribute to resolutions (cf. 16pG22-13)
 ➢ worse S/N?

 o signal decrease can be compensated by doubling gain of readout electronics
 o no increase of noise observed → S/N does not change! (dominant noise seems to generate after amp of electronics)

Study on gain decrease of PMTs in MEG II gamma ray detector

Summary

- > PMTs are used in γ ray detector of MEG/MEG II experiment
- gain decrease correlated with muon beam
 strong dependence on beam rate
 so rapid that too large HV is necessary to compensate for decrease
- ➢ solution: half gain operation
 - smaller decrease at smaller gain → safe HV even after 3 years run
 - o little effect on detector performance
 - \rightarrow to be checked by monochromatic 55 MeV γ this year

PMT Principle

$$\succ G = \prod a_i V_i^{k_i}$$
 (i: dynode)

Kazuki Toyoda

16pG22-10

Backup

PMT Information

≻ R9288 & R9869

Size Active area size PMT length Photo-cathode material Dynode type

Aluminum strip \rightarrow low temp. Zener Diodes \rightarrow large signal 45 mm ϕ 32 mm K-Cs-Sb Metal channel \rightarrow fast, small, robust for B-field

57 mm ϕ

MPPC Monitoring

$\succ charge = N_{photon} \cdot PDE_{\lambda} \cdot gain \cdot ECF$ $\circ \text{ weak LED}$

PDE : Photon Detection Efficiency (depend on wavelength) gain : charge from 1 pixel ECF : Excess Charge Factor (= crosstalk + afterpulsing)

Charge follows "Poisson + correlated noise" distribution $gain \cdot ECF = \frac{1}{(1 + 1)^{1/2}} + \frac{1}{(1 + 1)^{1$

 $= \frac{1}{\mu (expected \ \# \ of \ primary \ discharge)}$

estimated from pedestal fraction: $P(0 \ pe) = e^{-\mu}$

Strong LED: response for visible light
 charge from scintillation by α from ²⁴¹Am
 current from scintillation by γ from μ

LED

JPS autumn 2019

PMT Monitorin

QE : Quantum Efficiency CE : Collection Efficiency gain : charge from 1 photoelectron

depend on B-field

Charge follows Poisson distribution $gain = \frac{variance}{mean}$

Strong LED: response for visible light
 charge from scintillation by α from ²⁴¹Am
 current cannot be read out

o LED of different intensity

o Strong LED: response for visible light φ charge from scintillation by α from ²⁴¹Am φ current cannot be read out

LED

 \blacktriangleright charge = $N_{nhoton} \cdot QE \cdot CE \cdot gain$

Charge follows Poisson distribution $gain = \frac{variance}{mean}$

²⁴¹Am α source

Dose Estimation

➤ MPPC current for pulsed LED light (20 kHz)

Dose Estimation

> MPPC current for signals from muon beam

Irradiation of LED Light

motivation: confirm that cause is dynode damage should be independent of wavelength

➢ setup

LED with pulse operation (1 MHz)
PMT with large gain (5×10⁶)
MPPC for light monitor

LED

PMT & MPPC

Irradiation of LED Light

