

大矢 淳史(東大理^A)

家城佳(東大素セ^B),大谷航^B,越智敦彦(神戸大理),恩田理奈^A,山本健介^A

Contents

Introduction

- MEG II signal and background
- Background identification detector
- Concept of RPC for background identification
- Development of ultra-low material RPC
- Summary and prospect

MEG II signal and background

- MEG II will search for $\mu \rightarrow e \gamma$ decay
 - Identified by energy, timing and direction of e and γ
- Dominant source of background is accidental coincidence of BG-e and BG-γ mimicking the signal
 - One of the dominant source of BG- γ is radiative muon decay

Background identification detector

- New detectors to tag BG-γ from radiative muon decay
 - Detect low energy positron (1-5MeV) accompanying BG γ (~53MeV)
- Planned to be installed to 2 points
 - Upstream and downstream of the target
 - MEG II sensitivity
 - > 10% improvement with upstream
 - > 15% improvement with downstream
 - Upstream one is under development
 → Today's talk

already developed

Under development

Requirements to the upstream detector

- 1. Material budget: $< 0.1\% X_0$ (beam must pass through the detector)
- 2. 90% efficiency for 1-5MeV positron
- 3. 1 ns timing resolution (RMD identification with the timing difference b/w positron & γ)
- 4. Rate capability and radiation hardness $(10^8 \mu/s \text{ with } 21 \text{ MeV/c}, >60 \text{ weeks run})$
- 5. Detector size: 20 cm in diameter (45% acceptance…total 90% incl. DS)
- → Candidate: Ultra low-material RPC detector using Diamond Like Carbon (DLC)

RPC based on DLC technology

- RPC: Gaseous detector with high resistive electrodes placed face to face
 - Gas: R134a (Freon) based
 - Gap thickness: $200 \,\mu \,\mathrm{m} 2 \,\mathrm{mm}$

RPC performance in general

- time resolution < ns
- material: $1\% X_0 \rightarrow must be improved$
- Efficiency ~90% → still requires study
- rate ~kHz/cm² → must be improved

- Diamond Like Carbon is used for resistive electrodes
 - DLC: high resistive material w/ mixed structure of sp² bond and sp³ bond
 - Advantages of DLC
 - 1. Iow material \rightarrow Sputter DLC on 50 μ m Kapton
 - 2. Adjustable resistivity
 - → Resistivity must be optimized for high rate environment (Resistivity must be low to achieve high rate capability)
 - Development initiated by a group of Kobe Univ

DLC: chemical structure

7

Proposed design of RPC for MEG II

- Readout: Al
 - → aluminized Kapton will be used on the top & bottom

- High efficiency can be achieved by multilayer design
 - n-layer efficiency: $\epsilon_n = 1 (1 \epsilon_1)^n$
 - From requirement on material budget, 4 layer at maximum

Material budget

Kapton 50 µ m → 0.018 % X₀
AI 100 nm × 2枚→ 0.0023 % X₀

 \rightarrow < 0.1 % X₀ is satisfied

Contents

Introduction

• Development of ultra-low material RPC

- Prototype design
- Performance measurement
- Summary and prospect

Prototype detector for performance study

Performance measurement

- Measurement setup
 - Irradiated from ⁹⁰Sr
 - Plastic scintillator is used for trigger
- Signal is readout by 700 MHz waveform digitizer (DRS4)
- Measurement purposes
 - Check whether the 90% efficiency & < 1 ns timing resolution can be achieved
 - Check optimal gap thickness of RPC

Result: Detection efficiency for single layer

- Single layer efficiency is measured changing the gap thickness
 - 40% single layer efficiency is required to achieve 90% w/ 4-layer
 - $\epsilon_n = 1 (1 \epsilon_1)^n$
 - For each thickness, measured changing the operating voltage
- Efficiency
 - Determined from the fraction of RPC hits in the triggered events
 - RPC threshold = 10 mV

sufficient efficiency for $\geq 370 \,\mu$ m thickness

efficiency vs electric field

Result: Timing resolution for single layer

- Single layer timing resolution is measured changing the gap thickness
 - (Normally, 4-layer resolution is better)
- Timing resolution
 - Determined from the timing difference b/w RPC and reference counter
 - RPC timing: 50% constant fraction •

Timing resolution is good enough at least up to $520 \,\mu$ m (< 1ns required)

At least, gap thickness can be b/w 370 μ m and 520

timing resolution vs electric field

Result: multilayer efficiency and timing resolution

- $384 \,\mu$ m gap 4-layer RPC
- Efficiency
 - Measurement result is compared to behavior predicted from that of single layer
 - Good agreement is seen
- Timing resolution
 - 250 ps

Timing resolution and efficiency are good enough

Contents

Introduction

- Development of ultra-low material RPC
 - Prototype design
 - Performance measurement
- Summary and prospect

Summary

- Ultra-low material RPC is being developed to improve the sensitivity of MEG II experiment
- Prototype studies show that most of the requirements can be satisfied
 - ✓ Material budget: <0.1% X₀
 - ✓ Timing resolution: < 1ns \rightarrow 250 ps achieved
 - ✓ Detection efficiency: >90% → shown to be reachable

RPC detector is a promising candidate with which the MEG II sensitivity will be improved by 10%

Prospect

- The remaining works are
 - Rate capability measurement
 - Measurement using mu beam
 - Pileup study

Next talk is related

- Possibility for further detector design optimization
 - \succ Widening gap thickness to 500 μ m is a possible option
 - > Changing the gas mixture (Currently R134a/SF₆ = 93/7 mixture)

→Careful study is necessary because these parameters affect rate capability and the stability of RPC

- Construction of full-scale detector (ϕ =20 cm)
 - RPC itself is scalable in principle
 - Difficulty for mechanical engineering is expected