MEGII実験における バックグラウンド抑制のための 超低物質量高速RPCの開発

大矢 淳史(東大理)

家城 佳A, 大谷 航A, 越智 敦彦B,恩田理奈 (東大素粒子センターA. 神戸大理B)

Contents

- Introduction
 - ✓ MEG II experiment
 - ✓ Background detectors for MEG II background
 - ✓ RPC with DLC sputtering technique
 - ✓ List of required studies for MEG II
- R&D for RPC

Summary and prospects

MEG II signal and background

• In the $\mu \rightarrow e \gamma$ event (MEG II signal), γ and positron are emitted in the opposite direction w/ ~53MeV

- •One of the source of BG γ is $\mu \rightarrow e \gamma \nu \overline{\nu}$
 - \rightarrow When γ coincide with positron from $\mu \rightarrow e \nu \overline{\nu}$ (Michel), this event becomes accidental background

both ~53MeV, accidentally in the opposite direction at the same time

Background detector

- Strategy for BG identification
 - ✓ Detect low energy positron (1-5MeV) accompanying BG γ (~53MeV)

Requirements for new BG detector

- 1. Detection of 1-5MeV positron (~MIP)
- 2. Timing resolution: ~1ns
- 3. Rate capability to cope with $4 \text{MHz}/cm^2 \sim 21 \text{MeV/c}$ muon beam
- 4. material budget: < 0.1% of X_0 \rightarrow so as not to degrade muon beam
- 5. radiation hardness

RPC with DLC sputtering for MEG II

- Resistive Plate Chamber (RPC)
 - ✓ Two resistive (to suppress self-discharge) electrodes are put face to face.
 - ✓ R134a based gas with iso-butane & SF₆ quencher
- Following structure is considered
 - ✓ Possibility of segmentation
 - ✓ DLC (Diamond Like Carbon) sputtering technique is used to form the resistive electrodes (Instead of glass)
- Diamond Like Carbon
 - ✓ High resistivity with mixed structure of sp² bond and sp³ bond of carbon
 - ✓ Low material budget (DLC thickness: \sim 0.1 μ m)

Contents

- Introduction
- R&D for DLC-RPC
 - ✓ Structure
 - ✓ Previous study & upgrade
 - ✓ Result of rate capability measurement & problem of amp speed
 - ✓ Fast amp trial & its other problem
- Summary and prospects

Structure

It is not a final design

- ✓ Not optimal readout system
- ✓ Used to check operation and rate capability
- ✓ R134a based gas was used if no remark is made

GND line

Previous study & upgrade

- DLC-RPC was developed by a group of Kobe University
 - \checkmark They successfully operated DLC-RPC (2017) with 100 μ m gap
 - ✓ Efficiency is not high enough for $100 \,\mu$ m gap: $10 \,\%$ for 1 layer 30% for 3 layer → In general, thicker gap is used to achieve high efficiency with small number of gap (with thick gap, timing resolution is bad)
- Performance test is required in more detail
 - ✓ Rate capability (started)
 - ✓ Efficiency (only rough comparison)
 - ✓ Timing resolution
- Design upgrade is also required
 - ✓ development of readout system and gas supply
 - \checkmark try thicker gap (started, 200 μ m is now used)
 - ✓ study on amplifier (started)

Effect of using thicker gap RPC

- Check the relative difference in achievable efficiency b/w $100 \,\mu$ m & $200 \,\mu$ m setup (Sr90 irradiation)
 - ✓ Compare count rate using the same measurement setup except for the gap (Charge amp + shaper)
 - ✓ But absolute efficiency is not measured

30000

25000

20000

15000

10000

5000

✓ Timing resolution must also be measured

Electric field [kV/mm]

detector becomes instable with stronger electric field (spontaneous discharge)

Rate capability test w/ 200μ m setup

- In Sep2018 rate capability was tested using intense Xray
 - ✓ Using Ar based gas(R134a based gas was not able to be prepared), charge amp
 - No saturation in current b/w gas gap vs X ray intensity
 - \rightarrow no saturation expected at least up to 0.1MHz/ cm^2

0.6MHz equivalent intensity (sensitive area ~6cm²)

- Count rate was not completely measured because charge amp (ORTEC 142IH) was slow
- → Tried another amplifier (SiPM amp developed in PSI: fast response DC to ~2GHz bandwidth current amp) after this test

Comparison of amplifier

- \bullet Setup: 200 μ m gap, Sr90,R134a gas
 - ✓ Compared SiPM amp & charge amp with this setup
- SiPM amp is faster, worse S/N
 - → Small signal cannot be seen; It will deteriorate efficiency
- Need further improvement for amp

Sirivi amp			
Tek 停止	**************************************	ノイズ・フィルタ・オフ	
	My MMM	MM 200 MM	
		V. V. V. FV	
2 A		nV	
<u>20</u> ns		<u></u>	
	20.0ns 13.2000ns 1 \ \-16.0mV 4 振幅 8.00mV ? 1 立下り	143.755 Hz 1.144ns ?	
1 10.0mV 2 500mV	(4)□- 2.00mV		
トリカ種類 ソース フッフリンク! エッジ 1 DC	/ \ \ -16.0mV	ノーマルと ホールドオフ 06:00:33	

CIDM ama

	SiPM amp	charge amp
S/N	bad	good
pulse width (w/ RPC)	~10ns	1μ s

Summary and Prospects

- 200μ m gap DLC-RPC is tested
 - ✓ We checked rate capability of at least 0.1MHz/cm²
 - ✓ Efficiency seems improved from $100 \, \mu$ m setup
- Further development of DLC-RPC for MEG II
 - ✓ Reduce material budget of readout
- More study on amp is required
 - ✓ Good S/N & high speed amplifier is the requirement
- Performance test will be done in 2019
 - ✓ Rate capability, timing resolution, effect on muon beam, efficiency

BACK UP

Summary of previous study in Kobe (2017)

- $100 \,\mu$ m gap DLC-RPC is developed
 - √ 1 layer- 3 layer
 - ✓ Make use of readout pad for micromegas
 - ✓ charge amplifier was used
- Their result on efficiency was not high enough
 - √ 10 % for 1 layer 30% for 3 layer
 - → need more gap to achieve better efficiency (?)

Detector candidates

 Scintillator: Plastic scintillator fiber has been studied. Not promising due to limited radiation hardness

Silicon detector: Under investigation

 Gas detector: We are developing Resistive Plate Chamber applying DLC sputtering technique

Signal shape with PSI amp

- Reflection-like signal shape is observed
 - ✓ Reports from other groups suggest reflection at the end of the strips

Study on readout strip is required

Gas type

- 2 types of gas have been tried
 - ✓ Freon (R134a) based gas (standard for RPC, but requires equipment to treat iso-butane quencher): R134a/iso-C4H10/SF6 ~ 94.8/4.7/0.5
 - ✓ Ar based gas (This was used when Freon based gas was not available): $Ar/CO_2 \sim 93/7$
- Ar based gas is not desirable
 - low count rate
 - slow signal

Rate tolerance test

Rate tolerance test using X-ray generator: @RD51 lab in CERN

 \checkmark 200 μ m gap

✓ $10M\Omega$ surface resistivity plate

✓ 93% Ar, 7% CO2 gas mixure (standard RPC gas could not be used: it is flammable)

RPC was put here

Xray come out from here

- Signal rate was measured changing the intensity of Xray
 - ✓ charge Amp + pulse shaper (ORTEC 142IH + ORTEC474)
 - ✓ counting was done w/ discriminator + scalar

Rate capability: result (detail)

- saturation of rate was observed @ 700kHz
 - → Not the limitation of FRPC itself (discussed next page)
- no saturation in Xray current b/w gas gap vs intensity graph
 - → no saturation expected at least up to 0.1MHz/cm²

current b/w gap vs Xray intensity

HV: 1092V

air pressure: 968±2 hPa

Rate capability test: slow signal

The saturation of measured rate was caused by pile up of pulses

→ pulse width: 300ns ← → signal rate @ saturation: 700kHz

readout electronics was slow

RPC structure

- Electric field is applied between two resistive electrodes
 - ✓ When ionization takes place, both electron and ion drift towards the electrodes
 - ✓ Accelerated electrons cause secondary ionization
 - → gas multiplication take place

