MEG実験全データを用いた

荷電レプトンフレーバーを破る軽い新粒子の探索

Searching for a lepton flavour violating muon decay mediated by a new light particle with the MEG I full datasets

東大理, 東大素セ^A, KEK^B

中尾光孝,澤田龍^A,名取寛顕^B,他MEGコラボレーション

nakao@icepp.s.u-tokyo.ac.jp

Original: <u>https://meg.web.psi.ch/docs/</u> <u>talks/JPS/2020s/nakao_jps2020s.pdf</u>

JPS Annual Meeting 2020 (17aG21-7)

Core-to-Core Program

Abstract

- We have searched for a lepton flavor violating muon decay mediated by a new light particle X, μ⁺ → e⁺X, X → γγ, using the full datasets (2009–2013, 7.5 × 10¹⁴μ⁺s) of the MEG experiment.
- Statistics, reconstruction methods, and the decay search analysis are improved from the previous analysis in 2012 (2009, 2010 data was used).
- No significant excess was found in the mass region of 20–45 MeV, lifetime below 40 ps.
 - In particular, the upper limits are **pushed down to the level of** $\mathcal{O}(10^{-11})$ for 20–30 MeV.
- It is at most 60 times more stringent result than the bound from the Crystal Box experiment.

The MEG experiment

Liquid xenon gamma-ray detector

- The MEG experiment searched for charged lepton flavor violating muon decay ($\mu^+ \rightarrow e^+ \gamma$).
- Physics data taking: 2009–2013
 - ▶ 7.5x10¹⁴ stopped muons
- No excess was found and the most stringent upper limit, 4.2 ×10⁻¹³ (90% C.L.) was set on ℬ(μ⁺ → e⁺γ) in 2016.

At Paul Scherrer Institut in Switzerland

The final results: A. M. Baldini et al. (MEG Collaboration), Eur. Phys. J. C 76 (2016) 434

JPS Annual Meeting 2020 (17aG21-7)

Physics motivation

- There is no clear evidence of new physics beyond the standard model to date (except for some anomalies).
- We try to tackle this situation by combining two different directions: **charged lepton flavor violation** and **light new physics**.

Physics motivation: charged lepton flavor violation

- There is no clear evidence of new physics beyond the standard model to date (except for some anomalies).
- We try to tackle this situation by combining two different directions: **charged lepton flavor violation** and **light new physics**.
- Inter-generational mixing in the charged lepton sector (= charged lepton flavor violation, CLFV) is clear evidence for new physics.
- The MEG experiment searched for charged lepton flavor violating muon decay ($\mu^+ \rightarrow e^+ \gamma$).
- No excess was found and the most stringent upper limit, 4.2 x10⁻¹³ (90% C.L.) was set (2016*).

*A. M. Baldini et al. (MEG Collaboration), Eur. Phys. J. C 76 (2016) 434

JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao 🛧 Page: 5/23

Physics motivation: light new physics

- There is no clear evidence of new physics beyond the standard model to date (except for some anomalies).
- We try to tackle this situation by combining two different directions: **charged lepton flavor violation** and **light new physics**.
- LFV mediated by new light particle X ~ O(10–100) MeV might been left undiscovered as a loophole.
- A possible search in MEG: $\mu^+ \rightarrow e^+X$, $X \rightarrow \gamma\gamma$ (hereafter we call it "MEx2G")
 - X is generated via LFV coupling and the on-shell X decays back into SM particles.
 - In this search, we assume decay width is narrow and X is long-lived.
- Possible candidates of X: axion-like particle, majoron, familon, flaxion, and strongly interacting DM (SIDM)

Previous studies (1/2)

•Direct search: MEG (2012) [1] (markers in bottom left plot)

• $\mu^+ \rightarrow e^+ X, X \rightarrow \gamma \gamma$ decay search using the MEG 2009/2010 datasets.

• The first search in the world, available only in a Ph.D thesis [1].

•Inclusive search: Crystal Box (1988) [2] (solid lines in bottom left plot)

- LFV μ decays including $\mu \rightarrow e\gamma\gamma$ were searched.
- Limits on $\mu \to e\gamma\gamma$ can be converted to $\mu^+ \to e^+X, X \to \gamma\gamma$ [1].

[1] H. Natori, Ph.D. thesis (The University of Tokyo), 2012
[2] R. D. Bolton et al., Phys. Rev.D 38 (7) (1988) 2077–21
[3] J. Heeck et al., Phys. Lett. B 776 (2018) 385-390

JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao ★ Page: 7/23

Previous studies (2/2)

•Direct search: MEG (2012) [1] (markers in bottom left plot)

• $\mu^+ \rightarrow e^+ X, X \rightarrow \gamma \gamma$ decay search using the MEG 2009/2010 datasets.

• The first search in the world, available only in a Ph.D thesis [1].

•Inclusive search: Crystal Box (1988) [2] (solid lines in bottom left plot)

• LFV μ decays including $\mu \rightarrow e\gamma\gamma$ were searched.

• Limits on $\mu \to e\gamma\gamma$ can be converted to $\mu^+ \to e^+X, X \to \gamma\gamma$ [1].

•Constraints on X: beam dumps, SN1987A [3] (white area in bottom right plot)

• "decay length <1 cm and m_X >20 MeV" is hot spot.

JPS Annual Meeting 2020 (17aG21-7)

 $\mathscr{B}(\mu^+ o \mathrm{e}^+\mathrm{X},\mathrm{X} o \gamma\gamma)$ upper limit

Mitsutaka Nakao ★ Page: 8/23

[1] H. Natori, Ph.D. thesis (The University of Tokyo), 2012
[2] R. D. Bolton et al., Phys. Rev.D 38 (7) (1988) 2077–21
[3] J. Heeck et al., Phys. Lett. B 776 (2018) 385-390

Target parameter space

• We have searched for the white region:

- $m_{\rm X} = 20 45 \,{\rm MeV}$
- *τ* < 40 ps</p>

JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao 🛧 Page: 9/23

Signal & Background

<u>Signal</u>

- • $p_{\rm X}$ and $p_{\rm e^+}$ is less than $m_{\mu}/2 = 52.8 \,{\rm MeV}.$
- • $E_{\gamma_1} + E_{\gamma_2}$ is larger than $m_{\mu}/2$.
- 2γ s are boosted and opening angle between them is less than 180° .
- e⁺, γ, γ are coincident in time (at each vertex).

Background

- •one of γ is accidental
- •e⁺ is accidental
- •e+, γ , and γ is accidental
- physics backgrounds are negligible

JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao ★ Page: 10/23

$\mu^+ \rightarrow e^+ X, X \rightarrow \gamma \gamma$ decay search analysis

- Blind analysis
 - A blind analysis is used to reduce the experimenters's bias.
- Cut-counting-based analysis
 - We apply several cuts to reduce BGs while keeping the number of signal events.
 - The number of signals and BGs in the signal region are simultaneously estimated by a maximum likelihood fit.
- The confidence interval of the number of signal events and its significance are calculated in a frequentist approach.

• Branching ratio:
$$\mathscr{B}_{MEx2G} = N_{Signal} \times \frac{1}{k}$$

- N_{Signal} : the number of signal
- k: normalization factor, 1/k: single event sensitivity

JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao 🛧 Page: 11/23

JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao ★ Page: 12/23

Signal selection

Red: signal (MC) Blue: background (data) Black: optimized thresholds

JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao ★ Page: 13/23

Signal estimation

•After the signal selections, we estimate the number of signal from the survived events.

• Likelihood function: $\mathscr{L}(N_{\text{signal}}, N_{\text{BG}}, k | N_{\text{obs}}, \text{Number of events in the sidebands}, k_0)$

 $N_{\rm BG}$ is calculated from time sidebands

• $N_{\rm signal}$: number of signal

- $N_{\rm BG}$: number of background
- > $N_{\rm obs}$: number of observed events in the analysis region (after unblinding).

 $\bullet N_{
m BG}$ can be estimated from number of events in the sidebands (see next).

k: true, k_0 : estimated

Background estimation

- $\bullet N_{
 m BG}$ can be estimated from number of events in the sidebands
- table: BG types. The same symbol indicates the same physics origin.

JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao ★ Page: 15/23

Number of observed events in the signal region

• We observed 1, 2 events in some mass regions:

magg (MoV)		sidebar	expected N _{BG}		
mass (wev)	$A(=A_1+A_2)$	$B(=B_1+B_2)$	$C(=C_1 + C_2 + C_3 + C_4)$	in signal region	nObs
20	0	0	1	$0.048^{+0.202}_{-0.046}$	1
21	0	0	3	$0.146^{+0.198}_{-0.084}$	0
22	1	0	5	$0.292^{+0.211}_{-0.140}$	0
23	3	0	3	$0.622^{+0.425}_{-0.330}$	0
24	2	0	1	$0.414\substack{+0.346\\-0.260}$	1
25	2	0	3	$0.414\substack{+0.346\\-0.261}$	0
26	0	0	3	$0.150^{+0.189}_{-0.091}$	0
27	0	0	1	$0.050^{+0.200}_{-0.049}$	0
28	0	0	1	$0.048^{+0.202}_{-0.046}$	0
29	0	0	1	$0.048^{+0.202}_{-0.046}$	1
30	0	0	0	$0.000^{+0.170}_{-0.000}$	0
31	0	0	1	$0.048\substack{+0.202\\-0.046}$	0
32	0	0	0	$0.000^{+0.170}_{-0.000}$	0
33	0	0	0	$0.000^{+0.210}_{-0.000}$	0
34	0	0	0	$0.000^{+0.210}_{-0.000}$	1
35	0	0	0	$0.000^{+0.210}_{-0.000}$	2
36	0	0	0	$0.000\substack{+0.210 \\ -0.000}$	2
37	1	0	0	$0.400\substack{+0.517\\-0.301}$	1
38	0	0	2	$0.168\substack{+0.183\\-0.105}$	0
39	0	0	1	$0.084^{+0.201}_{-0.084}$	0
40	0	0	0	$0.000^{+0.210}_{-0.000}$	0
41	0	0	0	$0.000^{+0.210}_{-0.000}$	0
42	0	0	0	$0.000^{+0.210}_{-0.000}$	0
43	0	0	1	$0.084^{+0.201}_{-0.084}$	0
44	0	0	0	$0.000^{+0.210}_{-0.000}$	0
45	0	0	0	$0.000\substack{+0.210\\-0.000}$	0

JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao ★ Page: 16/23

Number of signal (90% C.L.)

- The Feldman-Cousins approach is used to estimate the interval.
 - Note that Feldman-Cousins can give both upper and lower limits.
- Some masses have both upper and lower limits.

JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao ★ Page: 17/23

Number of signal (90% C.L.)

- The Feldman-Cousins approach is used to estimate interval.
- Some masses have both upper and lower limits.
- The excess is not statistically significant.

JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao ★ Page: 18/23

Normalization

• To get the relative normalization, Michel events ($\mathscr{B}(\mu^+ \to e^+ \nu \bar{\nu}) \sim 100\%$) are used.

$$\mu^+ \rightarrow e^+ \nu \bar{\nu}$$
 : Michel decay, Br ~ 100%
 $\mu^+ \rightarrow e^+ X, X \rightarrow \gamma \gamma$: MEx2G signal

•By using Michel e⁺s as a normalization, the estimation is independent of beam rate (stopped muons), and insensitive to absolute positron detection efficiency.

JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao 🛧 Page: 19/23

Uncertainty on normalization 20 MeV, 20 ps

- Main source: systematic uncertainty coming from MC smearing and γ detection efficiency.
 - MC smearing is estimated from differences of the efficiency with different smearing parameters (mean, mean±systematics).
 - γ detection efficiency from MEG1 study.
- The uncertainty is incorporated into the signal likelihood function;
 - normalization factor k is also fitted

	(2013)	Relative uncertainty		
<pre># of Michel events</pre>	53841	0.43 % (stat)		
branching ratio of Michel	1	0		
energy fraction of Michel	0.104	0.01 % (sys)		
prescale	107	0		Rel
prescale correction	1.12	0.89 % (stat)		unce
Relative positron	1.024	1.3 % (sys)	acceptance	1.
efficiency correction			trigger efficiency	0.9
Missing turn correction	0.957	0.21 % (sys)	pileup inefficiency	2.
Signal efficiency	0.0135	2.1 % (stat)	detection efficiency	7.
(γ, DM, selection)		9.5 % (sys) 🖌	MC Smearing	4.

JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao 🛧 Page: 20/23

BR limits (1/2)

•BR limits is improved by a factor of 4.4–13 depending on m_X from MEG2012 (2009/2010 MEG data is used).

- SES is improved by a factor of 5.6–13 depending on $m_{\rm X}$
- Statistics (and positron analysis updates) contributes (at most) ~5.
- Optimization of selection efficiency at higher $m_{\rm X}$ contributes (at most) ~3.
 - \checkmark In the previous analysis in MEG2012, selection conditions are not optimized.

^{= 40 ps}JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao ★ Page: 21/23

BR limits (2/2): 3 key features

1 Improved BR upper limits in all m_X from the previous analysis using 2009 and 2010 data (MEG2012).

2 Set BR upper limits down to $\mathcal{O}(10^{-11})$.

3 Improved BR upper limits in $m_X > 30 \text{ MeV}$, which was not improved by MEG2012.

^{= 40 ps}JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao ★ Page: 22/23

Conclusion

- We have searched for a lepton flavor violating muon decay mediated by a new light particle X, μ⁺ → e⁺X, X → γγ, using the full datasets (2009–2013, 7.5 × 10¹⁴μ⁺s) of the MEG experiment.
- No significant excess was found in the mass region of 20–45 MeV, lifetime below 40 ps.
 - In particular, the upper limits are pushed down to the level of 𝒪(10⁻¹¹) for 20–30 MeV.
- It is at most **60 times more stringent** result than the bound from the Crystal Box experiment.
- The MEG II experiment is planned and the sensitivity is expected to be improved by one order of magnitude.
- A further update can be possible in the future CLFV experiments.

JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao ★ Page: 23/23

Backup slides

JPS Annual Meeting 2020 (17aG21-7)

MEG Apparatus

JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao ★ Page: 25/23

μ^+ Beam & target

- The world most powerful proton ring cyclotron @PSI in Switze
 - > 2.2-2.4 mA, 1.4 MW, 590 MeV proton, RF: 50.7 MHz.
- The π E5 beamline
 - > provides $3 \times 10^8 \mu^+$ /s at 28 MeV/c, operated at $3 \times 10^7 \mu^+$ /s for the MEG data taking.
- •Stopping target
 - > 205 μ m thick polyethylene and polyester sheet (density: 0.895 g/cm³).
 - Slanted angle of 20°

JPS Annual Meeting 2020 (17aG21-7)

e⁺: COBRA magnet

- COBRA = COnstant Bending RAdius
- Specially graded B field
 - The diameter of the trajectories depend on e⁺ momenta independent of their emission angles.
 - Low momentum e⁺s are quickly swept out

✓ Low hit rate in the drift chambers

 \bullet e⁺s whose momenta are more than ~45 MeV come into the acceptance

JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao ★ Page: 27/23

1m
COBRA Magnet
Drift chamber
Muon Beam
Stopping Target e ⁺ Timing counter
Liquid Xenon Scintillation Detector

e⁺: Drift Chamber

- Track e⁺s.
- Made of ultra low mass materials
 - Minimize the multiple scattering.
 - Suppress γ BG.
 - in total, $2.6 \times 10^{-4} X_0$
- 16 modules consist of two staggered layers.
- Vernier method is used for z reconstruction.
- Helium-based chamber gas.

JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao ★ Page: 28/23

e+: Timing Counter

- Measure hit timing of e^+s .
- 15 scintillator bars for both upstream and downstream.
- Scintillation light are detected by using fine-mesh PMTs at bo

JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao ★ Page: 29/23

γ: Liquid xenon detector

- Detect γ using liquid xenon (active volume 800 L).
 - \blacktriangleright Determine timing, energy, and position of γ
- Good stopping power (Liquid xenon).
- Fast scintillation timing (Liquid xenon).
- VUV-sensitive (178 nm) PMTs (846 tubes).
 - Newly developed for MEG by Hamamatsu.

JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao ★ Page: 30/23

Event reconstruction

1. e⁺ reconstruction

•TC: time

3. Combined reconstruction

• $X \rightarrow \gamma \gamma$ vertex position: maximum likelihood

fit assuming $m_{\rm X}$.

- Momentum: $\overrightarrow{P}_{\gamma_1}, \overrightarrow{P}_{\gamma_2}(, \overrightarrow{P}_X)$
- •Time differences: $t_{\gamma 1} t_{\gamma 2}, t_{\gamma 1} t_{e^+}$

•Time: least square fit using selected PMTs.

2. 2y reconstruction

• Energy & position: simultaneous least

square fit using light yield of all PMTs.

JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao ★ Page: 31/23

DAQ & Trigger

- DRS4 (Domino Ring Sampler)
 - Switched capacitor array specially developed at PSI.
 - Take the data from all detectors as waveforms.
- Trigger
 - Trigger rate below 10 Hz.
 - γ energy, time difference between e⁺ and γ, and relative direction of e⁺ and γ are used in the trigger algorithm.
 - Not optimized for the MEx2G search and the direction match trigger condition loses the MEx2G signal (down to 50–90 %).

Dataset

- $7.5 \times 10^{14} \mu^+$ s stopped on the target in 5 years.
 - > $1.8 \times 10^{14} \mu^+$ (2009 and 2010) was used for the previous MEx2G analysis in 2012.
- $\mu^+ \rightarrow e^+ \gamma$ data is reused for the MEx2G search.

JPS Annual Meeting 2020 (17aG21-7)

Mitsutaka Nakao ★ Page: 33/23